
Fair Ranking with Noisy Protected Attributes

Anonymous Author(s)
Affiliation
Address
email

Abstract

The fair-ranking problem, which asks to rank a given set of items to maximize1

utility subject to group fairness constraints, has received attention in the fairness,2

information retrieval, and machine learning literature. Recent works, however,3

observe that errors in socially-salient (including protected) attributes of items can4

significantly undermine fairness guarantees of existing fair-ranking algorithms5

and raise the problem of mitigating the effect of such errors. We study the fair-6

ranking problem under a model where socially-salient attributes of items are7

randomly and independently perturbed. We present a fair-ranking framework that8

incorporates group fairness requirements along with probabilistic information about9

perturbations in socially-salient attributes. We provide provable guarantees on the10

fairness and utility attainable by our framework and show that it is information-11

theoretically impossible to significantly beat these guarantees. Our framework12

works for multiple non-disjoint attributes and a general class of fairness constraints13

that includes proportional and equal representation. Empirically, we observe that,14

compared to baselines, our algorithm outputs rankings with higher fairness, and15

has a similar or better fairness-utility trade-off compared to baselines.16

1 Introduction17

Given a query and a set of m items, ranking problems require one to output an ordering of a small18

subset of items in decreasing order of relevance to the query. Such ranking problems have been19

extensively studied in the information retrieval [40] and the machine learning [39] literature, and20

algorithms for them are used in applications such as search engines, personalized feed generators, and21

online recruiting platforms [38, 11, 7] Several studies have observed that when the outputs of ranking22

algorithms are consumed by end-users, e.g., image results for occupation-related queries, articles23

with different political leanings, and job applicants in online recruiting, the outputs can mislead or24

alter their perceptions about socially-salient groups [34], polarize their opinions [21, 43], and affect25

economic opportunities available to individuals [28]. A reason is that relevance (or utilities) input26

to ranking algorithms may be influenced by human or societal biases, leading to output rankings27

that skew representations of socially-salient, and often legally-protected, groups such as women and28

Black people [48].29

A growing number of works aim to make the output of ranking algorithms fair with respect to socially-30

salient attributes [66, 51]. As for notions of fairness, in the case when each item belongs to one of31

two socially-salient groups (G1 or G2), equal representation requires that, for every k, (roughly) k
232

items from each of G1 and G2 appear in the first k positions of the output ranking. Proportional33

representation requires that at most k · |Gℓ|
m items from eachGℓ appear in the first k positions. Fairness34

criteria that generalize proportional representation and involve p ≥ 2 groups G1, . . . , Gp, where each35

item may belong to multiple groups, have also been considered: Given values Ukℓ, they require that36

at most Ukℓ items from Gℓ appear in the first k positions of the output ranking [54, 15]. One set37

of works in the fair-ranking literature tries to improve fairness in utility-estimation [64, 55, 65, 44].38

Such approaches have the benefit that no changes to the existing ranking algorithm are necessary39

but they may be unable to guarantee that the output ranking satisfies the required fairness criteria40

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

[24]. Another set of works use the given utilities as-it-is and change the ranking algorithm to output41

the ranking with the highest utility subject to satisfying the specified fairness criteria by including42

them as fairness constraints [54, 8, 15, 24, 27]. While these latter approaches can guarantee fairness,43

they require coming up with new algorithms to solve the arising constrained ranking problems. Both44

approaches, however, rely on knowledge of the socially-salient attributes of the items [49].45

Assuming precise access to socially-salient attributes is reasonable in some contexts and has led to46

successful deployment of fair-ranking frameworks; see [24]. However, in several contexts, socially-47

salient attributes can be erroneous, missing, or known only probabilistically. For instance, errors can48

arise due to misreporting, which is a common concern with self-reported attributes [3]. Attributes can49

also be missing, as is the case with images in web-search or in settings where it is illegal to collect50

certain socially-salient attributes [17]. Often attributes are predicted using ML-classifiers, but such51

prediction has inaccuracies [9]. In such cases, one can calibrate the confidence scores of classifiers to52

derive (aggregate) probabilistic information about the true attributes [31]. Moreover, probabilistic53

information about socially-salient (protected) attributes can be sometimes computed from other54

attributes. For instance, name and location of an individual, combined with aggregate census data55

may be used to get a conditional distribution of their race [20, 32, 17]. Even accurate attributes56

may be randomly and independently flipped to preserve user privacy, and the distribution of flipped57

attributes is determined by public parameters of, e.g., the randomized response mechanism [33, 61].58

Several models of inaccuracies in data have been proposed [41, 23]. We consider one such model59

(due to [4]) to capture inaccuracies in socially-salient attributes. Each item i belongs to the ℓ-th group60

with a known probability Piℓ. For each item i, the distribution corresponding to Piℓs over groups is61

assumed to be independent of corresponding distributions of other items. This model can be used62

in cases where these probabilities are available or can be derived, as in some of the aforementioned63

examples (see Section 4 and Supplementary Material A). In other cases, e.g., when errors are strategic64

or adversarial, other models are needed. This model and its variants have also been used by works65

on designing fair algorithms in the presence of inaccuracies, for problems including classification66

[36, 59, 58, 13], subset selection [42], and clustering [22].67

In this noise model, while socially-salient attributes are not explicitly specified, one could still use68

existing fair-ranking algorithms by first sampling groups for items from the given probabilities. Indeed,69

[26] evaluate existing fair-ranking algorithms on attributes obtained from the probabilities derived70

from ML classifiers. They find that “errors in [socially-salient attributes] can dramatically undermine71

fair-ranking algorithms” and can cause “[non-disadvantaged groups] to become disadvantaged72

after a ‘fair’ re-ranking.” We confirm this observation on a synthetic dataset when the goal is to73

finding a ranking that satisfies equal representation (Section 4). We assigned each item the socially-74

salient group that is most likely and find that when existing fair-ranking algorithms (for equal75

representation) are run with this group information, they output rankings that significantly violate the76

equal representation criteria (Figure 1). Further, we mathematically analyze two natural methods77

to sample groups from probabilities and give examples where taking such information as input,78

existing fair-ranking algorithms output rankings which provably violate the equal representation79

criteria (Supplementary Material C). Thus, new ideas are needed to design fair-ranking frameworks80

that can guarantee given fairness criteria under this noise model.81

Our contributions. We present a fair-ranking framework that guarantees given fairness criteria when82

the socially-salient attributes are assumed to follow the probabilistic noise model mentioned above.83

In particular, it finds a utility maximizing ranking subject to a class of constraints that only rely on84

given probability distributions (Program (7)). These constraints relax the given fairness criteria by a85

carefully chosen factor: for equal representation, the relaxation is by roughly a 1 + 1√
k

multiplicative86

factor for position k for any k. Moreover, instead of sampling the attribute values and applying87

constraints on them, these constraints apply the relaxed-fairness criteria to the expected number of88

items from each group that appear in the first k positions. We show that these constraints ensure89

that any ranking approximately satisfying the given fairness criteria is feasible for them and any90

ranking feasible for them approximately satisfies the given fairness criteria (Theorem 3.1). Our91

fair-ranking framework works for the general class of fairness criteria introduced earlier, which92

involve multiple overlapping groups G1, . . . , Gp and upper bound Ukℓ for the ℓ-th group and k-th93

position (Theorem 3.1), and for their position-weighted versions (Theorem E.1).94

We show that our fair-ranking framework, besides nearly satisfying the given fairness criteria, has a95

provably high utility (Theorem 3.1). Complementing Theorem 3.1, we prove near-tightness of the96

2

fairness guarantee (Theorem 3.2): For equal representation fairness criteria, this results shows that97

that it is information theoretically impossible to output a ranking that violates this criteria by less than98

a multiplicative factor of 1+ Õ(1√
k
) at the k-th position for any k. Finally, we give a polynomial-time99

algorithm to approximately solve Program (7) (Theorem 3.3).100

Empirically, we evaluate our framework on both synthetic and real-world data against standard101

metrics like weighted-risk difference (RD) that measure deviations from specific fairness criteria102

(Section 4). We compare its performance to key baselines [15, 54, 24, 42] on both single and multiple103

attributes. In all simulations, we observe that compared to baselines our framework has a higher104

maximum fairness (2 to 10% for RD; Figures 1 to 3) and a similar or better fairness-utility trade-off105

(Figures 2, 4 and 6 to 9).106

Related work. Work on automated information retrieval dates back to 1940s [37, 18]. Since then107

the IR literature has devoted a significant effort in measuring relevance of items to specific queries108

across different tasks: including, web search [6], personalization [30], and product rating [19]; we109

also refer the reader to [40] and the references therein. In the last three decades, works in the ML110

literature have also made significant contributions to relevance-estimation [39], by proposing methods111

that: (1) supplement traditional IR approaches, e.g., by automatically tuning their–previously hard to112

tune–parameters [57] and by improving their efficiency through clustering-based techniques [56, 2],113

and(2)substitute traditional IR approaches by neural-network based models to predict item relevance114

[11, 10, 60, 7].115

Fair ranking. Existing works on the fair-ranking problem take diverse approaches: Among116

works that de-bias utilities, different approaches include, post-processing the utilities so that the117

post-processed utilities satisfy some fairness requirement [63], introducing a “fairness penalty”118

in the objective function used to train learning-to-rank models [55, 65], and modifying feature119

representations generated by up-stream algorithms so that the utilities learned from the modified120

representations satisfy some fairness requirements [64]. Works that alter the ranking algorithms can121

also be further categorized into those which satisfy the constraints for each ranking [15, 62, 24, 27]122

and those that satisfy the constraints in aggregate over multiple rankings [54, 8]. Unlike this work,123

all aforementioned works need access to the socially-salient attributes of items. When protected124

attributes are inaccurate, these works can fail to satisfy their fairness and/or utility guarantees [26].125

Effect of inaccuracies on fair-ranking algorithms. Some recent works have considered assessing126

fairness of rankings and ranking algorithms with missing or inaccurate protected attributes. [35]127

analyze the setting where all protected attributes are missing, but can be purchased at a fixed cost128

per item. They give statistical-techniques to estimate the fairness-value of a given ranking at a small129

cost. [26] use ML-classifiers to infer protected attributes from real-world data and study performance130

of the fair-ranking algorithm by [25] when given inferred attributes as input. While these works131

underscore the need for fair-ranking algorithms to be robust to inaccuracies in protected attributes,132

they only assess fairness in the presence of noisy protected attributes.133

2 Model of fair ranking with noisy attributes134

Ranking problem. In ranking problems, given m items, one has to select a subset of n items and135

output a permutation of the selected items. This permutation is said to be a ranking. There is a136

large body of work on estimating the relevance of items and personalizing these estimates to specific137

users/queries [40, 39]. We consider a ranking problem where the relevance of items are known.138

Abstracting relevance estimation, in this problem, one is given an m× n matrix W , such that placing139

the i-th item at the j-th position generates utility Wij . The utility of a ranking is the sum of utilities140

generated by each item in its assigned position. The algorithmic task in the ranking problem is to141

output a ranking with the highest utility. We denote rankings by assignment matrices R ∈ {0, 1}m×n,142

where Rij = 1 indicates that item i appears in position j, and Rij = 0 indicates otherwise. In this143

notation, the utility of a ranking is ⟨R,W ⟩ :=
∑m

i=1

∑n
j=1RijWij . Then this ranking problem is to144

solve: maxR∈R ⟨R,W ⟩ . WhereR is the set of all assignment matrices denoting a ranking:145

R :=
{
X ∈ {0, 1}m×n : ∀i ∈ [m],

∑n
j=1Xij ≤ 1, ∀j ∈ [n],

∑m
i=1Xij = 1

}
. (1)

Here, the constraint
∑m

i=1Xij = 1 ensures position j has exactly one item and the constraint146 ∑n
j=1Xij ≤ 1 ensures that item i occupies at most one position.147

Fair-ranking problem. There are several versions of the fair-ranking problem. We consider a version148

with p ≥ 2 socially-salient groups G1, G2, . . . , Gp ⊆ [m] (e.g., the group of all women or all Black149

people) which are often protected by law. Each of them items belongs to one or more of these socially-150

3

salient groups (henceforth referred to as just groups). This fair-ranking problem is to output the151

ranking with maximum utility subject to satisfying certain fairness criteria with respect to these groups.152

The appropriate notion of fairness is context dependent, and to capture different fairness criteria nu-153

merous fairness constraints have been proposed. We consider a class of general fairness constraints.154

155 Definition 2.1 (Fairness constraints). Given a matrix U ∈ Zn×p
+ , a ranking R satisfies the upper156

bound constraint if
∑

i∈Gℓ

∑k
j=1Rij ≤ Ukℓ, for all ℓ ∈ [p] and k ∈ [n].157

Existing works consider similar constraints and show that they can encapsulate a variety of fairness158

criteria [54]. For instance, when groups are disjoint, to capture equal and proportional representation,159

one can choose Ukℓ:=
⌈
k · 1

p

⌉
and Ukℓ:=

⌈
k · |Gℓ|

m

⌉
for all k and ℓ respectively. As a running example,160

we consider the fair-ranking problem with equal representation with two disjoint groups, i.e.,161

maxR∈R ⟨R,W ⟩ s.t. ∀k ∈ [n] ∀ℓ ∈ [2],
∑

i∈Gℓ

∑k
j=1Rij ≤

⌈
k
2

⌉
. (2)

To ease readability, we omit ceilings-operators henceforth.162

Noise model. If the socially-salient attributes of items are known accurately, then one can solve the163

fair-ranking problem. However, as discussed, in many contexts, attributes are inaccurate, missing,164

or only probabilistically known. Several models have been proposed to capture different errors in165

attributes. Here, we consider a model (due to [4]) which has also appeared in [22, 36, 42].166

Definition 2.2 (Noise model). Let P ∈ [0, 1]m×p be a known matrix. The groups G1, . . . , Gp ⊆ [m]167

are random variables, such that, for each i ∈ [m] and ℓ ∈ [p], Pr[Gℓ ∋ i] = Piℓ. Moreover, for168

different items i ̸= j the events Gℓ ∋ i and Gk ∋ j are independent for all ℓ, k ∈ [p].169

Definition 2.2 makes two key assumptions: the matrix P is known and for each item i, the events170

Gℓ ∋ i over groups ℓ are independent of the corresponding events for other items. Both of these171

assumptions hold when attributes are flipped to preserve local differential privacy (Remark A.1). In172

other settings, P ’s estimate can be inaccurate and above events may be correlated. These can adversely173

affect the performance of our framework. We empirically study this in simulations where P is174

estimated using confidence scores of off-the-shelf classifiers and is miscalibrated (Figures 2 and 3).175

Fairness constraint with noisy attributes. Most existing fairness constraints assume that the groups176

are deterministic. Hence, it is not clear how to impose them when groups are random variables,177

as in Definition 2.2. One definition is to require the constraints to be approximately satisfied with178

high probability. Consider the instantiation of this definition for equal representation: A ranking R179

satisfies (ρ, δ)-equal representation, if with probability 1− δ, at most k
2 (1 + ρ) items from Gℓ appear180

in the first k positions in R places for all k ∈ [n] and ℓ ∈ [2]. Naturally, one would like to satisfy this181

definition for small δ, ρ. However, it turns out to be too stringent and is infeasible for any small δ, ρ.182

Proposition 2.3. No ranking satisfies (ρ, δ)-equal representation for ρ < 1, δ ≤ 1
2 , and P =

[
1
2

]
m×p

.183

The proof of Proposition 2.3 shows that any ranking R violates the equal-representation constraint184

at the 2nd position by a multiplicative factor of 2 with probability 1
2 . The issue is that the same185

relaxation parameter ρ is used for each position. Motivated by this observation, we consider the186

following alternate version of upper bound constraints.187

Definition 2.4 ((ε, δ)-constraint). For any ε ∈ Rn
≥0 and δ ∈ (0, 1], a ranking R is said to satisfy188

(ε, δ)-constraint if with probability at least 1− δ over the draw of G1, . . . , Gp189

∀k ∈ [n] ∀ℓ ∈ [p],
∑

i∈Gℓ

∑k
j=1Rij ≤ Ukℓ(1 + εk). (3)

We would like to output a ranking that satisfies Definition 2.4 for small δ and small ε1, ε2, . . . , εn.190

Problem 2.5 (Ranking problem with noisy attributes). Given matrices W ∈Rm×n
≥0 , U ∈Rn×p

≥0 , and191

P ∈[0, 1]m×p, find the ranking R maximizing utility ⟨R,W ⟩ subject to satisfying (ε, δ)-constraint192

for some small ε and δ.193

2.1 Challenges in solving Problem 2.5194

In this section we discuss potential approaches for solving Problem 2.5. In other words, solving:195

maxR∈R ⟨R,W ⟩, s.t., R satisfies (ε, δ)-constraint. (4)
Even for two disjoint groups, given V ≥ 0, it is NP-hard to decide if the value of Program (4)196

is at least V (Theorem F.5). To bypass this hardness, one can consider approximation algorithms.197

Program (4) is an integer program because the entries of the matrix R are required to be integers198

(Equation (1)). A standard approach to (approximately) solve integer programs is to: (1) consider199

their continuous relaxation that drops the integrality constraints, (2) compute the optimal solu-200

tion Rc of the relaxed problem, and then (3) “round” Rc to satisfy integrality constraints while201

“retaining” its utility and fairness properties. To take this approach, we first need an efficient algo-202

4

rithm to find Rc. However, not just Program (4), but even its continuous relaxation is non-convex203

and, hence, it is unclear how to solve it to find Rc.204

Due to the independence assumption in Definition 2.2, the number of items from Gℓ appearing in the205

first k positions of a ranking is concentrated around its expectation (for large k). This implies that if,206

in expectation, less that Ukℓ items from Gℓ appear in the top k positions then, with high probability,207

the number of items from Gℓ in the top k positions is not much larger than Ukℓ. Using this one can208

show that a ranking satisfying the following constraints209

∀k ∈ [n] ∀ℓ ∈ [p], E[
∑

i∈Gℓ

∑k
j=1Rij] ≤ Ukℓ (5)

also satisfies (ε, δ)-constraint for small ε and δ. One idea is to find the ranking maximizing util-210

ity subject to satisfying Constraint (5). A feature of Constraint (5) is that it is linear in R as211

E[
∑

i∈Gℓ

∑k
j=1 Rij] =

∑m
i=1

∑k
j=1 PiℓRij and, hence, one may hope to find the ranking with the max-212

imum utility subject to satisfying Constraint (5). However, the issue is that there are examples where213

any ranking satisfying Constraint (5) has 0 utility and there are rankings that satisfy (ε, δ)-constraint214

and have a large positive utility (Lemma F.3). Hence, this approach can output rankings whose utility215

is significantly smaller than the utility of the solution to Problem 2.5. To overcome this, we relax216

Constraint (5) by a carefully chosen position-dependent factor, such that, any ranking satisfying the217

(ε, δ)-constraint (for appropriate ε and δ) is also feasible for our framework.218

