
A Proof of Theorem 2.2503

In this section, we prove our main convergence result, namely Theorem 2.2. The proof of this can504

be thought as a version of the classical martingale problem [46] for summary statistics of stochastic505

gradient descent in the high-dimensional n ! 1 limit.506

For ease of notation, in the following we say that f . g if there is some constant C > 0 such507

that f  Cg and that f .a g if there is some constant C(a) > 0 depending only on a such that508

f  C(a)g. Furthermore, for readability, we will often suppress the dependence on n in subscripts,509

when it is clear from context. Let C1
0 (E) denote the space of smooth compactly supported functions510

on E.511

Proof of Theorem 2.2. Our aim is to establish un ! u weakly as random variables on C([0,1))512

where u solves (2.4). It is equivalent to show the same on C([0, T ]) for every T > 0.513

Let ⌧nK denote the exit time for the interpolated process un(t) from E⇤
K,n := u�1

n (En
K) and let514

L1
K,n = L1(E⇤

K,n)). For any function f , we use the shorthand f` to denote f(X`). By Taylor’s515

theorem, we have that for any C3 function f and any `  ⌧K/�,516

f` = f(X`�1 � �r�`�1 � �rH`
`�1)

= f`�1 � �[Af
` �Af

`�1]� �[Mf
` �Mf

`�1] +O(�3||r3f ||L1
K,n

· ||rL||3L1
K,n

) , (A.1)

where Af
` and Mf

` are defined by their increments as follows:517

Af
` �Af

`�1 = � hr�,rfi`�1 � �n
⇣
Lnf`�1 +

⌦
r�⌦r�,r2f

↵
`�1

⌘
,

Mf
` �Mf

`�1 =
⌦
rH`,rf

↵
`�1

+ �nEf
` ,

Ef
` = �r2f(r�,rH`)`�1 �

⌦
r2f,rH` ⌦rH` � V

↵
`�1

,

for Ln = 1
2

P
i,j Vij@i@j and V = E[rH ⌦ rH]. Observe that Af

` is pre-visible and Mf
` is a518

martingale. We bound these for f = uj among un = (u1, ..., uk).519

After recalling Definition 2.1, we see that since un are �n-localizable, the error term in (A.1) has520

�3 sup
x2E⇤

K,n

E[||r3uj || · ||rL||3] . �3||r3uj ||L1
K,n

 
||r�||3L1

K,n
+ sup

E⇤
K,n

E||rH||3
!

.K �3/2 .

Since �n goes to infinity as n ! 1, we may thus write uj(X`) as521

uj(X`) = uj(0)� �
X

`0`

�
A

uj

`0 �A
uj

`0�1

�
� �

X

`0`

�
M

uj

`0 �M
uj

`0�1

�
+ o(1) ,

where the last term is o(1) in L1 uniformly for `  ⌧K/�.522

Now let us define for s 2 [0, T ],523

a0j(s) = A
uj

[s/�] �A
uj

[s/�]�1

b0j(s) = M
uj

[s/�] �M
uj

[s/�]�1

If we let aj(s) =
R s
0 a0j(s

0)ds0 = aj(�[s/�]) + (s � �[s/�])(A
uj

[s/�] � A
uj

[s/�]�1) and bj(s) =R s
0 b0j(s

0)ds0, then recalling that un(s) is the linear interpolation of (uj([s/�]))j , we may write

un(s) = un(0) + an(s) + bn(s) + o(1).

where an(s) = (aj(s))j and bn(s) = (bj(s))j .524

We now prove that the sequence (un(s ^ ⌧nK)) is tight in C([0, T ]) with limit points which are525

↵-Holder for each K. To this end, let us define vn(s) = an(s) + bn(s) + un(0). As the o(1) error526

above is uniform in t, we have that527

sup
0s⌧n

K�
||un(s)� vn(s)|| ! 0 , in L1 .
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Thus it suffices to show the claimed tightness and Holder properties of limit points for vn instead528

of un. We aim to show that for all 0  s, t  T ,529

E||vn(s ^ ⌧K)� vn(t ^ ⌧K)||4 .K,T (t� s)2, (A.2)

from which we will get that the sequence vn(s ^ ⌧K) is uniformly 1/4-Hölder by Kolmogorov’s530

continuity theorem.531

Evidently, for all s, t we have532

kvn(s)� vn(t)k  kan(s)� an(t)k+ kbn(s)� bn(t)k .
We control these terms in turn. We will do this coordinate wise and, for readability, fix some j  k533

and let u = uj , a = aj , b = bj etc.534

For the pre-visible term, we have535

E|a(s ^ ⌧K)� a(t ^ ⌧K)|4 .
E|�

X

k

hr�,ruik|
4 + E|�2

X

k

(Lu)k|4 + E|�2
X

k

⌦
r�⌦r�,r2u

↵
k
|4, (A.3)

where these sums are over steps k ranging from [s/�] ^ ⌧K/� to [t/�] ^ ⌧K/�.536

Let f = (fj)jk be as in (2.1). Then by (2.1), we have |hr�,rui (x)|  |fj(un(x))| + o(1),537

uniformly over E⇤
K,n, so that the first term in (A.3) is at most538

E|�
X

hr�,rui`|
4 . E|�

X
fj(un)`|4 + o((t� s)4)

 (t� s)4
⇣
||fj ||4L1(En

K) + o(1)
⌘

. (t� s)4

by continuity of fj . Similarly, if g = (gj)jk, by (2.2), we have that |�nLnu(x)|  |gj(u(x))|+o(1)539

uniformly on E⇤
K,n so that by the same logic540

E|�2
X

(Lnu)`|4 .K (t� s)4.

Finally for the third term in (A.3),541

E|�2
X⌦

r�⌦r�,r2u
↵
`
|4  �8

⇣
|((t� s)/�)| sup

x2E⇤
K,n

||r�(x)||2 sup
x2E⇤

K,n

||r2u(x)||op
⌘4

.K �2(t� s)4

where in the last inequality, we have used the definition of �n-localizability. (In fact the same542

argument works for s = 0, t = T so that the last term in a is vanishing in the limit for each K543

whenever �n = o(1).) Regardless, combining these bounds yields544

E|a(s ^ ⌧K)� a(t ^ ⌧K)|4 .K (t� s)4.

For the martingale term, notice that by independence, of545

E|b(s ^ ⌧K)� b(t ^ ⌧K)|4 = E
⇣

�
X

(Mu
` �Mu

`�1)
⌘4�

= E
⇣

�2
X

(Mu
` �Mu

`�1)
2
⌘2�

,

where the sum again runs over steps ` ranging from [s/�] ^ ⌧K to [t/�] ^ ⌧K . Repeatedly using the546

inequality (x+ y + z)2 . x2 + y2 + z2, it suffices to bound the above quantity for each of the three547

terms defining the martingale difference Mu
` �Mu

`�1 respectively.548

For the first term in that martingale difference, observe that549

E
h⇣

�2
X

`

⌦
rH`,ru

↵2
`�1

⌘2i
= �4

X

`,`0

E
h⌦
rH`,ru

↵2
`�1

⌦
rH`0 ,ru

↵2
`0�1

i


⇣
�
X

`

⇣
�2E

⌦
rH`,ru

↵4
`�1

⌘1/2⌘2

.K (t� s)2 ,
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where in the middle line we used Cauchy-Schwarz and in the last we used �n-localizability.550

For the second term in the martingale difference,551

E
h⇣

�4
X

`

�
r2u(r�,rH`)`�1

�2⌘2i  �6(t� s)2
⇣

sup
x2E⇤

K,n

||r2u(x)|| · ||r�(x)|| · E||rH(x)||
⌘4

.K �2(t� s)2 ,

again by �n-localizability. Finally, by the same reasoning, for the third term,552

E
h⇣

�4
X

`

⌦
r2u,rH` ⌦rH` � V

↵2
`�1

⌘2i
. �6(t� s)2 sup

x2E⇤
K,n

�
||r2u(x)|| · E||rH(x)||2

�4

.K (t� s)2 .