3 Theoretical results219

In this section we present our optimization framework and its fairness and utility guarantees.220

Input: Matrices P∈ [0, 1]m×p, W∈Rm×n
≥0, U∈Rn×p

Parameters: Constant c > 1, failure probability
δ ∈ (0, 1], and k ∈ [n], relaxation parameter

γk := 12 · log
(
2np
δ

)
·maxℓ∈[p]

√
1

Ukℓ
. (6)

Our Fair-Ranking Program

maxR∈R ⟨R,W ⟩ , (Noise Resilient) (7)
s.t. ∀ℓ ∈ [p] ∀k ∈ [n]∑

i∈[m],
j∈[k]

PiℓRij ≤ Ukℓ

(
1 +

(
1− 1

2
√
c

)
γk

)
(8)

221

The above program is a modification of the program for fair ranking with accurate groups: It has222

the same objective but different constraints. Instead of sampling the attribute values and applying223

constraints on the sampled values, Constraint (5) apply upper bounds on the expected number of items224

in the first k positions from group ℓ (see Section 2.1). Further, Constraint (5) relaxes upper boundsUkℓ225

by a small position-dependent factor. Like for Constraint (5), one can show that any ranking satisfying226

Constraint (8) also satisfies (ε, δ)-constraint (for small ε1, . . . , εn and δ). But unlike Constraint (5),227

and somewhat surprisingly, any rankingthatsatisfies(ε, δ)-constraint (for appropriateε1, . . . , εn and228

δ) must also satisfy Constraint (8). We use this to prove Theorem 3.1’s utility guarantee.229

Our first result bounds the fairness and utility of the optimal solution of Program (7).230

Theorem 3.1. Let γ ∈ Rn be as defined in Equation (6). There is an optimization program231

(Program (7)), parameterized by a constant c and failure probability δ, such that for any c > 1 and232

δ ∈ (0, 12] its optimal solution satisfies (cγ, δ)-constraint and has a utility at least as large as the233

utility of any ranking satisfying ((c−
√
c)γ, δ)-constraint.234

For equal representation, γk is Õ
(

1√
k

)
. Thus, Theorem 3.1 guarantees that, with high probability, the235

optimal solution of Program (7) multiplicatively violates equal representation at the k-th position by236

at most 1+ Õ
(

1√
k

)
. Further, this solution’s utility is higher than the utility of any ranking satisfying a237

slight relaxation of this fairness guarantee. Theorem 3.1 can be extended to position-weighted versions238

of fairness constraints (Theorem E.1), where the fairness constraint is
∑

i∈Gℓ

∑
j∈[k]vjRij≤Ukℓ (for239

all k and ℓ) for specified discount factors v1 ≥ · · · ≥ vn such as NDGC [29]. If we are also guaranteed240

Ukℓ ≥ ψk for some constant ψ > 0 and all k and ℓ, then we can improve γk’s dependence on δ from241

log 1
δ

to
√

log 1
δ

(Supplementary Material D.2). The proof of Theorem 3.1 appears in Section 5.242

Since (c−
√
c)γ < cγ, Theorem 3.1 gives a pseudo-optimality guarantee on utility. Does a different243

constraint C guarantee optimal utility for the achieved fairness? Let RC be a ranking maximizing244

utility subject to satisfying C. Are there small ε and δ, such that RC satisfies (ε, δ)-constraint and has245

utility at least as large as any other ranking satisfying the (ε, δ)-constraint? We prove that, for any246

value of ε and δ, the (ε, δ)-constraint is the unique constraint with this property (Proposition F.1).247

However, solving the program corresponding to (ε, δ)-constraint (Program (4)) seems intractable (see248

Section 2.1). Unless Program (4) can be efficiently solve, a pseudo-optimality guarantee is necessary.249

5

1.01.21.41.61.82.0
(Looser constraint) Fairness const. () (Stricter constraint)

0.650

0.675

0.700

0.725

0.750

0.775

0.800

0.825

(L
es

s f
air

)		
	<

fu
nc

tio
n

co
m

pu
te_

we
ig

ht
ed

_r
isk

_d
iff

 at
 0

x7
fe

96
67

8b
6a

8>
			

(M
or

e f
air

)

Synthetic data
(m, n, g) = (500,25,2),ITER=501,occ_lists=[NA,NA].

This work
SJ
CSV [Greedy]
MC
GAK [Det-Greedy]
Uncons

...
...

W
ei

gh
te

d
ri

sk
-d

iff
er

en
ce

...
...

——————————ϕ——————————(more fair)(less fair)

.

Figure 1: Synthetic Data: Nonuniform Er-
ror Rate. We consider synthetic data where
imputed socially-salient attributes have a
higher false-discovery rate on the minor-
ity group. We vary the fairness constraint
(ϕ) and observe the weighted risk-difference
(RD) of algorithms. The y-axis plots RD
and x-axis plots ϕ. (Note that the x-axis de-
creases toward the right). We observe that
NResilient achieves the most fair RD, while
obtaining a similar utility for all ϕ (Figure 4).
Error-bars denote the error of the mean.

Lower bound on fairness guarantee. Our next result complements Theorem 3.1’s fairness guarantee.250

Theorem 3.2. There is a family of matrices U ∈ Zn×p
+ such that for any U in the family251

and any parameters δ ∈ [0, 1) and ε1, . . . , εn ≥ 0, if for any position k ∈ [n] εk ≤ 1 and252

εk < maxℓ∈[p]

√
1

2Ukℓ
log 1

4δ then there exists a matrix P ∈ [0, 1]m×p, such that it is information253

theoretically impossible to output a ranking that satisfies (ε, δ)-constraint. This family contains the254

matrix U corresponding to equal representation constraints.255

Since γk is O
(
log(np

δ
) ·maxℓ

√
1

Ukℓ

)
, Theorem 3.2 shows that Theorem 3.1’s fairness guarantee is256

optimal up to log-factors. Supplementary Material D.3 proves Theorem 3.2.257

An efficient algorithm. As for solving our optimization program, it is NP-hard to check its feasibility258

(Theorem D.10). However, because Constraint (8) is linear in R, the continuous relaxation of259

Program (7) is a standard linear program and can be solved efficiently. Our algorithm (Algorithm 1)260

solves the standard linear programming relaxation of Program (7) to find a solution Rc and then uses261

a dependent-rounding algorithm by [16] to convert Rc to a ranking.262

Theorem 3.3. There is a randomized algorithm (Algorithm 1) that given constants d > 2, a263

failure probability 0 < δ ≤ 1, and matrices P ∈ [0, 1]m×p and W ∈ [0, 1]m×n, outputs a264

ranking satisfying (O(dγ), δ)-constraint and with probability at least 1− δ, and has a utility at least265 (
1− 1

d

)
· V − Õ(

√
dn), where V is the utility of any ranking satisfying ((d−

√
d)γ, δ)-constraint.266

The algorithm runs in polynomial time in d and the bit complexity of the input.267

The tension in setting d is that decreasing d improves the fairness guarantee and the second term in268

the utility guarantee but worsens the first term in the utility guarantee. Under the mild assumption that269

V = Ω(n), increasing d improves the utility guarantee because the first term in the utility guarantee270

dominates the second term. In this case, the utility guarantee improves to (1− 1
d − o(1)) · V . Finally,271

while Theorem 3.3 requires the utilities (entries of W) to be between 0 and 1, it can be extended to272

any non-negative and bounded utilities by appropriate scaling. The proof of Theorem 3.3 appears in273

Supplementary Material D.4.274

4 Empirical results275

In this section1 we evaluate our framework’s performance synthetic and real-world data.276

Baselines and metrics. The correct choice of fairness metric is context-dependent and beyond the277

scope of this work [53]. To illustrate our results, we arbitrarily fix the fairness metric as weighted278

risk-difference (RD). This is a position-weighted version of the standard risk-difference metric [12]279

and measures the extent to which a ranking violates equal representation. The RD of a ranking R is:280

1− 1
Z

∑
k=5,10,...

1
log k maxℓ,q∈[p]

∣∣∣∑i∈Gℓ,j∈[k],Rij −
∑

i∈Gq,j∈[k],Rij

∣∣∣ ,
Where G denotes the ground-truth protected groups and Z is a constant so that RD has range [0, 1].281

Here, RD = 1 is most fair and RD = 0 is least fair. We compare our framework, NResilient, against282

state-of-the-art fair-ranking algorithms: CSV (“greedy” in [15]), SJ [54], and GAK (“DetGreedy” in283

[24]). We also compare against MC, which ranks the items, in the subset output by [42]’s algorithm,284

to maximize utility. Finally, we compare against the baseline, Uncons, which outputs the utility285

maximizing ranking without fairness considerations. We present additional discussion of results,286

additional plots for RD, and comparisons with weighted selection-lift in Supplementary Material B.287

1Anonymized code for our simulations is available at https://github.com/NoisyRanking/FairRankingWithNoisyAttributes

6

https://github.com/NoisyRanking/FairRankingWithNoisyAttributes

0.55 0.60 0.65 0.70 0.75 0.80
(Less fair)																							<function compute_weighted_risk_diff at 0x7f5aa530b598>																							(More fair)

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ut
ili

ty

UPDATED -- Image data (DCG Utility)
(m, n, g) = (500,25,2),ITER=1000,occ_lists=[NA,NA].

This work
SJ
CSV [Greedy]
MC
GAK [Det-Greedy]
Uncons

...
...

U
til

ity
...

...

————Weighted risk-difference————(more fair)(less fair)

Figure 2: Real-world image data. In this
simulation, given non-gender labeled images
and their utilities, our goal is to generate a
high-utility gender-balanced ranking. We es-
timate P using an off-the-shelf ML-classifier
and vary ϕ from p = 2 (less fair) to 1 (more
fair). The y-axis plots the utility of algo-
rithms and the x-axis plots RD. We observe
that NResilient has the most fair RD and the
best fairness-utility trade-off. Error bars show
the error of the mean.

Setup. We consider the DCG model of utilities [29] and a relaxation of equal representation con-288

straints: (1) Given an intrinsic value wi ≥ 0, for each item i, we set Wij := wi (log (j + 1))
−1 ∀j∈289

[n]. (2) Given a parameter ϕ∈ [1, p], we set upper bounds Ukℓ :=
ϕ
p · k for each k∈ [n] and ℓ∈ [p].290

In simulations, we set m = 500, n = 25, and vary ϕ from p to 1. For each ϕ, we draw m items291

uniformly without replacement and compute an estimate P̂ of the matrix P from Definition 2.2; details292

are given with each simulation. We infer socially-salient groups Ĝ1, . . . , Ĝ2 via P̂ by assigning each293

item to its most-likely group. Finally, we run all algorithms using P̂ or Ĝ1, . . . , Ĝ2 as discussed next.294

Implementation details. NResilient and MC take probabilistic information about socially-salient295

attributes as input and are given P̂ . CSV, SJ, and GAK require access to socially-salient groups and296

are given Ĝ1, . . . , Ĝp. NResilient, SJ, and CSV use fairness constraints from Definition 2.1 and are297

given: for each k ∈ [n] and ℓ ∈ [p], Ukℓ =
ϕ
p · k. MC requires, for each ℓ ∈ [p], an upper bound on298

the number of items from Gℓ that can appear in top-n positions. It is given ϕ
p · n for each ℓ ∈ [p].299

GAK requires the desired proportion αℓ for each group Gℓ and, roughly, satisfies the constraint300

Ukℓ = αℓ · k for each k ∈ [n] and ℓ ∈ [p]. It is given αℓ =
1
p for each ℓ ∈ [p], this corresponds to301

ϕ = 1 (hence, the figures only plot the GAK at ϕ = 1). As a heuristic, we set γk = 1
20

·maxℓ∈[p]

√
1

Ukℓ
302

in all simulations. We find that this parameter suffices and expect a more refined approach to improve303

the performance of NResilient.304

Simulation on synthetic data. We show that on synthetic data, where error-rates of given socially-305

salient attributes vary over groups, existing fair-ranking algorithms have worse RD than Uncons.306

Data. We generate w and P for two groups using code by [42] and fix P̂ = P . For all items i, wi is307

i.i.d. from the uniform distribution over [0, 1]. P̂ is constructed such that attributes inferred from P̂308

have a higher false-discovery rate for the minority group compared to the majority (40% vs 10%).309

Results. See Figure 1 for the observed RD averaged over 500 iterations. We observe that NResilient310

achieves best RD (≈0.81), while not loosing significant utility (≥ 0.98% of maximum; see Figure 4).311

MC achieves the best RD (≈0.79). In contrast, CSV, SJ, and GAK, which do not account for noise312

in the socially-salient attributes, achieve a worse RD at ϕ ≈ 1 (≤0.68) than Uncons (≈0.75). Thus,313

we observe that existing fair-ranking algorithms may achieve a worse RD than Uncons.314

Simulation on real-world image data. In this simulation, given non-gender labeled images-search315

results and their utilities, our goal is to generate a high-utility and gender-balanced ranking.316

Data. We use the Occupations dataset [14] which contains the top 100 Google Image results for 96317

occupation-related queries. For each image, the data has its position in search results, gender (coded318

as male/female) of the individual depicted in the image, collected via MTurk. We use the (true)319

gender labels in the data to compute RD and to estimate P̂ , but do not provide them to algorithms.320

Setup. For each image i, with rank ri, we define wi := (log (1 + ri))
−1. We say an occupation is321

gender-stereotypical if more than 80% of images for this occupation have the same gender label322

(41/96 occupations). An image is said to be stereotypical if its in a gender-stereotypical occupation323

and its gender label is the majority label for its occupation. We define the socially-salient groups as324

the sets of stereotypical and non-stereotypical images in gender-stereotypical occupations.325

Estimating P̂ . After pre-processing, we use a CNN-based gender-classifier f [52] to predict the326

(apparent) gender of the person depicted in each image. We calibrate the confidence scores output327

by f by binning and use these to estimate P̂ (see Supplementary Material B for more details).328

We perform this calibration once and on all occupations and, then, use it for gender-stereotypical329

occupations. Because of this P̂ is miscalibrated (and hence, inaccurate). For instance, among samples330

i for which 0.25 ≤ P̂ i2 ≤ 0.5, more than 75% are labeled as ‘man’ (instead of some percentage331

between 25% and 50%). This violates the assumption that P is accurately known.332

7

1.01.52.02.53.03.54.0
(Looser constraint) Fairness const. () (Stricter constraint)

0.3

0.4

0.5

0.6

0.7

(L
es

s f
air

)		
	<

fu
nc

tio
n

co
m

pu
te_

we
ig

ht
ed

_r
isk

_d
iff

 at
 0

x7
f1

3a
bf

c7
ae

8>
			

(M
or

e f
air

)

UPDATED -- Name data (DCG Utility) + Intersectional attributes
(m, n, g) = (500,25,4),ITER=500.

This work
SJ
CSV [Greedy]
MC
GAK [Det-Greedy]
Uncons

...
...

W
ei

gh
te

d
ri

sk
-d

iff
er

en
ce

...
...

——————————ϕ——————————(more fair)(less fair)

Figure 3: Real-World Name Data: Multi-
ple Attributes. In this simulation, the goal is
to ensure equal representation across four dis-
joint groups formed by combinations of two at-
tributes (non-White non-men, White non-men,
non-White men, and White men). We estimate
P by querying public APIs and libraries with
names in the data. The y-axis plots RD and x-
axis plots ϕ. (Note that the values decrease to-
ward the right). We observe that all algorithms
have a better RD than Uncons and NResilient
has the best RD compared to all other baselines.
Error bars represent the error of the mean.

Results. See Figure 2 for RD and utilities (NDGC) averaged over 1000 iterations. We observe that333

NResilient achieves the best RD (≈0.81) and has a better RD-utility trade-off than the other baselines.334

In contrast, CSV, SJ, and GAK, achieve a worse RD (≤0.77). MC achieves the worst RD (≤0.70)335

and a worst RD-utility trade-off. We further evaluate the robustness of NResilient to varying levels336

of noise on the Occupations dataset in Supplementary Material B and observe NResilient has a better337

or similar RD than each baseline at all noise levels.338

Simulation on real-world name data. We consider gender and race (encoded as binary) as socially-339

salient attributes. Our goal is to ensure equal representation across the four disjoint groups formed by340

combinations of these: non-White non-men, White non-men, non-White men, and White men.341

Data. We consider the chess ranking data [26] which has of 3,251 chess players. For each player,342

among other attributes, the data has their full-name, self-identified gender (coded as male/female),343

FIDE rating, and race (Asian, Black, Hispanic, White) collected via MTurk. We use the (true) gender344

and race labels in the data to evaluate RD, but do not provide them to algorithms.345

Setup. We partition the races into White (81.66%) and non-White (18.34%). For each player346

i, we query Genderize and EthniColr2 with i’s full-name to obtain the “probabilities” pf (i) and347

pnw(i) that player i is labeled as a women and non-white respectively. We assume that these348

probabilities are correct and that the gender and race of players are drawn independently. Hence,349

e.g., we set the probability that i is a non-white women as P̂ i,nw+f=pnw(i)pf (i). Similarly, we set350

P̂ i,w+f=(1− pnw(i))pf (i), P̂ i,nw+m = pnw(i)(1− pf (i)), and P̂ i,w+m = (1− pnw(i))(1− pf (i)).351

Notably, we do not calibrate P̂ on this data. We verify that, like the previous simulation, P̂ is352

miscalibrated in this simulation. E.g., only 31% of the samples i for which P̂ i,nw+m > 0.75 are353

labeled as ‘Non-white man’ (instead of 75%). Hence, the assumption that P is accurately known is354

violated in this simulation. We expect calibration to improve NResilient’s performance.355

Results. See Figure 3 for RD averaged over 500 iterations. We observe that all algorithms (NResilient,356

CSV, GAK, SJ, and MC) have better RD than Uncons. Among these, NResilient achieves the best357

RD (≈0.67), next CSV, GAK, and SJ obtain RD (≈0.61), and MC achieves RD (≤ 0.53). Further,358

in Figure 6, we observe that all algorithms have a similar fairness-utility trade-off.359

5 Proof of Theorem 3.1360

In this section we prove Theorem 3.1. Some of the details are deferred to Supplementary Material D.2361

due to space constraints. The proof is divided into two propositions:362

Proposition 5.1. For any δ ∈ (0, 1], any ranking feasible for Prog. (7) satisfies (cγ, δ)-constraint.363

Proposition 5.2. For any δ ∈ (0, 12) and c > 1, any ranking satisfying the ((c−
√
c)γ, δ)-constraint364

is feasible for Program (7).365

Proof of Theorem 3.1. Let R⋆ be the optimal solution of Program (7). Since R⋆ is feasible by366

definition, Proposition 5.1 implies that R⋆ satisfies the (cγ, δ)-constraint. Pick any R′ that satisfies367

the ((c−
√
c)γ, δ)-constraint. Proposition 5.2 implies that R′ is feasible for Program (7). Since R⋆368

is an optimal solution of Program (7), R⋆’s utility is at least as large as the utility of R′.369

Notation. For each item i and group ℓ, let Ziℓ ∈ {0, 1} be the indicator random variable Zi :=370

I[Gℓ ∋ i]. By Definition 2.2, Pr[Ziℓ] = Piℓ and Ziℓ and Zjℓ are independent for any i ̸= j. Given371

ranking R ∈ R, group ℓ ∈ [p], and position k ∈ [n], let Z#(R, ℓ, k) be the number of items from Gℓ372

in the top k positions of R and let P#(R, ℓ, k) = E[Z#(R, ℓ, k)]. From the above, we get:373

P#(R, ℓ, k) = E [Z#(R, ℓ, k)] =
∑

i∈[m]

∑
j∈[k] PiℓRij .

2gender-api.com and github.com/appeler/ethnicolr respectively

8

gender-api.com
github.com/appeler/ethnicolr

We will use the following concentration result in the proof. It is proved in Supplementary Material D.1.374

Lemma 5.3. For any position k ∈ [n], group ℓ ∈ [p], parameters ε ≥ 0 and L,U ∈ R, and ranking375

R ∈ R, where R is possibly a random variable independent of {Ziℓ}i,ℓ, if P#(R, ℓ, k) ≤ U or376

P#(R, ℓ, k) ≥ L then the following equations hold respectively Pr [Z#(R, ℓ, k) < (1 + ε)U] ≥377

1− e−
Uε2

2+ε and Pr [Z#(R, ℓ, k) > (1− ε)L] ≥ 1− e−
Lε2

2(1−ε) .378

Proof of Proposition 5.1. Fix any k and ℓ. Let379

ϕ :=1− 1
2
√
c
, U ′:=Ukℓ (1 + ϕγk), and ζ := (1−ϕ)γk

1+ϕγk
(9)

Here, U ′ and ζ satisfy that U ′(1 + ζ) = Ukℓ(1 + cγk). Fix any ranking R that is feasible for380

Program (7). Since R is feasible, it satisfies that381

∀ℓ ∈ [p], k ∈ [n], P#(R, ℓ, k) ≤ Uℓk (1 + ϕγk) . (10)

Using that U ′(1 + ζ) = Ukℓ(1 + cγk), Equation (10), and Lemma 5.3, we get that382

Pr [Z#(R, ℓ, k) ≥ U ′(1 + ζ)] ≤ e−
2U′ζ2
2+ζ

(9)
= e

− (1−ϕ)2c2γ2
kUkℓ

2+(1+ϕ)cγk
(ϕ≤1)
= e

− (1−ϕ)2c2γ2
kUkℓ

2(1+cγk) . (11)

Fact 5.4. For all x, y ≥ 0, if x ≥ y +√y, then x2

1+x ≥ y.383

Using Fact 5.4 and Equation (6), we can show that for each k, c2γ2
k

1+cγk
≥ 2

(1−ϕ)2Ukℓ
· log 2np

δ . (This384

uses δ < 1
2 and Ukℓ, n ≥ 1.) Substituting this in Equation (11) we get:385

Pr [Z#(R, ℓ, k) ≥ Uℓk(1 + cγk)] ≤ δ
2np . (12)

Taking the union bound over all positions k and ℓ, we get (as desired) that with probability at least386

1− δ, for all k∈ [n] and ℓ∈, Z#(R, ℓ, k) ≤ Uℓk(1 + cγk).387388

Proof of Proposition 5.2. Let ϕ := 1− 1
2
√
c
. Towards a contradiction, suppose that R′ satisfies389

((c−
√
c)γ, δ)-constraint but is not feasible for Program (7). Then there exists ℓ and k such that390

P#(R
′, k, ℓ) > Ukℓ · (1 + ϕγk) . Fix any k and ℓ satisfying this. Let391

b :=1− 1√
c
, L′ :=Ukℓ (1 + ϕγk) and ζ := (1+b)γk

1+ϕγk
(13)

It holds that L′(1− ζ) = Ukℓ(1 + bγk) and, hence, we get392

Pr [Z#(R′, k, ℓ) ≤ L′(1− ζ)]
(13), Lem.5.3

≤ e−
L′ζ2

2(1−ζ)
(13)
= e

−(c−b)2Ukℓγk
2(1+b) ≤ e

−Ukℓcγk
4(2

√
c−1)

√
c
(c>0)
= e

−Ukℓγk
8 . (14)

Since γk ≥ 8 log np
δ

·maxℓ

√
1

Ukℓ
, δ < 1

2
, and U ≥ 1, we have Pr [Z#(R′, k, ℓ) ≤ Ukℓ] ≤ δ

np < 1− δ.393

Since R′ satisfies ((c−
√
c)γ, δ)-constraint we have a contradiction, hence R′ must be feasible.394

6 Limitations and conclusion395

Recent studies find that errors in socially-salient attributes can adversely affect the fairness and utility396

of existing fair-ranking algorithms [26]. We consider a model of random and independent errors in397

socially-salient attributes and present a framework that can output rankings with high fairness and398

utility in this model. This framework works a general class of fairness criteria, which involve multiple399

overlapping groups and upper bounds on the number of items that appear in the first k positions from400

each group. We also show near-tightness of the framework’s fairness guarantee. Empirically, on both401

synthetic and real-world datasets, we observe that, compared to baselines, our framework can achieve402

higher fairness-values and a similar or better fairness-utility trade-off for standard metrics.403

Compared to existing fair-ranking frameworks, our framework does not need accurate socially-salient404

attributes, but assumes that errors in attributes are random and independent. When these assumptions405

do not hold, our framework may not satisfy its guarantees. Simulations on real-world data suggest406

that, in contexts represented by this data, our framework can achieve higher fairness than baselines407

(Section 4). Nevertheless, a careful assessment of this on application-specific data would be important408

to avoid any (unintended) negative social impact.409

Our work only addresses one aspect of how bias may show up in rankings, and more generally, on the410

web. It is important to take an holistic approach to mitigate bias and incorporate our work as a part of411

such a broader effort. Finally, our work adds to the line of works that develop fair decision-making412

algorithms robust to inaccuracies in data [36, 5, 47, 22, 59, 58, 42, 13].413

9

References414

[1] OpenCV: Open Source Computer Vision Library. https://github.com/opencv/opencv_415

3rdparty/raw/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_416

140000.caffemodel.417

[2] Ismail Sengor Altingovde, Engin Demir, Fazli Can, and Özgür Ulusoy. Incremental cluster-based418

retrieval using compressed cluster-skipping inverted files. ACM Transactions on Information419

Systems (TOIS), 26(3):1–36, 2008.420

[3] McKane Andrus, Elena Spitzer, Jeffrey Brown, and Alice Xiang. What We Can’t Measure, We421

Can’t Understand: Challenges to Demographic Data Procurement in the Pursuit of Fairness. In422

FAccT, pages 249–260. ACM, 2021.423

[4] Dana Angluin and Philip D. Laird. Learning From Noisy Examples. Mach. Learn., 2(4):343–424

370, 1987.425

[5] Pranjal Awasthi, Matthäus Kleindessner, and Jamie Morgenstern. Equalized Odds Postprocess-426

ing under Imperfect Group Information. In International Conference on Artificial Intelligence427

and Statistics, pages 1770–1780. PMLR, 2020.428

[6] Ziv Bar-Yossef and Maxim Gurevich. Random Sampling from a Search Engine’s Index. Journal429

of the ACM (JACM), 55(5):1–74, 2008.430

[7] Michael Bendersky and Xuanhui Wang. Advances in TF-Ranking, July 2021. https://ai.431

googleblog.com/2021/07/advances-in-tf-ranking.html.432

[8] Asia J. Biega, Krishna P. Gummadi, and Gerhard Weikum. Equity of Attention: Amortizing433

Individual Fairness in Rankings. In SIGIR, pages 405–414. ACM, 2018.434

[9] Joy Buolamwini and Timnit Gebru. Gender Shades: Intersectional Accuracy Disparities in435

Commercial Gender Classification. In FAT, volume 81 of Proceedings of Machine Learning436

Research, pages 77–91. PMLR, 2018.437

[10] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and Greg438

Hullender. Learning to rank using gradient descent. In Proceedings of the 22nd international439

conference on Machine learning, pages 89–96, 2005.440

[11] Christopher J.C. Burges. From RankNet to LambdaRank to LambdaMART: An Overview.441

Learning, 2010.442

[12] Toon Calders and Sicco Verwer. Three naive bayes approaches for discrimination-free classifi-443

cation. Data Min. Knowl. Discov., 21(2):277–292, 2010.444

[13] L. Elisa Celis, Lingxiao Huang, Vijay Keswani, and Nisheeth K. Vishnoi. Fair Classification445

with Noisy Protected Attributes. In ICML, volume 120 of Proceedings of Machine Learning446

Research. PMLR, 2021.447

[14] L. Elisa Celis and Vijay Keswani. Implicit Diversity in Image Summarization. Proc. ACM Hum.448

Comput. Interact., 4(CSCW2):139:1–139:28, 2020.449

[15] L. Elisa Celis, Damian Straszak, and Nisheeth K. Vishnoi. Ranking with Fairness Constraints.450

In ICALP, volume 107 of LIPIcs, pages 28:1–28:15. Schloss Dagstuhl - Leibniz-Zentrum fuer451

Informatik, 2018.452

[16] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Multi-budgeted Matchings and Matroid453

Intersection via Dependent Rounding. In Dana Randall, editor, Proceedings of the Twenty-454

Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco,455

California, USA, January 23-25, 2011, pages 1080–1097. SIAM, 2011.456

[17] Jiahao Chen, Nathan Kallus, Xiaojie Mao, Geoffry Svacha, and Madeleine Udell. Fairness457

Under Unawareness: Assessing Disparity When Protected Class Is Unobserved. In FAT, pages458

339–348. ACM, 2019.459

10

https://github.com/opencv/opencv_3rdparty/raw/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/raw/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/raw/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/raw/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://github.com/opencv/opencv_3rdparty/raw/dnn_samples_face_detector_20170830/res10_300x300_ssd_iter_140000.caffemodel
https://ai.googleblog.com/2021/07/advances-in-tf-ranking.html
https://ai.googleblog.com/2021/07/advances-in-tf-ranking.html
https://ai.googleblog.com/2021/07/advances-in-tf-ranking.html

[18] Cyril W Cleverdon. The significance of the cranfield tests on index languages. In Proceedings460

of the 14th annual international ACM SIGIR conference on Research and development in461

information retrieval, pages 3–12, 1991.462

[19] Kushal Dave, Steve Lawrence, and David M Pennock. Mining the peanut gallery: Opinion ex-463

traction and semantic classification of product reviews. In Proceedings of the 12th international464

conference on World Wide Web, pages 519–528, 2003.465

[20] Marc Elliott, Peter Morrison, Allen Fremont, Daniel Mccaffrey, Philip Pantoja, and Nicole466

Lurie. Using the Census Bureau’s Surname List to Improve Estimates of Race/Ethnicity and467

Associated Disparities. Health Services and Outcomes Research Methodology, 9:252–253, 06468

2009.469

[21] Robert Epstein and Ronald E Robertson. The Search Engine Manipulation Effect (SEME) And470

Its Possible Impact on the Outcomes of Elections. Proceedings of the National Academy of471

Sciences, 112(33):E4512–E4521, 2015.472

[22] Seyed A. Esmaeili, Brian Brubach, Leonidas Tsepenekas, and John Dickerson. Probabilistic473

Fair Clustering. In NeurIPS, 2020.474

[23] Benoı̂t Frénay and Michel Verleysen. Classification in the Presence of Label Noise: A Survey.475

IEEE Trans. Neural Networks Learn. Syst., 25(5):845–869, 2014.476

[24] Sahin Cem Geyik, Stuart Ambler, and Krishnaram Kenthapadi. Fairness-Aware Ranking in477

Search & Recommendation Systems with Application to LinkedIn Talent Search. In KDD,478

pages 2221–2231. ACM, 2019.479

[25] Sahin Cem Geyik and Krishnaram Kenthapadi. Building Representative Talent Search at480

LinkedIn. LinkedIn Engineering, October 2018. http://bit.ly/2x65HDJ.481

[26] Avijit Ghosh, Ritam Dutt, and Christo Wilson. When Fair Ranking Meets Uncertain Inference.482

In SIGIR, pages 1033–1043. ACM, 2021.483

[27] Sruthi Gorantla, Amit Deshpande, and Anand Louis. On the Problem of Underranking in484

Group-Fair Ranking. In ICML, volume 139 of Proceedings of Machine Learning Research,485

pages 3777–3787. PMLR, 2021.486

[28] Anikó Hannák, Claudia Wagner, David Garcia, Alan Mislove, Markus Strohmaier, and Christo487

Wilson. Bias in online freelance marketplaces: Evidence from taskrabbit and fiverr. In488

Proceedings of the 2017 ACM conference on computer supported cooperative work and social489

computing, pages 1914–1933, 2017.490

[29] Kalervo Järvelin and Jaana Kekäläinen. Cumulated Gain-Based Evaluation of IR Techniques.491

ACM Trans. Inf. Syst., 20(4):422–446, oct 2002.492

[30] Glen Jeh and Jennifer Widom. Scaling personalized web search. In Proceedings of the 12th493

international conference on World Wide Web, pages 271–279. ACM, 2003.494

[31] Christopher Jung, Changhwa Lee, Mallesh Pai, Aaron Roth, and Rakesh Vohra. Moment495

multicalibration for uncertainty estimation. In Mikhail Belkin and Samory Kpotufe, editors,496

Proceedings of Thirty Fourth Conference on Learning Theory, volume 134 of Proceedings of497

Machine Learning Research, pages 2634–2678. PMLR, 15–19 Aug 2021.498

[32] Nathan Kallus, Xiaojie Mao, and Angela Zhou. Assessing Algorithmic Fairness with Unob-499

served Protected Class Using Data Combination. In FAT*, page 110. ACM, 2020.500

[33] Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhodnikova, and501

Adam D. Smith. What Can We Learn Privately? SIAM J. Comput., 40(3):793–826, 2011.502

[34] Matthew Kay, Cynthia Matuszek, and Sean A. Munson. Unequal Representation and Gender503

Stereotypes in Image Search Results for Occupations. In CHI, pages 3819–3828. ACM, 2015.504

[35] Ömer Kirnap, Fernando Diaz, Asia Biega, Michael D. Ekstrand, Ben Carterette, and Emine505

Yilmaz. Estimation of Fair Ranking Metrics with Incomplete Judgments. In WWW, pages506

1065–1075. ACM / IW3C2, 2021.507

11

http://bit.ly/2x65HDJ

[36] Alexandre Louis Lamy and Ziyuan Zhong. Noise-Tolerant Fair Classification. In NeurIPS,508

pages 294–305, 2019.509

[37] Elizabeth D. Liddy. Automatic document retrieval. In Encyclopedia of Language and Linguistics.510

Elsevier, 2005.511

[38] Jiahui Liu, Peter Dolan, and Elin Rønby Pedersen. Personalized news recommendation based512

on click behavior. In Proceedings of the 15th international conference on Intelligent user513

interfaces, pages 31–40. ACM, 2010.514

[39] Tie-Yan Liu. Learning to Rank for Information Retrieval. 3(3):225–331, mar 2009.515

[40] Christopher Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to Information516

Retrieval. Natural Language Engineering, 16(1):100–103, 2010.517

[41] Naresh Manwani and P. S. Sastry. Noise Tolerance Under Risk Minimization. IEEE Trans.518

Cybern., 43(3):1146–1151, 2013.519

[42] Anay Mehrotra and L. Elisa Celis. Mitigating Bias in Set Selection with Noisy Protected520

Attributes. In FAccT, pages 237–248. ACM, 2021.521

[43] Christopher Mims. Why social media is so good at polar-522

izing us, October 2020. https://www.wsj.com/articles/523

why-social-media-is-so-good-at-polarizing-us-11603105204.524

[44] Marco Morik, Ashudeep Singh, Jessica Hong, and Thorsten Joachims. Controlling Fairness and525

Bias in Dynamic Learning-to-Rank. In SIGIR, pages 429–438. ACM, 2020.526

[45] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge university527

press, 1995.528

[46] Nima Mousavi. How tight is Chernoff bound, 2010.529

[47] Hussein Mozannar, Mesrob I. Ohannessian, and Nathan Srebro. Fair Learning with Private530

Demographic Data. In ICML, volume 119 of Proceedings of Machine Learning Research, pages531

7066–7075. PMLR, 2020.532

[48] Safiya Umoja Noble. Algorithms of Oppression: How Search Engines Reinforce Racism. NYU533

Press, 2018.534

[49] Gourab K. Patro, Lorenzo Porcaro, Laura Mitchell, Qiuyue Zhang, Meike Zehlike, and Nikhil535

Garg. Fair ranking: a critical review, challenges, and future directions. In FAccT, page To536

appear. ACM, 2022.537

[50] Ulrich Pferschy, Joachim Schauer, and Clemens Thielen. The product knapsack problem:538

Approximation and complexity. CoRR, abs/1901.00695, 2019.539

[51] Evaggelia Pitoura, Kostas Stefanidis, and Georgia Koutrika. Fairness in Rankings and Recom-540

mendations: An Overview. The VLDB Journal, 2021.541

[52] Rasmus Rothe, Radu Timofte, and Luc Van Gool. Deep expectation of real and apparent542

age from a single image without facial landmarks. International Journal of Computer Vision,543

126(2-4):144–157, 2018.544

[53] Andrew D. Selbst, Danah Boyd, Sorelle A. Friedler, Suresh Venkatasubramanian, and Janet545

Vertesi. Fairness and abstraction in sociotechnical systems. In Proceedings of the Conference546

on Fairness, Accountability, and Transparency, FAT* ’19, pages 59–68, New York, NY, USA,547

2019. ACM.548

[54] Ashudeep Singh and Thorsten Joachims. Fairness of Exposure in Rankings. In KDD, pages549

2219–2228. ACM, 2018.550

[55] Ashudeep Singh and Thorsten Joachims. Policy Learning for Fairness in Ranking. In NeurIPS,551

pages 5427–5437, 2019.552

12

https://www.wsj.com/articles/why-social-media-is-so-good-at-polarizing-us-11603105204
https://www.wsj.com/articles/why-social-media-is-so-good-at-polarizing-us-11603105204
https://www.wsj.com/articles/why-social-media-is-so-good-at-polarizing-us-11603105204

[56] Pavan Kumar C Singitham, Mahathi S Mahabhashyam, and Prabhakar Raghavan. Efficiency-553

quality tradeoffs for vector score aggregation. In Proceedings of the Thirtieth international554

conference on Very large data bases-Volume 30, pages 624–635, 2004.555

[57] Michael Taylor, Hugo Zaragoza, Nick Craswell, Stephen Robertson, and Chris Burges. Optimi-556

sation methods for ranking functions with multiple parameters. In Proceedings of the 15th ACM557

international conference on Information and knowledge management, pages 585–593, 2006.558