All of the above terms are O((t� s)2) since 0  s, t  T . Thus we have the claimed (A.2), and by553

Kolmogorov’s continuity theorem, (vn(s^ ⌧K))s, are uniformly 1/4-Holder and thus the sequence is554

tight with 1/4-Holder limit points. Notice furthermore that if we look at (vn(t ^ ⌧K)� an(t ^ ⌧K))t,555

this sequence is also tight and the limits points are continuous martingales. Let us examine their556

limiting quadratic variations.557

Let vK
n (t) = vn(t ^ ⌧K) and define aKn (t) and bK

n (t) analogously. Furthermore, let vK(t), aK(t)558

and bK(t) be their respective limits which we have established to exist and be 1/4-Holder.559

Then, we have for every i, j  k,560

sup
t1

|
Z t

0
� hrui, Vruji[s/�]^⌧K

ds�
Z t

0
⌃ij(v

K
n (s))ds|

 sup
x2E⇤

K,n

|� hrui, Vruji (x)� ⌃ij(un(x))| ,

which goes to zero as n ! 1 by (2.3). At the same time,

bKn,i(t)b
K
n,j(t)�

Z t

0
� hrui, Vruji[s/�]^⌧K

ds ,

can be seen to be a martingale by explicit calculation. Thus, if we consider the continuous martingales
given by bK(t), its angle bracket is, by definition, given by

hbKit =
Z t

0
⌃(vK(s))ds .

By Ito’s formula for continuous martingales (see, e.g., [18, Theorem 5.2.9]), we have that f(vt)�561 R t
0 Lfds is a martingale for all f 2 C1

0 (Rk), where562

L =
1

2

kX

ij=1

⌃ij@i@j �
kX

i=1

(fi + gi)@i.

Since, by assumption, f ,g,
p
⌃ are locally lipschitz—and thus lipschitz on EK—this property563

uniquely characterizes the solutions to (2.4) (see, e.g., [46, Theorem 6.3.4]). Thus vK converges564

to the solution of (2.4) stopped at ⌧K . Thus by a standard localization argument [46, Lemmas565

11.1.11-12], every limit point v(t) of vn(t) solves the SDE (2.4) (using here that EK is an exhaustion566

by compact sets of Rk).567

B Deferred proofs from Section 3568

B.1 The effective dynamics for Matrix and Tensor PCA569

Our aim in this section is to establish Proposition 3.1, showing that the summary statistics un =570

(m, r2?) satisfy the conditions of Theorem 2.2 with the desired f ,g and ⌃. In what follows, for ease571
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of notation we will denote r2 = r2? and R2 = m2 + r2. We first establish that the sequence un is572

�n-localizable for any �n = O(1/n). The localizing sequence EK will simply be centered balls of573

radius K in R2, say. We first check the regularity of the observable pair un; express the Jacobian for574

that pair as575

rm = v , rr2 = 2(x�mv) . (B.1)
To check the regularity of observables, notice that r2m = 0, while r2r2 = 2(I � vvT ), whose576

operator norm is simply 2, and r`ui = 0 for all ` � 3. Next, we verify the regularity of the loss. In577

this appendix we will do things in the more general setting where we add a ridge penalty to the loss,578

so that for ↵ > 0 fixed, the loss is given by579

L(x, Y ) = �2(hW,x⌦ki+ �hx, vik) + ||x||2k + ↵
2 kxk

2 + c(Y ) ,

and thus H(x) = �2hW,x⌦ki. In the coordinates (m, r2?), we have �(x) = �2�mk + (r2? +580

m2)k + ↵
2 (r

2
? +m2) + c0. Observe that581

r� = @1�rm+ @2�rr2.

where582

@1� = �2�kmk�1 + (2kR2k�2 + ↵)m @2� = kR2k�2 + ↵
2 .