[58] Jialu Wang, Yang Liu, and Caleb Levy. Fair Classification with Group-Dependent Label Noise.559

In FAccT, pages 526–536. ACM, 2021.560

[59] Serena Wang, Wenshuo Guo, Harikrishna Narasimhan, Andrew Cotter, Maya R. Gupta, and561

Michael I. Jordan. Robust Optimization for Fairness with Noisy Protected Groups. In NeurIPS,562

2020.563

[60] Jason Weston, Samy Bengio, and Nicolas Usunier. Large scale image annotation: learning to564

rank with joint word-image embeddings. Machine learning, 81(1):21–35, 2010.565

[61] Grace Hui Yang and Sicong Zhang. Differential Privacy for Information Retrieval. In WSDM,566

pages 777–778. ACM, 2018.567

[62] Ke Yang, Vasilis Gkatzelis, and Julia Stoyanovich. Balanced Ranking with Diversity Constraints.568

In IJCAI, pages 6035–6042. ijcai.org, 2019.569

[63] Ke Yang, Joshua R. Loftus, and Julia Stoyanovich. Causal Intersectionality and Fair Ranking.570

In FORC, volume 192 of LIPIcs, pages 7:1–7:20. Schloss Dagstuhl - Leibniz-Zentrum für571

Informatik, 2021.572

[64] Ke Yang and Julia Stoyanovich. Measuring Fairness in Ranked Outputs. In SSDBM, pages573

22:1–22:6. ACM, 2017.574

[65] Meike Zehlike and Carlos Castillo. Reducing Disparate Exposure in Ranking: A Learning To575

Rank Approach. In ReducingDisparateExposureZehlike, pages 2849–2855. ACM / IW3C2,576

2020.577

[66] Meike Zehlike, Ke Yang, and Julia Stoyanovich. Fairness in Ranking: A Survey. CoRR,578

abs/2103.14000, 2021.579

13

Checklist580

1. For all authors...581

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s582

contributions and scope? [Yes] See the theorems in Section 3 and Figures 1 to 3583

(b) Did you describe the limitations of your work? [Yes] See Section 6584

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Section 6585

discusses the importance of assessing the performance of our algorithm on application-586

specific data and using it as a part of a larger framework for mitigating discrimination.587

(d) Have you read the ethics review guidelines and ensured that your paper conforms to588

them? [Yes]589

2. If you are including theoretical results...590

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See, e.g.,591

Theorems 3.1 to 3.3 and E.1592

(b) Did you include complete proofs of all theoretical results? [Yes] See Supplementary593

Materials D to F594

3. If you ran experiments...595

(a) Did you include the code, data, and instructions needed to reproduce the main experi-596

mental results (either in the supplemental material or as a URL)? [Yes] Anonymized597

code for our simulations is available at https://github.com/NoisyRanking/598

FairRankingWithNoisyAttributes599

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they600

were chosen)? [Yes] See Supplementary Material B601

(c) Did you report error bars (e.g., with respect to the random seed after running experi-602

ments multiple times)? [Yes] Please see, e.g., Figures 1 to 3603

(d) Did you include the total amount of compute and the type of resources used (e.g., type604

of GPUs, internal cluster, or cloud provider)? [Yes] See Supplementary Material B605

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...606

(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 4607

(b) Did you mention the license of the assets? [N/A] We use existing code by [42] and608

data by [14, 26]. To the best of our knowledge these assets are not licensed.609

(c) Did you include any new assets either in the supplemental material or as a URL? [No]610

(d) Did you discuss whether and how consent was obtained from people whose data you’re611

using/curating? [N/A]612

(e) Did you discuss whether the data you are using/curating contains personally identifiable613

information or offensive content? [N/A]614

5. If you used crowdsourcing or conducted research with human subjects...615

(a) Did you include the full text of instructions given to participants and screenshots, if616

applicable? [N/A]617

(b) Did you describe any potential participant risks, with links to Institutional Review618

Board (IRB) approvals, if applicable? [N/A]619

(c) Did you include the estimated hourly wage paid to participants and the total amount620

spent on participant compensation? [N/A]621

14

https://github.com/NoisyRanking/FairRankingWithNoisyAttributes
https://github.com/NoisyRanking/FairRankingWithNoisyAttributes
https://github.com/NoisyRanking/FairRankingWithNoisyAttributes

Contents622

1 Introduction 1623

2 Model of fair ranking with noisy attributes 3624

2.1 Challenges in solving Problem 2.5 . 4625

3 Theoretical results 5626

4 Empirical results 6627

5 Proof of Theorem 3.1 8628

6 Limitations and conclusion 9629

A Additional remarks on the noise model 17630

B Additional empirical results and implementation details 17631

Code. 17632

B.1 Implementation details . 17633

Computational resources used. 18634

B.2 Pre-processing details of the simulation with image data 18635

Estimating P̂ . 18636

B.3 Additional discussion and plots for simulations 18637

B.4 Additional empirical results with weighted selection-lift 19638

B.5 Additional empirical results varying noise . 21639

C Using existing fair-ranking algorithms with rounding is insufficient 21640

C.1 Proofs of Proposition C.1 and Proposition C.2 . 22641

C.1.1 Proof of Proposition C.1 . 22642

C.1.2 Proof of Proposition C.2 . 23643

D Proofs of theoretical results 24644

D.1 Proof of Lemma 5.3 . 24645

D.2 Improved dependence of γ on δ . 26646

Proof of Proposition 5.1 . 26647

Proof of Proposition 5.2 . 27648

D.3 Proof of Theorem 3.2 . 28649

D.4 Proof of Theorem 3.3 . 29650

D.5 Proof of Theorem D.10 . 33651

E Extension of Theorem 3.1 to position-weighted constraints 33652

Proof of Proposition 5.1 . 35653

Proof of Proposition 5.2 . 35654

15

F Proofs of additional theoretical results 35655

F.1 Proof of Proposition 2.3 . 35656

F.2 Proof of Proposition F.1 . 36657

F.3 Proof of Lemma F.3 . 37658

F.4 Proof of Proposition F.4 . 38659

F.5 Proof of Theorem F.5 . 39660

F.5.1 Step 1: Reduction from (61) to (59) . 39661

F.5.2 Step 2: Reduction from product partition problem to (61) 40662

Assumptions on CPPP instances without loss of generality. 40663

16

A Additional remarks on the noise model664

Applicability of the noise model in applications. The noise in Definition 2.2, arises in real-world665

settings where local differential privacy is ensured e.g., using the randomized response mechanism.666

Remark A.1 (Model’s assumptions hold if attributes are perturbed by randomized response).667

The randomized response mechanism flips each item’s protected attribute to an incorrect value with668

some (public) probability 0 < η < 1
2 , independent of all other items. Here, the independence669

assumption holds (by design) and P ’s entries can be deduced from η. To see the latter concretely,670

consider two protected groups G1 and G2 (p = 2), and their noisy versions N1 and N2 corresponding671

to the “flipped” attributes. For any item i ∈ N1,672

Pi1 = (1− η) · |G1|/|N1| and Pi2 = 1− Pi1.

For items in N2, replace Pi1, Pi2, G1, and N1 with Pi2, Pi1, G2, and N2. When there are more than673

two groups (p > 2), then the randomized response mechanism publically specifies the probability674

ηa,b with which it flips protected attribute value ℓ = a to another value ℓ = b (for any a, b ∈ [p]). As675

in the binary case above, P’s entries can be deduced from parameters {ηa,b : a, b ∈ [p]}.676

Further, in other real-world settings such as image search and online recruiting, the entries of P can677

be estimated using the confidence scores of classifiers or using auxiliary attributes. In more detail:678

• If the protected attribute is skin tone, then a classifier C can be used to predict if image i contains679

a person with a dark skin tone. If C has a calibrated confidence score 0 ≤ c(i) ≤ 1 in this680

prediction, then Pi,darkskin−tone = c(i). See Figure 2 in Section 4 for results from a simulation681

that estimates P in this fashion.682

• If the protected attribute is race and individuals are uniformly drawn from the population, then for683

an individual i with surname S and zip-code Z, Pi,L = f(Z, S), where f(Z, S) is the fraction684

of individuals with surname S in zip-code Z who have the L-th race; which can be estimated685

using census data [20] (see Figure 3 in Section 4).686

Discussion on the noise model with disjoint groups vs. overlapping groups. For each item i687

and group Gℓ (ℓ ∈ [p]), the noise model specifies the marginal probability that i belongs to Gℓ:688

Piℓ := Pr[Gℓ ∋ i]. For any i, the model allows for any joint probability distribution over the689

events (G1 ∋ i), (G2 ∋ i), . . . , (Gp ∋ i) that is consistent with the above marginal probabilities.690

This allows the model to capture the setting where all groups are disjoint – by requiring the events691

(G1 ∋ i), . . . , (Gp ∋ i) to be mutually exclusive. It also allows the model to capture the cases where692

all or only some of the groups can overlap. For instance, the case where G1 can overlap with G2 but693

both G1 and G2 are disjoint from G3 can be captured by requiring the events (G3 ∋ i) to be mutually694

exclusive of the events (G1 ∋ i) and (G2 ∋ i). Importantly, we do not need additional information to695

capture these settings–it suffices to know the marginal probabilities specified by P .696

B Additional empirical results and implementation details697

In this section, we present the implementation details of our simulations (Supplementary Materials B.1698

and B.2), give additional plots for the simulation in Section 4 (Supplementary Material B.3), and699

additional simulations that use weighted-selection risk as the fairness metric or vary the amount of700

noise in the data (Supplementary Materials B.4 and B.5)701

Code. The anonymized code for all simulations is available at https://github.com/702

NoisyRanking/FairRankingWithNoisyAttributes.703

B.1 Implementation details704

In this section, we give implementation details of our algorithm and baselines.705

• NResilient: We implement NResilient in Python 3 and use the Gurobi optimization library to706

solve the linear program in Step 1 of Algorithm 1.707

• SJ: This is [54]’s algorithm. SJ (1) solves a linear program specified by the protected groups708

G1, . . . , Gp, upper bounds U1, . . . , Up, and utilities, (2) decomposes the solution as a convex709

combination of the rankings, and uses this convex combination to generate rankings (see [54,710

Section 3.4]). [54] do not provide an implementation of SJ, we implement SJ in Python3: We711

17

https://github.com/NoisyRanking/FairRankingWithNoisyAttributes
https://github.com/NoisyRanking/FairRankingWithNoisyAttributes
https://github.com/NoisyRanking/FairRankingWithNoisyAttributes

use the Gurobi optimization library to solve the linear program constructed by [54] and use712

the code available at https://github.com/jfinkels/birkhoff to compute the Birkhoff-713

von Neumann decomposition of the solution ([54] also use the same code to compute the714

decomposition, see [54, Section 3.4]).715

• CSV: This is the greedy algorithm from [15, Theorem 3.3]. [15] do not provide an implementa-716

tion of CSV, we implement their algorithm in Python3 with NumPy.717

• GAK: This is the Det-Greedy algorithm of [24]. [24] do not provide an implementation of GAK,718

we implement GAK in Python3 with NumPy.719

• MC : This first uses the algorithm of [42] to compute a subset S and then selects a ranking720

of these items that maximize the utility (in the simulations this amounts to sorting items by721

wi). We used the implementation of [42]’s algorithm available at https://github.com/722

AnayMehrotra/Noisy-Fair-Subset-Selection and use Python3’s in-built sorting function723

to generate the ranking. [42]’s algorithm takes P and parameters U specifying upper bound724

constraints as input.725

• Uncons: This is the baseline that outputs the ranking with the maximum utility. In the simulation,726

this amounts to sorting all items in decreasing order of wi and outputting the ranking with the727

first n items (in that order). We implement Uncons in Python3 with NumPy.728

Computational resources used. All simulations were run on a t3.xlarge instance with 4 vCPUs729

and 16Gb RAM, on Amazon’s Elastic Compute Cloud (EC2).730

B.2 Pre-processing details of the simulation with image data731

In this section, we present additional preprocessing details to estimate P̂ in the simulation with the732

Occupations dataset presented in Section 4.733

Estimating P̂ . We begin by removing all images with gender label NA; this leaves 5,825 images734

(out of 9600). On the remaining images, we use an off-the-shelf face-detector [1] to extract the faces735

of the people from the images and remove all images where the face-detector did not detect a face;736

this leaves 4,494 the images. We use a CNN-based gender classifier [52] on the detected faces to737

predict the apparent gender of the depicted individuals. For each image i, the classifier outputs a738

gender (coded as male and female) and an uncalibrated confidence score ci ∈ [0, 1]. We take the739

set of uncalibrated confidence scores {ci ∈ [0, 1]}i and calibrate them by first binning them, then740

computing the distribution of gender labels (provided in the dataset) for each bin. For each image i,741

we set P̂ i1 (respectively P̂ i2) equal to the fraction of images in the same bin as i whose gender label742

is female (respectively male). We perform this calibration once and on all occupations and, then, use743

it for a subset of occupations.744

B.3 Additional discussion and plots for simulations745

Illustrating the fairness vs. utility trade-off. In our empirical results, we use fairness metrics such746

as weighted risk-difference (Section 4) and weighted selection-lift (Supplementary Material B.4)747

to measure the algorithms’ achieved fairness. We do not use the parameter ϕ to measure fairness748

because the output of algorithms may have lower fairness than specified by ϕ. Figures 2, 4 and 6749

plot utility vs. weighted risk-difference and Figures 7(b), 8(b) and 9(b) plot utility vs. weighted750

selection-lift (SL) for the simulations in Section 4. They show that NResilient better or similar751

(up to standard errors) achieved fairness vs utility trade-off compared to baselines. For example, in752

Figure 8(b), to achieve SL= 0.55 use Figure 8(a) to choose ϕ = 1.19 for NResilient and ϕ = 1.15753

for CSV or SJ. For these values of ϕ, NResilient has 2% higher utility than CSV and SJ.754

Comparison to baseline which has access to accurate protected attributes. Let Clean-Fair be755

the algorithm that, given utilities and accurate protected attributes, outputs the ranking with the756

maximum utility subject to satisfying equal representation constraint. Note that Clean-Fair can only757

be run in the ideal scenario where one has access to accurate protected attributes. We repeated the758

simulations in Section 4 and, for each of them, also measured the utility and fairness of Clean-Fair.759

We observe that the rankings output by Clean-Fair have a RDclose to 1 (>0.99), this is expected760

because Clean-Fair has access to the clean protected attributes. We observe that the ranking output761

by NResilient (for any parameter 0 ≤ ϕ ≤ 1, specifying the fairness constraints for NResilient) has762

a utility that is at most 2%, 10%, and 4% smaller than that the ranking output by Clean-Fair.763

RD of Uncons. Uncons’s RDand utility does not vary with ϕ because it does not take ϕ as input.764

Note that, Uncons also does not take the protected groups or P as input.765

18

https://github.com/jfinkels/birkhoff
https://github.com/AnayMehrotra/Noisy-Fair-Subset-Selection
https://github.com/AnayMehrotra/Noisy-Fair-Subset-Selection
https://github.com/AnayMehrotra/Noisy-Fair-Subset-Selection

0.70 0.75 0.80
Weighted Risk Difference

0.90

0.92

0.94

0.96

0.98

1.00

Ut
ili

ty

Synthetic data

This work
SJ
CSV [Greedy]
MC
GAK [Det-Greedy]
Uncons

———Weighted risk-difference———(more fair)(less fair)

Figure 4: Synthetic Data: Nonuniform Error
Rate. This simulation considers synthetic data
where imputed socially-salient attributes have a
higher false-discovery rate for one group com-
pared to the other. We vary the fairness con-
straint from ϕ from 2 (less fair) to 1 (more
fair) and observe the weighted risk-difference
(weighted risk-difference) of different algo-
rithms. The y-axis plots utility and x-axis shows
weighted risk-difference (Note that the values
decrease toward the right). Error-bars denote
the error of the mean.

1.01.21.41.61.82.0
0.55

0.60

0.65

0.70

0.75

0.80

W
eig

ht
ed

 R
isk

-D
iff

er
en

ce UPDATED -- Image data (DCG Utility)

This work
SJ
CSV [Greedy]
MC
GAK [Det-Greedy]
Uncons

———ϕ ———

Figure 5: Real-world image data. This simu-
lation considers images-search results which are
known to overrepresent the stereotypical gen-
der [34]. Given relevant non-gender labeled im-
ages and their utilities, our goal is to generate a
high-utility gender-balanced ranking. We estimate
P using an off-the-shelf ML-classifier and vary ϕ
from p = 2 (less fair) to 1 (more fair). In the first
subfigure, the y-axis plots weighted risk-difference
and x-axis shows ϕ (Note that the values decrease
toward the right). Error bars show the error of the
mean.

0.3 0.4 0.5 0.6 0.7
Weighted Risk-Difference

0.85

0.90

0.95

1.00

Ut
ili

ty

UPDATED -- Name data (DCG Utility) + Intersectional attributes

This work
SJ
CSV [Greedy]
MC
GAK [Det-Greedy]
Uncons

———Weighted risk-difference———(more fair)(less fair)

Figure 6: Real-World Name Data: Intersec-
tional Attributes. This simulation considers
two socially-salient attributes, gender and race,
and our goal is to ensure equal representation
across the four intersectional socially-salient
groups (non-White non-men, White non-men,
non-White men, and White men). We esti-
mate P from the full names using public APIs
and libraries. We vary ϕ from p = 4 (less
fair) to 1 (more fair) and observe weighted
risk-difference of all algorithms. The y-axis
plots utility and x-axis shows weighted risk-
difference (Note that the values decrease to-
ward the right). Error bars represent the error
of the mean.

B.4 Additional empirical results with weighted selection-lift766

In this section, we present our empirical results with the weighted selection-lift fairness metric767

(Figures 7 to 9). Weighted selection-lift is a position-weighted version of the standard selection-768

difference metric. Like weighted risk-difference, it also measures the extent to which a ranking769

violates equal representation. The weighted selection-lift of a ranking R is:770

1

Z

∑
k=5,10,...

1

log k
min

ℓ,q∈[p]

∣∣∣∣∣
∑

i∈Gℓ, j∈[k],Rij∑
i∈Gq, j∈[k],Rij

∣∣∣∣∣ ,
Where G denotes the ground-truth protected groups and Z is a constant so that RD has range [0, 1].771

Here, a value of 1 is most fair and 0 is least fair.772

19

1.01.21.41.61.82.0
0.50

0.55

0.60

0.65

0.70

W
eig

ht
ed

 S
ele

cti
on

 L
ift

Synthetic data

This work
SJ
CSV [Greedy]
MC
GAK [Det-Greedy]
Uncons

———ϕ ———

(a)

0.50 0.55 0.60 0.65 0.70
Weighted Selection Lift

0.90

0.92

0.94

0.96

0.98

1.00

Ut
ili

ty

Synthetic data

This work
SJ
CSV [Greedy]
MC
GAK [Det-Greedy]
Uncons

———Weighted Selection Lift ———(more fair)(less fair)

(b)

Figure 7: Synthetic Data (Weighted Selection Lift): Nonuniform Error Rate. This simulation considers synthetic
data where imputed socially-salient attributes have a higher false-discovery rate for one group compared to
the other. We vary the fairness constraint from ϕ from 2 (less fair) to 1 (more fair) and observe the weighted
risk-difference (weighted risk-difference) of different algorithms. In the first sub-figure, the y-axis plots weighted
selection-lift and x-axis shows ϕ. In the second sub-figure, the y-axis plots utility and x-axis shows weighted
selection-lift. Error bars represent the error of the mean.

1.01.21.41.61.82.0

0.40

0.45

0.50

0.55

0.60

0.65

W
eig

ht
ed

 S
ele

cti
on

-L
ift

UPDATED -- Image data (DCG Utility)

This work
SJ
CSV [Greedy]
MC
GAK [Det-Greedy]
Uncons

———ϕ ———

(a)

0.40 0.45 0.50 0.55 0.60 0.65
Weighted Selection-Lift

0.85

0.90

0.95

1.00
Ut

ili
ty

UPDATED -- Image data (DCG Utility)

This work
SJ
CSV [Greedy]
MC
GAK [Det-Greedy]
Uncons

———Weighted Selection Lift ———(more fair)(less fair)

(b)

Figure 8: Real-world image data. This simulation considers images-search results which are known to
overrepresent the stereotypical gender [34]. Given relevant non-gender labeled images and their utilities, our
goal is to generate a high-utility gender-balanced ranking. We estimate P using an off-the-shelf ML-classifier
and vary ϕ from p = 2 (less fair) to 1 (more fair). In the first sub-figure, the y-axis plots weighted selection-lift
and x-axis shows ϕ. In the second sub-figure, the y-axis plots utility and x-axis shows weighted selection-lift.
Error bars represent the error of the mean.

1.01.52.02.53.03.54.0
0.000

0.025

0.050

0.075

0.100

0.125

W
eig

ht
ed

 S
ele

cti
on

-L
ift

UPDATED -- Name data (DCG Utility) + Intersectional attributes

This work
SJ
CSV [Greedy]
MC
GAK [Det-Greedy]
Uncons

———ϕ ———

(a)

0.000 0.025 0.050 0.075 0.100 0.125
Weighted Selection-Lift

0.85

0.90

0.95

1.00

Ut
ili

ty

UPDATED -- Name data (DCG Utility) + Intersectional attributes

This work
SJ
CSV [Greedy]
MC
GAK [Det-Greedy]
Uncons

———Weighted Selection Lift ———(more fair)(less fair)

(b)

Figure 9: Real-World Name Data: Intersectional Attributes. This simulation considers two socially-salient
attributes, gender and race, and our goal is to ensure equal representation across the four intersectional socially-
salient groups (non-White non-men, White non-men, non-White men, and White men). We estimate P from the
full names using public APIs and libraries. We vary ϕ from p = 4 (less fair) to 1 (more fair) and observe RD of
all algorithms. In the first sub-figure, the y-axis plots weighted selection-lift and x-axis shows ϕ. In the second
sub-figure, the y-axis plots utility and x-axis shows weighted selection-lift. Error bars represent the error of the
mean.

20

B.5 Additional empirical results varying noise773

In this section, we present a simulation which uses the randomized response mechanism to generate774

noisy protected attributes and compares the performance of algorithms at varying noise levels.775

Data. We use the Occupation images data [14]. We refer the reader to Section 4 for a discussion of776

the data.777

Setup. We fix equal representation constraints (ϕ = 1) and consider the same protected groups as778

the simulation with the same data in Section 4. We vary the noise level 0 ≤ η ≤ 1
2 . For each η,779

we construct noisy attributes by mislabeling true protected attribute with probability η. Here, P is780

specified by η as explained in Remark A.1. Specifically, if N1 and N2 be the noisy versions of true781

protected groups G1 and G2 (corresponding to the “flipped” protected attributes), then we set: For782

each item i ∈ N1,783

P̂ i1 = (1− η) · |G1|
|N1|

and P̂ i2 = 1− P̂ i1.

For items in N2, replace P̂ i1, P̂ i2, G1, and N1 with P̂ i2, P̂ i1, G2, and N2. We do not have784

access to G1 (and, hence, |G1|), and in the above expression we estimate |G1| by α1 := (1−η)·
1−2η ·785

((1− η) |N1| − η |N2|). This is because α1 can be shown to be concentrated around |G1|.786

Like the simulations in Section 4, CSV, GAK, and SJ are given the noisy attributes (as they require)787

and NResilient and MC are given P̂ (computed above).788

Observations. See Figure 10 for RD and utilities (NDGC) averaged over 100 iterations. We observe789

that for each η ≥ 0.1, NResilient RD is >6.8% better than any baseline (Figure 10(a)) and its utility790

is <3% smaller than the baseline (CSV) with best RD (Figure 10(b)). At η = 0, NResilient 3.3%791

lower RD than CSV, GAK, and SJ and the same utility as them.792

Note that in Figures 10(a) and 10(b) the plots of CSV, GAK, and SJ overlap. This is consistent with793

the other simulations where CSV, GAK, and SJ have the same RD and utility at ϕ = 1.794

0.0 0.1 0.2 0.3 0.4
(Less noise) Noise level () (More noise)

0.6

0.7

0.8

0.9

W
eig

ht
ed

 R
isk

 D
iff

er
en

ce

UPDATED -- Image data (DCG Utility) Vary noise
(m, n, g) = (500,25,2),ITER=500,occ_lists=[NA,NA].

This work
SJ
CSV [Greedy]
MC
GAK [Det-Greedy]
Uncons

Noise Level (η) (more noise)(less noise)

(a)

0.0 0.1 0.2 0.3 0.4
(Less noise) Noise level () (More noise)

0.85

0.90

0.95

1.00

Ut
ili

ty

UPDATED -- Image data (DCG Utility) Vary noise

This work
SJ
CSV [Greedy]
MC
GAK [Det-Greedy]
Uncons

Noise Level (η) (more noise)(less noise)

(b)
Figure 10: Simulation varying the amount of noise. In this simulation, we use the Occupation’s images data
[14] and generate noisy protected attributes using the randomized response mechanism, with parameter η. We
vary the amount of noise added from η = 0 (no noise) to η = 0.4 (large noise) and compare the performance of
different algorithms. The y-axis plots RD and x-axis plots η. We present the key observations in the paragraph
above the figure. Error-bars denote the error of the mean.

C Using existing fair-ranking algorithms with rounding is insufficient795

Since existing fair-ranking algorithms require access to protected attributes, one way to use them
under the above model is to imputed groups Ĝ1, . . . , Ĝp using the specified probabilities. Then run
these algorithms w.r.t. the imputed groups. To see an illustration, consider two groups G1 and G2.
A natural imputation strategy is to use the Bayes optimal classifier, which assigns item i to Ĝ1 iff
Pi1 > 0.5 and has the lowest expected imputation error. This may be reasonable when the imputation
error is negligible. However, on exploring this strategy with non-negligible imputation error, we find

21

that the output rankings can violate equal representation significantly (see Proposition C.1). To gain
some intuition consider an extreme case where all items in some set S, of size n, have Pi1 = 0.51.
The Bayes classifier assigns all items in S to Ĝ1, i.e., |S ∩ Ĝ1| = |S|. However, with high probability,

|S ∩G1| ≈ 0.51 |S| .

Since |S ∩G1| and |S ∩ Ĝ1| are far, a ranking that selects n items from S and satisfies the constraints796

for Ĝ1 and Ĝ2 but violate constraints with respect to the true groups. Proposition C.1 gives an797

example where this occurs.798

Another imputation strategy, is independent rounding: it assigns each item i to Ĝ1 with probability
Pi1 and otherwise to Ĝ1. This addresses the issue with Bayes imputation, because, it has property
that for any set T of size n, |T ∩G1| are |T ∩ Ĝ1| close with probability 1− eΘ(n). However, when
m≫ n, there are (

m

n

)
≫ en

sets of size n, and hence, with high probability, there exists a set S of size n for which |S ∩ Ĝ1| and799

|S ∩G1| are arbitrarily far. In this case also, existing fair-ranking algorithms can output rankings800

which violate equal representation significantly. Proposition C.2 gives an example where this occurs.801

Proposition C.1 (Imputing protected groups using the Bayes optimal classifier is not sufficient).802

Let R be any optimal solution to (2) with protected groups imputed using the Bayes optimal classifier803

for given p. There exists a matrix P ∈ [0, 1]m×2 such that R does not satisfy the (ε, δ)-equal804

representation constraint805

for any δ <
1

2
and ε s.t. εk <

1

20
for some k ≥ 2.

Proposition C.2. Let R be a random variable denoting the optimal solution to the fair-ranking806

problem (Program (2)) for protected groups imputed using independent rounding with given P ∈807

[0, 1]m×2. For every β > 0, there exists sufficiently large n and m and a matrix P ∈ [0, 1]m×2, such808

that, with probability at least 1− β R does not satisfy the (ε, δ)-equal representation constraint809

for any δ < 1− β and ε ∈ (0, 1)n.

C.1 Proofs of Proposition C.1 and Proposition C.2810

C.1.1 Proof of Proposition C.1811

Proof of Proposition C.1. Pick any even n ∈ N. Let m := 3n
2 . Let β > 0 be a small constant that812

we will fix later. We will divide the items into the following three types:813

• Type A: For each 1 ≤ i ≤ n
2 and 1 ≤ j ≤ n,814

Pi1 := 0 = 1− Pi2 and Wij := 1.

• Type B: For each n
2 + 1 ≤ i ≤ n and 1 ≤ j ≤ n,815

Pi1 :=
1

2
+ β = 1− Pi2 and Wij := 1.

• Type C: For each n+ 1 ≤ i ≤ 3n
2 and 1 ≤ j ≤ n,816

Pi1 := 1 = 1− Pi2 and Wij := 0.

Let Ĝ1 and Ĝ2 be the groups imputed using maximum likelihood rounding. By construction, Ĝ1817

contains all items of Types A and B and no items of Type C, whereas Ĝ2 contains all items of Type C818

and no items of Types A and B.819

22

Let R be an optimal solution of Program (2) with parameters G1 = Ĝ1 and G2 = Ĝ2. Since Wij ≤ 1820

for all i ∈ [m], j ∈ [n], ⟨R,W ⟩ ≤ n. Because R satisfies the equal representation constraints for two821

disjoint groups, for any even k ∈ [n], R places exactly k
2 items of Type A and k

2 items of Type B in822

the top k positions. From Ĝ1, R only places items of Type A: If R picks no items of Type C, then823

⟨R,W ⟩ = n, whereas, if R picks one or more items of Type C, then ⟨R,W ⟩ ≤ n − 1, which is a824

contradiction since there is a ranking with utility n that satisfies equal representation constraints (e.g.,825

a ranking which places items of Type A and B in alternate positions).826

Since all items of Type A are (always) in Ĝ2, R places at least k
2 items from Ĝ2 in the first k positions.827

We will show that with probability larger than 1
2 , at least k

20 of the k
2 items of Type B are in Ĝ2. Thus,828

with probability larger than 1
2 , R places more than k

2 ·
11
10 items from Ĝ2 in the top-k positions, and829

hence, R does not satisfy the (ε, δ)-equal representation constraint for any δ < 1
2 and ε ∈

(
0, 1

10

)n
.830

It remains to prove our claim. Select any k ∈ {2, 4, . . . , n}. Let i1, i2, . . . , ik/2 ∈ [m] be the n items831

of Type B that R places in the first k positions. Let Zij ∈ {0, 1} be the indicator random variable that832

ij ∈ Ĝ2. Thus, Zi1 , . . . , Zik/2
are independent random variables, such that, for j ∈ [k], Pr[Zij] =833

1 − Pij = 1
2 − β. It follows that E[

∑k/2
j=1 Zij] =

k
2

(
1
2 − β

)
and Var[

∑k/2
j=1 Zij] =

k
2

(
1
4 − β

2
)
.834

Thus, using the Chebyshev’s inequality on
∑k/2

j=1 Zij ,835

Pr

∣∣∣∣∣∣
k/2∑
j=1

Zij −
k

4
(1− 2β)

∣∣∣∣∣∣ > k

8

(
1− 4β2

)
·
√
2 + β

 ≤ 1

2 + β
.

Thus,836

Pr

k/2∑
j=1

Zij <
k

4
(1− 2β)− k

8

(
1− 4β2

)
·
√
2 + β

 ≤ 1

2 + β
.

Since k
4 (1− 2β)− k

8

(
1− 4β2

)
·
√
2 + β = k

(
1
4 −

√
2
8

)
+ k ·O(β), for a sufficiently small β > 0,

k

4
(1− 2β)− k

8

(
1− 4β2

)
·
√
2 + β >

k

20
.

Hence,837

Pr

k/2∑
j=1

Zij <
k

20

 ≤ 1

2 + β

(β>0)
<

1

2
. (15)

838

C.1.2 Proof of Proposition C.2839

Proof of Proposition C.2. Let ϕ > 0 be a small constant that we will fix later. We will divide the840

items into the following two types:841

• Type A: For each item i of Type A842

Pi1 := ϕ, Pi2 := 1− ϕ and Wij := 1 for all j ∈ [n].

• Type B: For each item i of Type B843

Pi1 := 1, Pi2 := 0 and Wij := 0 for all j ∈ [n].

• Type B: For each item i of Type C844

Pi1 := 0, Pi2 := 1 and Wij := 0 for all j ∈ [n].

23

Let there be mA := O
(
log
(

n
β

)
· n
log(1

1−ϕ)

)
items of Type A, mB := n items of Type B, and845

mC := n items of Type C.846

Note that a ranking which ranks items of Type B and Type C alternately, satisfies the equal repre-847

sentation constraints with probability 1. So in this instance, there exists a ranking which satisfies848

(δ, ε)-equal representation. However, we will show that R does not satisfy (δ, ε)-equal representation849

with probability at least 1− β.850

Let Ĝ1 and Ĝ2 be the groups imputed by independent rounding. Let E be the event that Ĝ1 contains851

at least n items of Type A and F be the event that Ĝ2 contains at least n items of Type A. Both E852

and F occur with probability at most O(β). To see this, divide the items of Type A into n groups of853

equal size. From each group, at least one item is selected in Ĝ1 and Ĝ2 with probabilities at least854

1− (1− ϕ)
mA
n and 1− (ϕ)

mA
n respectively. Taking a union bound over all groups and substituting855

mA, we get856

Pr[E] ≥ 1− β andPr[F] ≥ 1− β.

Since only items of Type A have a nonzero contribution to the utility of a ranking and because there857

are at least n items of Type A in each imputed group, it follows that R only selects items of Type A.858

Now, the claim follows because, for small ϕ, most items of Type A belong to G1.859

Suppose E and F happen and, hence, R only selects items of Type A. Let Zj be the indicator860

random variable that the item in the j-th position of R is in G1. We have that Pr[Zj] = ϕ. Therefore,861

Var[
∑n

j=1 Zj] = nϕ(1− ϕ). Thus, using the Chebyshev’s inequality we have862

Pr

∣∣∣∣∣∣
n∑

j=1

Zj − nϕ

∣∣∣∣∣∣ ≥ nεn
4

 ≤ 4nϕ(1− ϕ)
n2ε2n

.

Hence, for ϕ = Θ(ε2nβ), we have that863

Pr

 n∑
j=1

Zj ≤
nεn
2

 ≥ 1− β.

The result follows since whenever
∑n

j=1 Zj ≤ nε
2 , R violates the equal representation constraint at864

the n-th position by a multiplicative factor larger than 1 + εn.865

866

D Proofs of theoretical results867

D.1 Proof of Lemma 5.3868

In this section, we prove certain concentration inequalities which are used in the proof of Theorem 3.1.869

We divide the proof of Lemma 5.3 into two parts: Lemmas D.1 and D.6870

For each item i ∈ [m] and protected attribute ℓ ∈ [p], let Ziℓ ∈ {0, 1} be the indicator random871

variable that the i-th item is in the ℓ-th protected group, i.e., if i ∈ Gℓ, then Zi = 1, and other Zi = 0.872

Using Definition 2.2, it follows that:873

∀i ∈ [m], ℓ ∈ [p], Pr[Ziℓ] = Piℓ, (16)
∀i, j ∈ [m], ℓ ∈ [p], s.t., i ̸= j, Ziℓ and Zjℓ are independent. (17)

To simplify the notation, given a ranking R ∈ R, a protected attribute ℓ ∈ [p], and a position k ∈ [n],874

let Z#(R, ℓ, k) ∈ Z be the random variable equal to the number of items from Gℓ in the top k875

positions of R and let P#(R, ℓ, k) ∈ R be the expectation of Z#(R, ℓ, k), i.e.,876

Z#(R, ℓ, k) :=
∑
i∈[m]

∑
j∈[k]

ZiℓRij and P#(R, ℓ, k) := E [Z#(R, ℓ, k)] .

24

Using Equation (16) and linearity of expectation it follows that877

P#(R, ℓ, k) =
∑
i∈[m]

∑
j∈[k]

PiℓRij .

Lemma D.1. For any position k ∈ [n], attribute ℓ ∈ [p], parameters ε ≥ 0 and L ∈ R, and ranking878

R ∈ R, where R is possibly a random variable and is independent of {Ziℓ}i,ℓ, if P#(R, ℓ, k) ≥ L879

then with probability at least 1− exp
(
− Lε2

2(1−ε)

)
, it holds that Z#(R, ℓ, k) > L (1− ε).880

Proof. Since ℓ, k, and R are fixed, we use Z# and P# to denote Z#(R, ℓ, k) and P#(R, ℓ, k)881

respectively.882

Since R and {Ziℓ}i,ℓ are independent, we can bound the required probability as follows883

Pr [Z# ≤ L(1− ε)] = Pr

[
Z# ≤ P# ·

(
1− P# − L(1− ε)

P#

)]
≤ exp

(
−P#

2
·
(
P# − L(1− ε)

P#

)2
)

(Chernoff’s bound, see [45])

= exp

(
−1

2
· (P# − L(1− ε))2

P#

)
. (18)

To bound the right-hand side of Equation (18), we will use the following fact.884

Fact D.2. For all L, ε > 0, (x−L(1−ε))2

x attains its minima at L over the domain [L,∞).885

Since P# ≥ L, from Fact D.2 it follows that the right-hand side of Equation (18) attains its maxima886

at P# = L. Substituting P# = L in Equation (18), we get:887

Pr [Z# ≤ L(1− ε)] ≤ exp

(
−1

2
· (Lε)

2

L(1− ε)

)
= exp

(
−Lε2

2(1− ε)

)
.