Notice that hrm,rmi = 1,
⌦
rm,rr2

↵
= 0, and

⌦
rr2,rr2

↵
= 4r2. Consider kr�k 

|@1�|krmk + |@2�|krr2k; the bounding quantity is evidently a continuous function of m, r2

and therefore as long as x is such that (m, r2) 2 EK , it is bounded by some C(K). Next, if we
consider

E[krHk3]  CkE[kW (x, . . . , x, ·)k3]  EkWk3op ·R3k  C(k,K)n3/2

where the bound on the operator norm of an i.i.d. Gaussian k-tensor can be found, e.g., in [5]. By the583

same reasoning, for every w,584

E[hrH,wi4]  16kE[|W (w, x, . . . , x)|4]  C(k,K)n2kwk .
If w = rm = v then kwk = 1 and if w = rr2 = 2(x�mv) then kwk  C(K), so in both cases585

this is at most C(k,K)n2, concluding the proof of �n localizability for every �n = O(1/n).586

We now turn to calculating f ,g,⌃. Starting with f , by the above,587

fm = hr�,rmi = �2�kmk�1 + (2kR2k�2 + ↵)m

fr2 = hr�,rr2i = 2r2(2kR2k�2 + ↵) .

We next turn to calculating the corrector. For this, we first calculate the matrix V = E[rH ⌦rH].588

Recalling that H = �2hW,x⌦ki where W is an i.i.d. Gaussian k-tensor, we have that589

Vij = E[@iH@jH] = 4k(k � 1)xixjR
2k�4 +

⇢
4kR2k�2 i = j
0 i 6= j

. (B.2)

In particular, for � = c�/n, we have590

�L�m = 0

�L�r2 =
4c�
n

X

i

(1� v2i )R
2k�2 +

4c�
n

k(k � 1)r2R2k�4

=
4c�
n

k
⇣
(n� 1)R2k�2 + (k � 1)r2R2k�4

⌘

from which we obtain in the limit that n ! 1 that gm = 0 and gr2 = 4c�kR2k�2.591

Together, these yield the ODE system of (3.1),592

u̇1 = 2u1(�ku
k�2
1 � kR2k�2 � ↵) , u̇2 = �(4u2 � 4c�)kR

2k�2 � 2↵u2 .

which reduces in the ↵ = 0 case to that claimed in Proposition 3.1.593

Finally, in order to see that ⌃ = 0, consider594

JV JT =

✓
4k(k � 1)m2R2k�4 + 4kR2k�2 4k(k � 1)m(R2 �m)R2k�4

4k(k � 1)m(R2 �m)R2k�4 4k(k � 1)(R2 �m)2R2k�4

◆
, (B.3)

which when multiplied by � = O(1/n) evidently vanishes.595
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B.2 The fixed points of Proposition 3.1596

We now turn to analyzing the ODE of Proposition 3.1 and obtaining the fixed point classification of597

Proposition 3.2. At the fixed points, we must have that598

�kuk�1
1 =

�
kR2k�2 + ↵

�
u1 ,

2c�kR
2k�2 =

�
2kR2k�2 + ↵

�
u2 .

If u1 = 0, then R2 = u2 and there are two possible fixed points: either u2 = 0 or u2 solves599

kuk�2
2 (2c� � 2u2) = ↵.

Notice that if k = 2, this has a nontrivial solution of the form c� � ↵
2 = u2, provided ↵ < ↵c(2) :=600

2c� , and if k > 2, this has a nontrivial solution provided601

↵  max
x�0

kxk�2(2c� � 2x) ,

which is attained at c�(k � 2)xk�3 � (k � 1)xk�2 = 0 which is at c�(k�2)
k�1 = x, which gives602

↵ < ↵c(k) := 2ck�1
� k(k � 1)�(k�1)(k � 2)k�2.