888

Lemma D.3. For any position k ∈ [n], attribute ℓ ∈ [p], parameters ε ≥ 0 and U ∈ R, and889

ranking R ∈ R, where R is possibly a random variable and is independent of {Ziℓ}i,ℓ, if R satisfies890

that P#(R, ℓ, k) ≤ U then with probability at least 1 − exp
(
−Uε2

2+ε

)
, it holds that Z#(R, ℓ, k) <891

(1 + ε) · U .892

Proof. Since ℓ, k, and R are fixed, we use Z# and P# to denote Z#(R, ℓ, k) and P#(R, ℓ, k)893

respectively. Since R and {Ziℓ}i,ℓ are independent, we can bound the required probability as follows894

Pr [Z# ≥ U(1 + ε)] = Pr

[
Z# ≤ P# ·

(
1 +

U(1 + ε)− P#

P#

)]

≤ exp

P# ·
(
U(1 + ε)− P#

P#

)2

· 1

2 +
U(1+ε)−P#

P#

 .

Where we used the fact that: For any δ > 0 and independent 0/1 random variables Y1, Y2, . . . , Yn,
Pr [
∑

i Yi > (1 + δ)µ] < exp
(

µδ2

2+δ

)
, where µ := E[

∑
i Yi] (see[45]). Simplifying the right-hand

side of the above equation, we get:895

Pr [Z# ≥ U(1 + ε)] = exp

(
− (U(1 + ε)− P#)

2

U(1 + ε) + P#

)
. (19)

To bound the right-hand side of Equation (19), we will use the following fact.896

25

Fact D.4. For all U, ε > 0, (U(1+ε)−x)2

U(1+ε)+x attains its minima at U over the domain [0, U].897

Since P# ≤ U , from Fact D.4 it follows that the right-hand side of Equation (19) attains its maxima898

at P# = U . Substituting P# = U in Equation (19), we get:899

Pr [Z# ≥ U(1 + ε)] ≤ exp

(
−Uε2

2 + ε

)
. (20)

900

D.2 Improved dependence of γ on δ901

In this section, we show that given a constant ψ > 0, if U satisfies that902

∀ℓ ∈ [p],∀k ∈ [n], Ukℓ ≥ ψk,

then we can improve the dependence of γ (from Equation (6)) on log 2np
δ and α. Concretely,903

Theorem 3.1 holds for the following γ:904

∀k ∈ [n], γk := max
ℓ∈[p]

√
1

2ψ
· log

(
2np

δ

)
· 1

Ukℓ
. (21)

The proof of this relies on analogous of Lemmas D.1 and D.3: Lemmas D.5 and D.6.905

Lemma D.5. For any position k ∈ [n], attribute ℓ ∈ [p], parameter ε ≥ 0, and lower bound906

constraint L ∈ Zn×p
≥0 , and ranking x ∈ R, if x satisfies that P#(R, ℓ, k) ≥ L then with probability907

at least 1− exp
(
−2L2ε2k−1

)
, it holds that Z#(R, ℓ, k) > L (1− ε).908

Lemma D.6. For any position k ∈ [n], attribute ℓ ∈ [p], parameters ε ≥ 0 and U ∈ R, and909

ranking R ∈ R, where R is possibly a random variable and is independent of {Ziℓ}i,ℓ, if R910

satisfies that P#(R, ℓ, k) ≤ U then with probability at least 1 − exp
(
− 2U2ε2

k

)
, it holds that911

Z#(R, ℓ, k) < U (1 + ε).912

To prove the improved dependence of γ, it suffices to prove Propositions 5.1 and 5.2. For the new913

value of γ, their proofs change as follows:914

Proof of Proposition 5.1 The parameters in Equation (9) remain the same. Hence, following the915

same argument, Equation (10) holds. Now, we can prove Equation (12) as follows:916

Pr [Z#(R, ℓ, k) ≥ Uℓk(1 + ϕγk)] = Pr [Z#(R, ℓ, k) ≥ U ′(1 + ζ)]

(Using that U ′(1 + ζ) = Ukℓ(1 + ϕγk))

≤ exp

(
−2 (U ′)

2
ζ2

k

)
(Using Lemma D.6)

= exp

(
−2(1− ϕ)2U2

ℓkγ
2
k

k

)
(Using Equation (9))

≤ exp
(
−2ψ(1− ϕ)2Uℓkγ

2
k

)
(Using that Ukℓ ≥ ψk)

≤ δ

2np
. (Using Equation (21)) (22)

Proposition 5.1 follows by replacing Equation (12) by Equation (22) in the rest of its proof.917

26

Proof of Proposition 5.2 The parameters in Equation (13) remain the same. Now, we can prove918

Pr [Z#(R
′, k, ℓ) ≤ Ukℓ] < 1− δ as follows:919

Pr [Z#(R
′, k, ℓ) ≤ Ukℓ] = Pr [Z#(R

′, k, ℓ) ≤ L′ · (1− ζ)]

(Using that L′(1− ζ) = Ukℓ(1 + bγk))

≤ exp

(
−2 (L′)

2
ζ2

k

)
(Using Lemma D.5)

= exp

(
−2(ϕ− b)2γ2kU2

kℓ

k

)
(Using Equation (13))

≤ exp
(
−2ψ(ϕ− b)2γ2kUkℓ

)
(Using that Ukℓ ≥ ψk)

<
δ

2np
(Using Equation (21) and Equation (13)) (23)

< 1− δ. (Using that δ < 1
2 and n ≥ 1) (24)

The rest of the proof is identical.920

Proof of Lemma D.5. First, note that since x is not a function of the outcomes of the random variables921

Ziℓ, x is independent of the random variables {Ziℓ}i,ℓ. Since ℓ, k, and x are fixed, we use Z# and922

P# to denote Z#(R, ℓ, k) and P#(R, ℓ, k) respectively. Now, we can bound the required probability923

as follows924

Pr [Z# ≤ L(1− ε)] = Pr

[
Z# ≤ P# ·

(
1− P# − L(1− ε)

P#

)]
≤ exp

(
−2

k
· P 2

·
(
P# − L(1− ε)

P#

)2
)

(Where we used the fact that: For any δ > 0 and bounded random variables Y1, Y2, . . . , Yn ∈ [0, 1],
Pr [
∑

i Yi < (1− δ)µ] < exp
(
−2µ2δ2n−1

)
, where µ := E[

∑
i Yi])925

= exp

(
−2

k
· (P# − L(1− ε))2

)
≤ exp

(
−2L2ε2k−1

)
.

926

Proof of Lemma D.6. Since ℓ, k, and R are fixed, we use Z# and P# to denote Z#(R, ℓ, k) and927

P#(R, ℓ, k) respectively. SinceR and {Ziℓ}i,ℓ are independent, we can bound the required probability928

as follows929

Pr [Z# ≥ U(1 + ε)] = Pr

[
Z# ≤ P# ·

(
1 +

U(1 + ε)− P#

P#

)]
≤ exp

(
−2

k
· P 2

·
(
U(1 + ε)− P#

P#

)2
)
.

Where we used the fact that: For any δ > 0 and bounded random variables Y1, Y2, . . . , Yn ∈ [0, 1],
Pr [
∑

i Yi > (1 + δ)µ] < exp
(
−2µ2δ2n−1

)
, where µ := E[

∑
i Yi] ([45]). Simplifying the right-

hand side of the above equation, we get930

Pr [Z# ≥ U(1 + ε)] ≤ exp

(
−2

k
(U(1 + ε)− P#)

2

)
≤ exp

(
−2U2ε2

k

)
. (Using that P# ≤ U)

931

27

D.3 Proof of Theorem 3.2932

We consider the family of matrices U ∈ Rn×p that satisfy the following condition: For each position933

k ∈ [n], there exists an attribute ℓ such that934

Ukℓ ≤
k

4
.

Notably, equal representation constraints satisfy this condition for any p ≥ 4. We will use Fact D.7 to935

prove Theorem 3.2.936

Fact D.7 (Theorem 2 in [46]). For all p ∈ (0, 14], 0 ≤ ε ≤ 1
p (1 − p), and s ∈ N independent 0/1937

random variables Z1, Z2, . . . , Zs ∈ {0, 1}, such that for all i ∈ [s], Pr[Zi = 1] = p,938

Pr

[∑
i∈[s]

Zi ≥ (1 + ε)ps

]
≥ 1

4
exp

(
−2ε2ps

)
.

Proof of Theorem 3.2. Fix the k to the value specified in the theorem. Let ℓ ∈ [n], be any attribute939

such that Ukℓ ≤ k
4 . Such a ℓ exists because of the family of constraints we chose. Without loss of940

generality suppose ℓ ̸= 1. Fix any n,m ≥ k. For each item i ∈ [m], set941

Piℓ :=
Ukℓ

k
and Pi1 := 1− Uk1

k
(25)

Further, for all k ∈ [p], k ̸= p and k ̸= 1, let Pik := 0.942

Suppose, toward a contradiction, that there is a ranking R ∈ R that satisfies the (ε, δ)-constraint. R943

must satisfy the following equation:944

Pr [Z#(R, k, ℓ) ≤ Ukℓ · (1 + εk)] ≥ 1− δ. (26)

For each position j ∈ [n], let Zj ∈ {0, 1} be the indicator random variable that the item placed in the945

j-th place in the ranking R is in the protected group Gℓ. From Equation (25) and Definition 2.2, it946

follows that:947

∀j ∈ [n], Pr[Zj] =
Ukℓ

k
(27)

∀u, v ∈ [n], s.t., u ̸= v, Zu and Zv are independent. (28)

Using linearity of expectation and Equation (27), we get that:948

Pr [Z#(R, k, ℓ) ≤ (1 + εk) · Ukℓ] = Pr

[∑
j∈[k]

Zj ≥ (1 + εk) · E
[∑k

j=1
Zj

]]
. (29)

Since 0 ≤ εk ≤ 1 and 1
k E
[∑k

j=1 Zj

]
≤ 1

4 , we can use Fact D.7 with ε := εk, p :=949

1
k E
[∑k

j=1 Zj

]
≤ 1

4 , s := k, and for all j ∈ [n], Zj = Zj . Using this, we get that950

Pr

[∑
j∈[k]

Zj ≥ (1 + εk) · E
[∑k

j=1
Zj

]]
≤ 1− 1

4
exp

(
−2ε2k · E

[∑k

j=1
Zj

])
≤ 1− 1

4
exp

(
−2ε2kUkℓ

)
(Using Equation (27)) (30)

Chaining Equations (26), (29), and (30), we get that951

1− 1

4
exp

(
−2ε2kUkℓ

)
≥ 1− δ.

Hence,952

εk ≥
√

1

2Ukℓ
log

1

4δ
.

This is a contradiction since εk is specified to be less than
√

1
2Ukℓ

log 1
4δ . Thus, no ranking R satisfies953

the (ε, δ)-constraint for any U in the chosen family chosen.954

28

D.4 Proof of Theorem 3.3955

In this section, we prove Theorem 3.3. Our algorithm uses the rounding algorithm of [16] as a956

subroutine. [16]’s algorithm satisfies the following guarantees.957

Theorem D.8 (Theorem 1.1 from [16]). Let P ⊆ [0, 1]N be either a matroid intersection polytope or958

a (non-bipartite graph) matching polytope. For any fixed 0 < α ≤ 1
2 , there is an efficient randomized959

rounding procedure, such that given a (fractional) point RF ∈ P , it outputs a random feasible960

solution R corresponding to a (integer) vertex of P such that E[1R] = (1− α) ·RF . In addition, for961

any linear function w(R) :=
∑

i∈R wi, where wi ∈ [0, 1] it holds that962

1. for any δ ∈ [0, 1] and µ ≤ E[1R], Pr[w(R) ≤ (1− δ)µ] ≤ exp
(
− 1

20 · µαδ
2
)
,963

2. for any δ ∈ [0, 1] and µ ≥ E[1R], Pr[w(R) ≥ (1− δ)µ] ≤ exp
(
− 1

20 · µαδ
2
)
,964

3. for any ∆ ≥ 1 and µ ≥ E[1R], Pr[w(R) ≥ µ(1 + ∆)] ≤ exp
(
− 1

20 · µα(2∆− 1)
)
.965

The algorithm runs in time polynomial in the size of the ground set, N , and 1
α , and makes at most966

poly(N, d) calls to the independence oracles for the underlying matroids.967

We claim that the following algorithm satisfies the claim in Theorem 3.3968

Algorithm 1 Algorithm from Theorem 3.3

Input: Matrices P ∈ [0, 1]m×p, W ∈ Rm×n
≥0 , U ∈ Rn×p

Parameters: Constant d > 2 and c > 1, a failure probability δ ∈ (0, 1], and for each k ∈ [n], a
relaxation parameter

γk := 12 · log
(
2np

δ

)
·max
ℓ∈[p]

√
1

Ukℓ
.

1. Initialize RF ← Solve the linear-programming relaxation of Program (7) with the specified inputs
2. Round R← Run [16]’s rounding algorithm with input α := 1

d and P := conv (R)
3. Return R

For each item i ∈ [m] and protected attribute ℓ ∈ [p], let Ziℓ ∈ {0, 1} be the indicator random969

variable that the i-th item is in the ℓ-th protected group, i.e., if i ∈ Gℓ, then Zi = 1, and other Zi = 0.970

Using Definition 2.2, it follows that:971

∀i ∈ [m], ℓ ∈ [p], Pr[Ziℓ] = Piℓ, (31)
∀i, j ∈ [m], ℓ ∈ [p], s.t., i ̸= j, Ziℓ and Zjℓ are independent. (32)

To simplify the notation, given a ranking R ∈ R, a protected attribute ℓ ∈ [p], and a position k ∈ [n],972

let Z#(R, ℓ, k) ∈ Z be the random variable equal to the number of items from Gℓ in the top k973

positions of R and let P#(R, ℓ, k) ∈ R be the expectation of Z#(R, ℓ, k), i.e.,974

Z#(R, ℓ, k) :=
∑
i∈[m]

∑
j∈[k]

ZiℓRij and P#(R, ℓ, k) := E [Z#(R, ℓ, k)] .

Using Equation (31) and linearity of expectation it follows that975

P#(R, ℓ, k) =
∑
i∈[m]

∑
j∈[k]

PiℓRij .

Proof. .976

Running time. The Step 1 of Algorithm 1 runs in polynomial time when implemented with any977

polynomial-time linear programming solver. Observe thatR corresponds to the bipartite matching978

polytope, whose bi-partitions have size n and m respectively. Since the bipartite matching polytope is979

a matroid intersection polytope, we can use Theorem D.8. The independence oracle for this polytope980

29

can be implemented in poly(m) time, e.g., using the Birkhoff–von Neumann theorem. Finally, since981

α = 1
d and N = O(m2), it follows that Step 2 of Algorithm 1 runs in polynomial time in d and the982

bit complexity of the input (which is at least m).983

Let

ϕ :=
2
√
c− 1

2
√
c

.

Let RF and R be the rankings from Steps 1 and 2 of Algorithm 1. From Theorem D.8, we have that984

E[1R] = (1− α) ·RF . Hence, for any weights V ∈ Rn×m, it holds that985

E [⟨R, V ⟩] = (1− α) · ⟨RF , V ⟩ . (33)

Fix any position k ∈ [n] and group ℓ ∈ [p]. Since ℓ, k, and R are fixed, we use Z#(R) and Z#(R
′)986

and P# to denote Z#(R, ℓ, k) and P#(R, ℓ, k) respectively.987

Utility guarantee. Let R⋆ be the solution of Program (7) for c = d. Let V := ⟨W,R⋆⟩. Let988

0 ≤ ∆ ≤ V be a parameter. Since RF is a solution of the LP-relaxation of Program (7) and R⋆ is a989

solution of Program (7), RF ’s utility is at least as large as the utility of R⋆. From this it follows that990

Pr [⟨W,R⟩ ≤ ⟨W,R⋆⟩ · (1− α)−∆] ≤ Pr [⟨W,R⟩ ≤ ⟨W,RF ⟩ · (1− α)−∆] . (34)

Since W ∈ [0, 1]m×n, we can use Theorem D.8 with a =W . Using this we get can upper bound the991

RHS of the above equation.992

Pr [⟨W,R⟩ ≤ ⟨W,RF ⟩ · (1− α)−∆] = Pr [⟨W,R⟩ ≤ E [⟨W,R⟩]−∆] (Using Equation (33))

≤ exp

(
− α

20
· ∆2

⟨W,RF ⟩ · (1− α)

)

Let ∆ :=
√

20
α · ⟨W,RF ⟩ · (1− α) · log

(
2np
δ

)
. Substituting the value of ∆ in the above equation,993

we have:994

Pr [⟨W,R⟩ ≤ E [⟨W,R⟩]−∆] ≤ δ

2np
. (35)

Chaining the inequalities in Equations (34) and (35)995

Pr [⟨W,R⟩ ≤ ⟨W,R⋆⟩ · (1− α)−∆] ≤ δ

2n
.

Since each entry of W is at most 1 and
∑

i,j (RF)ij = n, it follows that ⟨W,RF ⟩ ≤ n. Using this
and that α = 1

d ,

∆ = O

(√
dn · log 2np

δ

)
.

Thus, the utility guarantee follows.996

Fairness guarantee. Since RF is feasible for the LP-relaxation of Program (7), it holds that997

P#(RF) ≤ Ukℓ(1 + ϕγk). (36)

Let ε > 0 be some constant such that998

ε ≥ ϕγk. (37)

We divide the analysis into two cases depending on the value of ε.999

Case A (P#(R) ≥ 1
2Ukℓ(1 + ε)): Since P#(R) ≥ 1

2 · Ukℓ(1 + ε), we have that1000

U(1 + ε)− P#(R)

P#(R)
≤ 1. (38)

30

We have that1001

Pr [Z#(R) > Ukℓ(1 + ε)] = Pr

[
Z#(R) > P#(R) ·

(
1 +

Ukℓ(1 + ε)− P#(R)

P#(R)

)]
From Equation (33) it follows that P#(R) = P#(RF)(1− α). Then from Equations (36) and (37)
we have that P#(R) ≤ Ukℓ(1 + ε). Hence, Ukℓ(1+ε)−P#(R)

P#(R) ≥ 0. Further, from Equation (38)
Ukℓ(1+ε)−P#(R)

P#(R) ≤ 0. Hence, we can use the second statement of Theorem D.8. Using this we get1002

≤ exp

(
− α

20
· P#(R) ·

(
Ukℓ(1 + ε)− P#(R)

P#(R)

)2
)

≤ exp

(
− α

20
· P#(RF) ·

(
Ukℓ(1 + ε)− P#(RF)

P#(RF)

)2
)

(Fact D.2 and that P#(R) ≤ P#(RF))

≤ exp

(
− α

20
· Ukℓ ·

(ε− ϕγk)2

1 + ϕγk

)
(Fact D.2 and Equation (36)) (39)

Case B (P#(R) <
1
2Ukℓ(1 + ε)): Since P#(R) <

1
2 · Ukℓ(1 + ε), we have that1003

Ukℓ(1 + ε)− P#(R)

P#(R)
≥ 1. (40)

We have that1004

Pr [Z#(R) > Ukℓ(1 + ε)] = Pr

[
Z#(R) > P#(R) ·

(
1 +

Ukℓ(1 + ε)− P#(R)

P#(R)

)]
≤ exp

(
− α

20
· P#(R) ·

(
2 · Ukℓ(1 + ε)− P#(R)

P#(R)
− 1

))
(Using third statement in Theorem D.8 and that Equation (40))

= exp
(
− α

20
· (2Ukℓ(1 + ε)− 3P#(R))

)
≤ exp

(
− α

40
· Ukℓ(1 + ε)

)
.

(Using that P#(R) <
1
2 · Ukℓ(1 + ε)) (41)

Combining Equations (39) and (41) we get that1005

Pr [Z#(R) > U(1 + ε)] ≤ max

{
exp

(
− α

20
· Ukℓ

(ε− ϕγk)2

1 + ϕγk

)
, exp

(
− α

40
· Ukℓ(1 + ε)

)}
(42)

Let1006

ε :=
40

α
· γk. (43)

We claim that for this value of ε, it holds that1007

Pr [Z#(R) > Ukℓ(1 + ε)] ≤ δ

2n
. (44)

Now by taking a union bound over bound over all ℓ ∈ [n] and using that α := 1
d , it follows that R1008

satisfies the fairness guarantee with probability at least δ
2n .1009

31

We can upper bound the second term in Equation (42), as follows1010

exp
(
− α

40
· Ukℓ(1 + ε)

)
≤ exp

(
− α

40
· Ukℓ · ε

)
≤ exp (−Ukℓ · γk)

≤ δ

np
.

(Using that γk ≥ 1
Ukℓ
· log 2np

δ ; which follows from Equation (6), Ukℓ ≥ 1, and log 2np
δ ≥ 1)

To upper bound the first term in Equation (42), we use Fact D.9.1011

Fact D.9. For all x, y ≥ 0, if x ≥ y +√y, then x2

1+x ≥ y.1012

Proof. Since 1 + x > 0, x2

1+x ≥ y holds if and only if x2 − xy − y ≥ 0. The roots of the quadratic1013

f(x) := x2 − xy − y are1014

y

2
−
√
y2

4
+ y and

y

2
+

√
y2

4
+ y.

If x is larger than both roots, then f(x) ≥ 0 and, hence, x2

1+x ≥ y. It follows that x ≥ y
2 +

√
y2

4 + y1015

suffices. Then using that for all a, b ≥ 0,
√
a+
√
b ≥
√
a+ b, we get that1016

y +
√
y ≥ y

2
+

√
y2

4
+ y.

Thus, it suffices x ≥ y +√y implies that x2

1+x ≥ y.1017

We have1018

(ε− ϕγk)2

1 + ϕγk
≥
(
39

α

)2

· γk
2

1 + ϕγk
(Using that 0 ≤ ϕ ≤ 1, α ≤ 1

2 , and Equation (43))

≥
(
39

α

)2

· γk
2

1 + γk
. (Using that 0 < ϕ ≤ 1)

To proof Equation (44), it suffices to prove that1019

γk
2

1 + γk
≥ 1

Ukℓ
· log

(
n+ 2

δ

)
. (45)

Further, Fact D.9 implies that to prove Equation (45) it suffices to prove that1020

γk ≥ y +
√
y,

where y := 1
Ukℓ
· log n+2

δ . To prove this, observe that1021

log
np

δ
· 1

Ukℓ
≤ log

np

δ
·
√

1

Ukℓ
, (Using that Ukℓ ≥ 1)√

log
np

δ
· 1

Ukℓ
≤ log

np

δ
·
√

1

Ukℓ
. (Using that log np

δ ≥
1
2 as n ≥ 1 and δ ≤ 1

2)

Hence, Equation (45) follows from Equation (6).1022

32

D.5 Proof of Theorem D.101023

Theorem D.10. Given constants c > 1 and vector γ ∈ Rn
≥0, , and matrices P ∈ [0, 1]m×p,1024

W ∈ Rm×n
≥0 , U ∈ Rn×p, it is NP-hard to decide if Program (7) is feasible.1025

Theorem D.10 follows from Theorem 5.2 of [42], which proves that checking the feasibility of the1026

following program is NP-hard.31027

max
x∈{0,1}m

∑m

i=1
w◦

i xi (46)

s.t., ∀ ℓ ∈ [p◦],
∑m◦

i=1
q◦iℓxi ≤ U◦

ℓ , (47)∑m◦

i=1
xi = n◦. (48)

Where we used a superscript “◦” on the variables of [42], to differentiate between ours and [42]’s1028

variables. Theorem D.10 follows from Theorem 5.2 of [42] by observing that Program (46) is a1029

special case of Program (7), when:1030

n := n◦, m := m◦, p := p◦, γ := 1n, P = q◦,
∀k ∈ [n], γk = 1,

Unℓ = U◦
ℓ ,

∀k ∈ [n] \ {1} , Ukℓ = n,

∀i ∈ [m], j ∈ [n], Wij = w◦
i .

Finally, we can choose any c > 1.1031

E Extension of Theorem 3.1 to position-weighted constraints1032

In this section, we extend Theorem 3.1 to position-weighted version of fairness constraints. In
particular, given position-discounts

v1 ≥ v2 ≥ · · · ≥ vn

and a matrix U ∈ Zn×p
+ the position-weighted fairness constraint requires a ranking R to satisfy:

∀k ∈ [n], ℓ ∈ [p],
∑
i∈Gℓ

∑
j∈[k]

vjRij≤Ukℓ

for all k and ℓ. For these constraints, we consider the following analogue of (ε, δ)-constraints: A1033

ranking R is said to satisfy (ε, δ, v)-constraint if with probability at least 1 − δ over the draw of1034

G1, . . . , Gp1035

∀k ∈ [n] ∀ℓ ∈ [p],
∑

i∈Gℓ

∑k

j=1
vjRij ≤ Ukℓ(1 + εk). (49)

For these position-dependent constraints, our framework largely remains the same and is stated in1036

Program (52). Compared to Program (7), the main difference is in the left-hand side of Program (51).1037

We can prove the guarantees on the fairness and accuracy of the optimal solution of Program (52),1038

under the additional assumption that, for a constant ψ > 0, U satisfies that1039

∀ℓ ∈ [p],∀k ∈ [n], Ukℓ ≥ ψk. (50)

3Theorem 5.2 of [42] states an NP-hardness result holds for a generalization of Program (46). However, in
their proof they only consider the special case of Program (46). Thus, their proof also implies NP-hardness of
Program (46).

33

The parameter ψ shows up in Equation (51).1040

Our Fair-Ranking Framework for Position-Dependent Constraints

Input: Matrices P ∈ [0, 1]
m×p, W ∈ Rm×n

≥0 , U ∈ Rn×p

Parameters: A constant c > 1, a failure probability δ ∈ (0, 1], and for each k ∈ [n], a relaxation
parameter

γk :=
1

ψ
· log

(
2np

δ

)
·max
ℓ∈[p]

√
1

Ukℓ
. (51)

Program:
maxR∈R ⟨R,W ⟩ , (52)
s.t. ∀ℓ ∈ [p] ∀k ∈ [n]∑

i∈[m],j∈[k]
vjPiℓRij ≤ Ukℓ

(
1 +

2
√
c− 1

2
√
c
· γk
)

(53)
1041

We prove the following guarantees on the fairness and accuracy of the optimal solution of Pro-1042

gram (52).1043

Theorem E.1. Let γ ∈ Rn be as defined in Equation (51). If the matrix U ∈ Zn×p
+ satisfies that for1044

all ℓ ∈ [p] and k ∈ [n], Ukℓ ≥ ψk, then is an optimization program Program (52), parameterized1045

by a constant c and failure probability δ, such that for any c > 1 and δ ∈ (0, 12] its optimal solution1046

satisfies (cγ, δ, v)-constraint and has a utility at least as large as the utility of any ranking satisfying1047

((c−
√
c)γ, δ, v)-constraint.1048

The proof of Theorem E.1 is analogous to the proof of Theorem 3.1. Here, we highlight the1049

differences.1050

Notation. Recall that for each item i ∈ [m] and group ℓ ∈ [p], let Ziℓ ∈ {0, 1} is indicator random1051

variable that Zi := I[Gℓ ∋ i].1052

The first change is in the definition of Z#(R, ℓ, k). In particular, we need to define

Z#(R, ℓ, k) =
∑

i∈Gℓ

∑k

j=1
vjRij .

For the new definition of Z#, we have following concentration result.1053

Lemma E.2. For any position k ∈ [n], group ℓ ∈ [p], parameters ε ≥ 0 and L,U ∈ R, and ranking1054

R ∈ R, where R is possibly a random variable independent of {Ziℓ}i,ℓ, if P#(R, ℓ, k) ≤ U or1055

P#(R, ℓ, k) ≥ L then the following equations hold respectively1056

Pr [Z#(R, ℓ, k) < (1 + ε)U] ≥ 1− e− 2U2ε2

k ,

Pr [Z#(R, ℓ, k) > (1− ε)L] ≥ 1− e− 2L2ε2

k .

The proof of Lemma E.2 is identical to the proofs of Lemmas D.5 and D.6; the only change is the1057

new definition of Z#.1058

To prove Theorem E.1, it suffices to prove analogues of Propositions 5.1 and 5.2 for the new definition1059

of Z#. Their proofs change as follows:1060

34

Proof of Proposition 5.1 The parameters in Equation (9) remain the same. Hence, following the1061

same argument, Equation (10) holds. Now, we can prove Equation (12) as follows:1062

Pr [Z#(R, ℓ, k) ≥ Uℓk(1 + ϕγk)] = Pr [Z#(R, ℓ, k) ≥ U ′(1 + ζ)]

(Using that U ′(1 + ζ) = Ukℓ(1 + ϕγk))

≤ exp

(
−2 (U ′)

2
ζ2

k

)
(Using Lemma E.2)

= exp

(
−2(1− ϕ)2U2

ℓkγ
2
k

k

)
(Using Equation (9))

≤ exp
(
−2ψ(1− ϕ)2Uℓkγ

2
k

)
(Using that Ukℓ ≥ ψk)

≤ δ

2np
. (Using Equation (51)) (54)

Proposition 5.1 follows by replacing Equation (12) by Equation (54) in the rest of its proof.1063

Proof of Proposition 5.2 The parameters in Equation (13) remain the same. Now, we can prove1064

Pr [Z#(R
′, k, ℓ) ≤ Ukℓ] < 1− δ as follows:1065

Pr [Z#(R
′, k, ℓ) ≤ Ukℓ] = Pr [Z#(R

′, k, ℓ) ≤ L′ · (1− ζ)]

(Using that L′(1− ζ) = Ukℓ(1 + bγk))

≤ exp

(
−2 (L′)

2
ζ2

k

)
(Using Lemma E.2)

= exp

(
−2(ϕ− b)2γ2kU2

kℓ

k

)
(Using Equation (13))

≤ exp
(
−2ψ(ϕ− b)2γ2kUkℓ

)
(Using that Ukℓ ≥ ψk)

<
δ

2np
(Using Equation (51) and Equation (13)) (55)

< 1− δ. (Using that δ < 1
2 and n ≥ 1) (56)

The rest of the proof is identical.1066

F Proofs of additional theoretical results1067

F.1 Proof of Proposition 2.31068

Proof of Proposition 2.3. Suppose R is deterministic. Suppose it places items i, j ∈ [m] on the first1069

and second position respectively. With probability pi · pj = 1
4 , both i and j belong to G1, and with1070

probability pi · pj = 1
4 both i and j belong to G2. Thus, at least one of these events occurs with1071

probability 1
2 . If either of these events hold, then R violates the equal representation constraint on1072

the top-2 positions by a multiplicative factor of 2. The last two statements imply that R violates1073

(ρ, δ)-equal representation for any ρ < 1 and δ < 1
2 .1074

If R is a random variable, then any draw R′ of R is a deterministic ranking, and hence, by the above1075

argument R′ violates the equal representation constraint on the top-2 positions by a multiplicative1076

factor of 2 with a probability 1
2 (over the randomness in G1 and G2). Since this holds for all draws of1077

R and R is independent of G1 and G2, it follows that R violates the equal representation constraint1078

on the top-2 positions by a multiplicative factor of 2 with a probability 1
2 (over the randomness in G11079

and G2, and R). Thus, R does not satisfy (ρ, δ)-equal representation for any ρ < 1 and δ < 1
2 .1080

35

F.2 Proof of Proposition F.11081

Given a non-empty subset C ⊆ R denoting a constraint, let RC be the ranking with the highest utility
in C, i.e.,

RC := argmaxR∈C ⟨R,W ⟩ .
In other words, RC is the utility maximizing ranking subject to satisfying the “constraint” C.1082

Proposition F.1. Let C⋆ be the set of all rankings that satisfy (ε, δ)-constraint. For any subset C ⊆ R,1083

such that C ̸= C⋆, at least one of the following holds:1084

• there exists a matrix W ∈ Rm×n
≥0 such that, RC does not satisfy (ε, δ)-equal representation,1085

• there exists a matrix W ∈ Rm×n
≥0 such that, ⟨RC ,W ⟩ ≤ ⟨RC⋆ ,W ⟩ ·

(
1− 1

n

)
.1086

We will use the following lemma in the proof of Proposition F.1.1087

Lemma F.2. For all rankings R ∈ R, there exists a matrix W ∈ Rm×n
≥0 such that for all other1088

rankings R′ ∈ R, R ̸= R′, it holds that ⟨R′,W ⟩ ≤ ⟨R,W ⟩ ·
(
1− 1

n

)
.1089

Proof. Suppose R ranks items i1, i2, . . . , in, in that order, in the first n positions. Pick W ∈1090

[0, 1]n×m such that Wij = 1 if i = ij and 0 otherwise. R has utility ⟨W,R⟩ =
∑n

j=1 (W)ijj = n.1091

We claim that ⟨W,R′⟩ ≤ n− 1. If this is true, then the lemma follows.1092

Since R ̸= R′, there exists a position k ∈ [n] such that (xC)ikk = 0. We can upper bound ⟨W,R′⟩ as1093

follows:1094

⟨W,R′⟩ =
n∑

j=1

m∑
i=1

I[i = ij] (R
′)ij (By the choice of W)

=

n∑
j=1

(R′)ijj

=

k−1∑
j=1

(R′)ijj + 0 +

n∑
j=k+1

(R′)ijj (Using that (R′)ikk = 0)

≤ n− 1. (Using that for all i ∈ [m] and j ∈ [n], (W)ij ≤ 1)

1095

Proof of Proposition F.1. Since C ≠ C⋆, at least one of the sets C \ C⋆ or C⋆ \ C is nonempty. We1096

divide the proof into two cases.1097

Case A (|C \ C⋆| ≠ 0): In this case, there exists a rankingR ∈ C such thatR ̸∈ C⋆. Since C⋆ is the set1098

of all rankings that satisfy (ε, δ)-constraint, it follows thatR does not satisfy (ε, δ)-constraint. Further,1099

from Lemma F.2 it follows that there exists a matrix W such that R := argmaxR′∈R ⟨R′,W ⟩. Since1100

C ⊆ R, it follows that RC = R. Therefore, for this W , RC does not satisfy (ε, δ)-constraint.1101

Case B (|C⋆ \ C| ̸= 0): In this case, there exists a ranking R ∈ C⋆ such that R ̸∈ C. From Lemma F.2
it follows that there exists a matrix W such that, for rankings R′ different from R (i.e., R ̸= R′),

⟨R′,W ⟩ ≤ ⟨R,W ⟩ ·
(
1− 1

n

)
.

Thus, for this W , it follows that1102

⟨RC⋆ ,W ⟩ ·
(
1− 1

n

)
≥ ⟨R,W ⟩ ·

(
1− 1

n

)
≥ ⟨R′,W ⟩ .

In particular, for R′ = RC , we get ⟨RC⋆ ,W ⟩ ·
(
1− 1

n

)
≥ ⟨R′,W ⟩.1103

1104

36

F.3 Proof of Lemma F.31105

Suppose there are two groups G1 and G2. Let RE be the optimal solution to Equation (5) and let R⋆1106

be the ranking with the highest utility subject to satisfying (γ, δ)-equal representation constraints for1107

the following γ:1108

∀k ∈ [n], γk :=
1

k
+ 2

√
6

k
· log

(
2n

δ

)
. (57)

Lemma F.3. There exists a matrices P ∈ [0, 1]m×2 and W ∈ [0, 1]m×2 such that1109

• RE satisfies (γ, δ)-equal representation and has utility 0,1110

• R⋆ has utility 1.1111

Proof. Let P be the matrix with Pi1 = Pi2 = 1
2 for all i ∈ {1, 2, . . . ,m− 1} and Pm1 = 1 and1112

Pm1 = 0. Let W be the matrix whose first m− 1 rows are 0, and the last row has is all 1s. Hence,1113

only the last item, say im, has a nonzero contribution to the utility: If a ranking R ranks im in the1114

first n positions, then the utility of R is 1, otherwise the utility of R is 0.1115

Our first claim will follow because the choice of P ensures that any ranking which ranks im in the1116

first n positions cannot satisfy Equation (5). To see this, suppose R ranks im at the k-th position, then1117

E
[∑

i∈G1

∑k

j=1
Rij

]
=
∑

i∈[m]

∑k

j=1
Pi1Rij

= 1 +
∑

i∈[m]\{im}

∑k−1

j=1
Pi1Rij (Using that Pim,1 = 1)

=
k + 1

2
(Using that Pi,1 = 1

2 for all i ̸= im)

>
k + 1

2
.

Hence, R cannot satisfy Equation (5).1118

To prove our second claim, we will construct a ranking which has utility 1 and satisfies (γ, δ)-equal1119

representation . It suffices to choose any ranking R which places im in the first n position satisfies1120

constraint. By our earlier argument this ranking has a utility 1. LetZj be the indicator random variable1121

that the item in the j-th position inR belongs toG1. This implies that
∑

i∈G1

∑k
j=1Rij =

∑k
j=1 Zj1122

for all k. Further, by the choice of P , we have1123

k

2
≤ E

[∑k

j=1
Zj

]
≤ k + 1

2
. (58)

Further, by Definition 2.2, we have that Zj is independent of Zk for any j ̸= k. Let εk :=1124 √
6
k · log

(
2n
δ

)
. Using the above, we have1125

Pr

[∑
i∈G1

∑k

j=1
Rij ≥

k + 1

2
· (1 + εk)

]
= Pr

[∑k

j=1
Zj ≥

k + 1

2
· (1 + εk)

]
≤ Pr

[∑k

j=1
Zj ≥ E

[∑k

j=1
Zj

]
· (1 + εk)

]
(Using Equation (58))

≤ exp

(
−ε

2
k

3
· E
[∑k

j=1
Zj

])
(Using the Chernoff’s bound, see [45])

≤ exp

(
−ε

2
kk

6

)
(Using Equation (58))

≤ δ

2n
. (Using that εk :=

√
6
k · log

(
2n
δ

)
)

37

Further, as γk ≥ k+1
k · (1 + εk), we get1126

Pr

[∑
i∈G1

∑k

j=1
Rij ≥

k

2
· (1 + γk)

]
≤ Pr

[∑
i∈G1

∑k

j=1
Rij ≥

k + 1

2
· (1 + εk)

]
≤ δ

2n
.