Evidently when we take ↵ = 0, then its non-trivial solution is at u2 = 1 for all k � 2.603

Alternatively, if u1 6= 0 at a fixed point, then we can simplify further by dividing out by u1 to get604

�uk�2
1 = R2k�2 +

↵

k
, and kR2k�2 = (kR2k�2 + ↵)u2 ,

so that at the fixed point,605

uk�2
1 =

✓
kR2k�2 + ↵

�k

◆
, and u2 =

2c�kR2k�2

2kR2k�2 + ↵
.

Let us for simplicity of calculations at this point set ↵ = 0 as is the case in Proposition 3.1. Then, we606

simply get u2 = c� . In the case of k = 2, we also find that there is a solution if and only if � > c� , in607

which case R2 = �, from which together with R2 = u2
1 + u2, we also get u1 = ±

p
�� c� .608

In the general case of k > 2, we find that609

R2 = c� + �� 2
k�2R

4(k�1)
k�2 .

This has real solutions (all of which have R � u2 = c� as required) whenever � > �c(k) defined as610

�c(k) :=
⇣c�
k

⌘k/2⇣ (2k � 2)k�1

(k � 2)(k�2)/2

⌘
. (B.4)

(Notice that with the interpretation 00 = 1, this returns �c(2) = c�.) With this choice of �, then,611

whenever � > �c(k), the equation for R2 has exactly two real solutions, both of which are at least c�612

which we can denote by613

⇢†(k,�) := inf{⇢ � 1 : �� 2
k�2 ⇢

2(k�1)
k�2 � ⇢+ c� = 0} ,

⇢?(k,�) := sup{⇢ � 1 : �� 2
k�2 ⇢

2(k�1)
k�2 � ⇢+ c� = 0} .

When � > �c(k), ⇢† < ⇢? and when � = �c(k), the two are equal. Given this, we can then solve for614

ũ1 at the corresponding fixed point, and find that they occur at615

m†(k,�) =
p

⇢† � c� , and m?(k,�) =
p
⇢? � c� . (B.5)

B.3 Effective dynamics for the population loss616

In practice it is often most useful to track the loss, or ideally, the generalization error. In this617

subsection, we add the generalization error � to our set of summary statistics and obtain limiting618

equations for its evolution. For simplicity of calculations let us stick to ↵ = 0.619

f� = hr�,r�i = 4�2k2m2(k�1) � 8�k2mkR2k�2 + 4k2R4k�4m2 + 4k2r2R4k�4

= 4k2m2
�
�2m2(k�2) � 2�mk�2R2k�2 +R4k�4

�
+ 4k2r2R4k�4 .
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Next, consider the corrector for �. For this, notice that620

1
2r

2� = ��k(k � 1)mk�2rm⌦2 + kR2k�2rm⌦2 + k(k � 1)R2(k�2)(2mrm+rr2)⌦rm

+ k(k � 1)R2(k�2)(2mrm⌦rr2 +rr2 ⌦rr2) + 1
2@2�r

2r2 .

Recalling V from (B.2), and taking � = c�/n, all the terms in
P

ij Vij@i@j� vanish in the limit621

except the contribution from the r2r2, which yields622

g� = lim
n!1

�L�� = 4c�k
2R4(k�1)

Finally, we wish to compute the volatility for the stochastic part of the evolution of �. For this,623

consider r�Vr�T and notice that all the entries of that matrix are continuous functions of un and624

therefore when multiplied by � = O(1/n), the limit as n ! 1 of ⌃ vanishes. We are left with625

�̇ = �4k2m2
�
�2m2(k�2) � 2�mk�2R2k�2 +R4k�4

�
� 4k2R4(k�1)(r2 � c�) . (B.6)

One could then perform the fixed point analysis directly on (B.6) if desired.626

B.4 Diffusive limits at the equator627

In this subsection, we develop the stochastic limit theorems for the rescaled observables about the628

axis m = 0. Here we take as variables (ũ1, ũ2) = (
p
nm, r2). For simplicity of presentation, we629

take ↵ = 0 and c� = 1 here. In this case, the change from the previous pair of variables is in the J630

matrix, in which now rũ1 =
p
nrm =

p
nv. As such,631

hr�,rũ1i =� 2k�
p
nmk�1 + 2k

p
nR2k�2m = �2k�n� k�2

2 ũk�1
1 + 2k(r2 + (ũ2

1/n))
k�1ũ1 ,

hr�,rr2i =4kr2R2k�2 = 4kr2(r2 + (ũ2
1/n))

k�1 .