Further, considering 1− Zj and repeating a similar argument for G2, we get1127

Pr

[∑
i∈G2

∑k

j=1
Rij ≥

k

2
· (1 + εk)

]
= Pr

[∑k

j=1
(1− Zj) ≥

k

2
· (1 + γk)

]
≤ Pr

[∑k

j=1
(1− Zj) ≥ E

[∑k

j=1
(1− Zj)

]
· (1 + γk)

]
(Using Equation (58))

≤ exp

(
−γ

2
k

3
· E
[∑k

j=1
(1− Zj)

])
(Using the Chernoff’s bound, see [45])

≤ exp

(
−γ

2
k(k − 1)

6

)
(Using Equation (58))

≤ δ

2n
. (Using Equation (57))

By taking the union bound over all k, one can show that R satisfies (γ, δ)-equal representation.1128

F.4 Proof of Proposition F.41129

Proposition F.4. There exist p ∈ [0, 1]m such that (4) is non-convex in R.1130

Proof. It suffices to specify n, m, p, ε, δ, and two rankings R1 and R2 such that both R1 and R21131

satisfy (ε, δ)-equal representation, but R1+R2

2 does not satisfy (ε, δ)-equal representation.1132

Define n := 2, m := 4, and ε := [1
3

1
3]

⊤. Fix any 0 < δ < 1
2 . Define

p := [1 0 δ 1− δ]⊤ .

Let R1 be the ranking that places items 1 and 3 in the first and second position, and R2 be the ranking1133

that places items 2 and 4 in the first and second position, i.e.,1134

R1 :=

[
1 0 0 0
0 0 1 0

]
and R2 :=

[
0 1 0 0
0 0 0 1

]
.

If 1 ∈ G1 and 3 ∈ G2, then R1 places an equal number of items from G1 and G2 in the first two1135

positions, and hence, satisfies equal representation. This event, happens with probability p1(1−p3) =1136

1− δ. Thus, R1 satisfies (0, δ)-equal representation, and hence, (ε, δ)-equal representation. Replace1137

item 1 and 3 with 2 and 4 and swap G1 and G2 in the above argument, to get that R2 also satisfies1138

(ε, δ)-equal representation.1139

However, we claim that R1+R2

2 does not satisfy (ε, δ)-equal representation. Note that with probability1140

1, 1 ∈ G1 and 2 ∈ G2. If 3, 4 ∈ G1 or 3, 4 ∈ G2, then R1+R2

2 violates the equal representation1141

constraint on the top-2 positions by a multiplicative factor of 3
2 . At least one of these events happens1142

with probability p3p4 + (1− p3)(1− p4) = 2δ(1− δ) > δ, as δ < 1
2 . Thus, R1+R2

2 does not satisfy1143

(ε, δ)-equal representation for the specified ε := [1
3

1
3]

⊤ and δ < 1
2 .1144

38

F.5 Proof of Theorem F.51145

In this section, we prove the following theorem.1146

Theorem F.5. Given p ∈ [0, 1]m, δ ∈ (0, 1], W ∈ Rm×n
≥0 , ε ∈ [0, 1]n, and V ≥ 0 it is NP-hard to1147

decide if the value of Program (4) is at least V .1148

Recall that constraint (60) is necessary and sufficient to satisfy (ε, δ)-equal representation, and hence,1149

the value of (59) is the maximum utility of a ranking subject to satisfying (ε, δ)-equal representation.1150

max
R∈R

⟨R,W ⟩ (59)

s.t. w.p. at least 1− δ over draw of G1, G2, (60)

∀k ∈ [n], ∀ℓ ∈ [2],
∑

i∈Gℓ

k∑
j=1

Rij ≤
k

2
· (1 + εk).

We will show that the decision version of (59) is NP-hard:1151

Theorem F.6. Given L ≥ 0, δ ∈ [0, 1], ε ∈ [0, 1]n, P ∈ [0, 1]m×p, and W ∈ Rm×n
≥0 it is NP-hard to1152

decide if the value of (59) is at least L.1153

The proof of Theorem F.6 proceeds in two steps. In the first step, we reduce (61) to (59). In the1154

second step, we prove that (61) is NP-hard because the NP-complete product partition problem1155

reduces to (61). Together, the two steps imply the hardness of (59). The proof of the second step is1156

inspired by the construction of [50] for the product knapsack problem, which is similar to (61).1157

F.5.1 Step 1: Reduction from (61) to (59)1158

In this step, we will reduce the following problem to (59).1159

Input: L ≥ 0, n ∈ [m], δ ∈ [0, 1], U ∈
[
0, n2

]
v ∈ Rm

≥0, and P ∈ [0, 1]m×p

Decision problem: Is the value of (61) at least L?

max
S⊆[m] : |S|=n

∑
i∈S

vi (61)

s.t. w.p. at least 1− δ over draw of G1, G2,

|S ∩G1| ≤ U +
n

2
and |S ∩G2| ≤ U +

n

2
.

1160

Reduction. Given an instance of (61) we construct the following instance of (59):1161

W := v1⊤n , (62)

ε1 = ε2 = · · · = εn−1 :=
2n

k
− 1, (63)

εn :=
2U

n
− 1, (64)

where 1n := (1, . . . , 1) ∈ Rn.4 The parameters L, δ, and P are the same as the instance of (61).1162

The reduction from (61) to (59) is as follows: First solve (59) to obtain a ranking R. Let S be the set1163

of items R places in the top-n positions. Output S. Clearly, this is a polynomial-time reduction. It1164

remains to prove that it is sound and complete.1165

In our construction, Condition (62) implies that the utility of a ranking only depends on the set1166

of n items it places in the top-n positions, and hence, any two rankings that place the same set of1167

items in the top-n positions have the same utility. Condition (63) ensures that any ranking satisfies1168

the constraints in the first n − 1 positions with probability 1. This is because, for all k ∈ [n − 1],1169

4To be precise, we consider ε1 = ε2 = · · · = εn−1 := min
{
1, 2n

k
− 1

}
and εn := min

{
1, 2U

n
− 1

}
.

39

k
2 (1 + εk) = n > k. Thus, a ranking R is feasible for (59) iff it satisfies: With probability at least1170

1− δ over draw of G1, G2,1171

∀ℓ ∈ [2],
∑
i∈Gℓ

k∑
j=1

Rij ≤
n

2
· (1 + εn) = U +

n

2
.

Soundness and completeness. Fix any R ∈ R. Let S be the set of items R places in the top-n1172

positions. It holds that1173

⟨R,W ⟩ (62)
=
∑
i∈S

vi.

It remains to show that R is feasible for (59) iff S is feasible for (61). Due to conditions (63) and1174

(64), R is feasible for (59) iff: With probability at least 1− δ over draw of G1, G2,1175

∀ℓ ∈ [2],
∑
i∈Gℓ

k∑
j=1

Rij ≤ U +
n

2
.

Since by the definition of S, for all T ⊆ [m],
∑

i∈T

∑n
j=1Rij = |S ∩ T |, it follows that with1176

probability 1
∑

i∈Gℓ

∑n
j=1Rij = |S ∩Gℓ|. Thus, S is feasible for (61) iff R is feasible for (59).1177

Thus, the reduction is sound and complete.1178

F.5.2 Step 2: Reduction from product partition problem to (61)1179

We consider the following version of the product partition problem:1180

Cardinality constrained product parition problem (CPPP)

Input: a1, a2, . . . , aq ∈ Z≥0 and ℓ ∈ {0, 1, . . . , q}.
Decision problem: Is there a set S ⊆ [q] of size ℓ such that∏

i∈S

ai =
∏

i∈[q]\S

ai?

1181

The usual product partition problem (PPP) does not require S to have size ℓ and is known to be1182

NP-complete. CPPP is clearly in NP. To see that CPPP is NP-complete, one can reduce PPP to1183

CPPP: To see this, given an instance of PPP, construct q + 1 instances of CPPP, one for each value1184

of ℓ ∈ {0, 1, . . . , q}. Then, PPP is a ‘Yes’ instance iff at least one of the q + 1 CPPP instances in a1185

‘Yes’ instance. Thus, it follows that CPPP is also NP-complete.1186

Assumptions on CPPP instances without loss of generality. The decision problem for CPPP is1187

simple for instances with ℓ = 0, or with one or more of a1, . . . , aq as 0. As all inputs are integral,1188

without loss of generality, we assume that ℓ ≥ 1 and a1, . . . , aq ≥ 1. Note that if in an CPPP1189 √∏q
i=1 ai is non-integral, then it is a ‘No’ instance. This can be verified in polynomial time, and1190

hence, without loss of generality, we assume that
√∏q

i=1 ai is integral.1191

Reduction from CPPP to (61). Given an instance of CPPP, we construct an instance of (61) with1192

n := 2ℓ, m := q + ℓ, U := ℓ− 1, and δ :=

(
1

amax

)ℓ2

, (65)

where amax := maxi∈[q] ai. Further, define constants1193

M := (ℓ+ 2) ·

√√√√ q∏
i=1

ai and B := q ⌈M log(amax)⌉+ 1. (66)

40

We choose v so that the first q items correspond to the q numbers in the CPPP instance, and the next1194

ℓ items have a “high” value:1195

∀i ∈ [q], vi := ⌈M log(ai)⌉ , (67)
∀i ∈ [ℓ], vi+q := L. (68)

Note that each of the last ℓ items has a value larger than the total value of the first q items, i.e.,1196

∀ i ∈ [ℓ], vi+q = B >
∑
j∈[q]

vj . (69)

We choose P so that for the first q items Pi,1 ∝ aℓi and the next ℓ are in G1 with probability 1:1197

∀i ∈ [q], Pi,1 :=

(
ai
amax

)ℓ

· 1√∏q
i=1 ai

and Pi,2 = 1− Pi,1, (70)

∀i ∈ [ℓ], Pi+q,1 := 1 and Pi+q,2 = 1− Pi+q,1. (71)

Finally, let1198

L := ℓB +

⌊
M

2

q∑
i=1

log(ai)

⌋
. (72)

The reduction from CPPP to (61) is as follows: First solve the constructed instance of (61) to get S.
Then output S\Q, where

Q := [ℓ+ q] \ [q]
is the set of the last ℓ items.1199

Let C ∈ Z be the bit complexity of the input for the given instance of (61). To show that the reduction1200

is polynomial time, it suffices to show that L and ⌈M log(a1)⌉ , . . . , ⌈M log(aq)⌉ can be computed1201

in poly(C) time. Note that, M ≤ 2O(C), and hence, to compute ⌈M log(ai)⌉ it suffices to compute1202

log(ai) up to O(C) bits, which can be done in poly(C) time. Similarly, to compute L it suffices to1203

compute
∑q

i=1 log(ai) up to O(C) bits, which can be done in poly(C) time. Thus, the reduction is1204

polynomial time.1205

The choice of L and v ensures that the following fact holds.1206

Fact F.7. If a set S ⊆ [q] satisfies
∑

i∈S vi ≥ L and |S| = n, then S ⊇ Q.1207

Proof. Suppose toward a contradiction that satisfies
∑

i∈S vi ≥ L and |S| = n but S does not1208

contain Q. Since S = n = 2ℓ Then,1209 ∑
i∈S

vi =
∑

i∈S∩Q

vi +
∑

i∈S\Q

vi

≤ |S ∩Q| ·max
i∈Q

vi +
∑

i∈[q]\Q

vi (Using S ⊆ [q] and vi ≥ 0)

(68), (69)
< |S ∩Q| ·B +B

< |Q| ·B (Using that |S ∩Q| ≤ |Q| − 1 and B > 0)

≤ L. (Using (72), |Q| = ℓ, and L ≥ ℓB)

1210

Soundness. Suppose S is feasible for (61) and satisfies
∑

i∈S vi ≥ L. Due to (71), with probability1211

1, G1 ⊇ Q. Hence, G2 ∩Q = ∅. Thus,1212

with probability 1, |S ∩G2| = |(S \Q) ∩G2| ≤ |S \Q| .

41

Since
∑

i∈S vi ≥ L and |S| = n (as S is feasible for (61)), Fact F.7 implies that S ⊇ Q, hence1213

|S \Q| = |S| − ℓ. Combining this with the above equation, we get that1214

with probability 1, |S ∩G2| ≤ |S| − ℓ = ℓ. (Using that |S| = n = 2ℓ)

Since U ≥ 0,1215

with probability 1, |S ∩G2| ≤ U + ℓ. (73)

S is feasible for (61) iff:1216

Pr
G1,G2

[|S ∩G1| ≤ U + ℓ and |S ∩G2| ≤ U + ℓ] ≥ 1− δ

(73)⇐⇒ Pr
G1,G2

[|S ∩G1| ≤ U + ℓ] ≥ 1− δ

⇐⇒ Pr
G1,G2

[|(S \Q) ∩G1| ≤ U + ℓ] ≥ 1− δ

(Using that with probability 1, S,G1 ⊇ Q)

⇐⇒ Pr
G1,G2

[|S′ ∩G1| ≤ U] ≥ 1− δ

⇐⇒ Pr
G1,G2

[|S′ ∩G1| > U] ≤ δ

⇐⇒ Pr
G1,G2

[|S′ ∩G1| = n] ≤ δ (Using that U = n− 1 and |S′| = ℓ)

⇐⇒
∏
i∈S′

Pi1 ≤ δ

(71),(70),(65)⇐⇒ a
−ℓ·|S′|
max ·

∏
i∈[q]

ai

−|S′|/2

·
∏
i∈S′

aℓi ≤
(

1

aℓmax

)ℓ

⇐⇒
∏
i∈S′

ai ≤
√∏

i∈[q]

ai (Using that ℓ > 0, a1, . . . , aq > 0, and |S′| = ℓ) (74)

Since S is feasible for (61), it holds that1217 ∏
i∈S′

ai ≤
√∏

i∈[q]

ai.

To show that S′ is feasible for CPPP, it remains to show that the above equation holds with equality.1218

Suppose toward a contradiction that
∏

i∈S′ ai <
√∏

i∈[q] ai. Then, because
√∏

i∈[q] ai and1219

a1, . . . , aq are integral1220 ∏
i∈S′

ai ≤
√∏

i∈[q]

ai − 1.

Because M ≥ 0, taking the logarithm we get1221

M
∑
i∈S′

log ai ≤M log

√∏
i∈[q]

ai − 1

 . (75)

To upper bound the RHS, we will use the following fact:1222

Fact F.8. For all x ≥ 1, log x− log (x− 1) ≥ 1
x .1223

Using Fact F.8 with x =
√∏

i∈[q] ai (as a1, . . . , aq ≥ 1), we get1224

log

√∏
i∈[q]

ai

− log

√∏
i∈[q]

ai − 1

 ≥ 1√∏
i∈[q] ai

.

42

Hence, by (66)1225

M = (ℓ+ 2) ·
√∏

i∈[q]

ai ≥
ℓ+ 2

log
(√∏

i∈[q] ai

)
− log

(√∏
i∈[q] ai − 1

) .
On rearranging, we get1226

M log

√∏
i∈[q]

ai − 1

 ≤M log

√∏
i∈[q]

ai

− ℓ− 2.

Substituting this in (75), we get1227

M
∑
i∈S′

log ai ≤M log

√∏
i∈[q]

ai

− ℓ− 2.

Since for all i ∈ S′, vi ≤M log (ai) + 1, it follows that1228

∑
i∈S′

vi ≤
M

2
log

∏
i∈[q]

ai

− 2 <

M
2

log

∏
i∈[q]

ai

 . (76)

Thus,1229 ∑
i∈S

vi =
∑

i∈S∩Q

vi +
∑

i∈S\Q

vi

= ℓB +
∑
i∈S′

vi (Using that S ⊇ Q and S′ := S \Q)

(76)
< ℓB +

M log

√∏
i∈[q]

ai


= L.

This is a contradiction to
∑

i∈S vi ≥ L.1230

Completeness. It suffices to show that if S′ is feasible for the given instance of CPPP, then1231

S := S′ ∪Q is feasible for (61) and satisfies
∑

i∈S vi ≥ A.1232

Due to (71), with probability 1, G1 ⊇ Q. Hence, G2 ∩Q = ∅. Thus,1233

with probability 1, |S ∩G2| = |(S \Q) ∩G2| ≤ |S \Q| = |S′| = ℓ,

where the last equality holds as S′ is feasible for the given instance of CPPP. This implies that (73)1234

holds. Hence, by following the same arguments, (74) also holds. Thus, S := S′ ∪Q is feasible for1235

(61)1236

It remains to show that
∑

i∈S vi ≥ L.1237 ∑
i∈S

vi =
∑
i∈Q

vi +
∑
i∈S′

vi (Using that S := S′ ∪Q)

(68)
= ℓB +

∑
i∈S′

vi

(67)
≥ ℓB +

∑
i∈S′

M log ai

= ℓB +
M

2
log

∏
i∈[q]

ai

 (Using that
∏

i∈S′ ai =
∏

i∈[q] ai)

(72)
≥ A.

43

	Introduction
	Model of fair ranking with noisy attributes
	Challenges in solving prob:2

	Theoretical results
	Empirical results
	Proof of thm:ub
	Limitations and conclusion
	Additional remarks on the noise model
	Additional empirical results and implementation details
	Code.
	Implementation details
	Computational resources used.

	Pre-processing details of the simulation with image data
	Estimating P"0362P.

	Additional discussion and plots for simulations
	Additional empirical results with weighted selection-lift
	Additional empirical results varying noise

	Using existing fair-ranking algorithms with rounding is insufficient
	Proofs of example:mlr and example:ir
	Proof of example:mlr
	Proof of example:ir

	Proofs of theoretical results
	Proof of lem:concbound:mainbody
	Improved dependence of on
	Proof of prop:xNFisfair:mainbody
	Proof of prop:xOPTdeltaisfeasible:mainbody

	Proof of thm:lb
	Proof of thm:algo
	Proof of thm:hardnessresultsmain

	Extension of thm:ub to position-weighted constraints
	Proof of prop:xNFisfair:mainbody
	Proof of prop:xOPTdeltaisfeasible:mainbody

	Proofs of additional theoretical results
	Proof of lem:epsdependsonk
	Proof of lem:constareopt
	Proof of lem:expconstonlysuff
	Proof of lem:relaxationnonconvex
	Proof of thm:nphardnessofexactconst
	Step 1: Reduction from (61) to (59)
	Step 2: Reduction from product partition problem to (61)
	Assumptions on CPPP instances without loss of generality.