Taking limits as n ! 1, as long as � is fixed in n, we see that f is given by632

fũ1 =

⇢
�2�ũk�1

1 + 2kũk�1
2 ũ1 k = 2

2kũk�1
2 ũ1 k � 3

, and fũ2 = 4kũk
2 .

We turn to obtaining the correctors in these rescaled coordinates. Evidently �Lũ1 = 0 still by linearity633

of ũ1. Following the calculation for the corrector, we find that it is now given by gũ2 = 4kũk�1
2 .634

Next we consider the volatility of the stochastic process one gets in the limit. Recalling JV JT635

from (B.3), and noticing that the rescaling J ! J̃ multiplies its (1, 1)-entry by n and its off-diagonal636

entries by
p
n, we find that in the new coordinates,637

J̃V J̃T =

✓
4k(k � 1)ũ2

1R
2k�4 + 4knR2k�2 4k(k � 1)ũ1(R2 �m)R2k�4

4k(k � 1)ũ1(R2 �m)R2k�4 4k(k � 1)(R2 �m)2R2k�4

◆
(B.7)

Multiplying by � = 1/n and taking the limit as n ! 1, the only entry of this matrix that survives is638

from ⌃11 where we get ⌃11 = 4kũk�1
2 . Putting the above together yields the claimed Proposition 3.3.639

Regarding the discussion in the k � 3 case when �n = ⇤n(k�2)/2, observe that the first term in640

h�,rũ1i above would not vanish and would instead converge to �4k⇤ũk�1
1 .641

C Deferred proofs from Section 4642

C.1 The summary statistics643

Recall the cross-entropy loss for the binary GMM with SGD from (4.1), and recall the set of summary644

statistics un from (4.2). The next lemma shows that un form a good set of summary statistics.645

Lemma C.1. The distribution of L((v,W )) depends only on un from (4.2). In particular, we have646

that �(x) = �(un) for some �. Furthermore, un satisfy the bounds in item (1) of Definition 2.1 if647

EK is the ball of radius K in R2N+2.648
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Proof. Let Xµ ⇠ N (µ, I/�) and X�µ ⇠ N (�µ, I/�). Then, notice that649

L((v,W ))
d
=

⇢
�v · g(WXµ) + log(1 + ev·g(WXµ)) + p(v,W ) w. prob. 1/2
log(1 + ev·g(�WXµ)) + p(v,W ) w. prob. 1/2

.

Next, notice that as a vector,650

(W1Xµ,W2Xµ)
d
= (m1 + Z1,µm1 + Z1,?,m2 + Z2,µm2 + Z2,?)

where Z1,µ, Z2,µ are i.i.d. N (0,��1), and Z1,?, Z2,? are jointly Gaussian with means zero and651

covariance652

��1


R?

11 R?
12

R?
12 R?

22

�
(C.1)

Similarly, the distribution of WX�µ also only depends on (mi, R?
ij)i,j . Finally,653

p(v,W ) =
↵

2

�
v21 + v22 +m2

1 +R?
11 +m2

2 +R?
22

�

Therefore, at a fixed point, the law of L((v,W )) is simply a function of un(v,W ). This of course654

implies the same for the population loss �.655

To see that the summary statistics satisfy the bounds of item (1) in Definition 2.1, write r =656

(@v1 , @v2 ,rW1 ,rW2). Then657

J = (ru`)` =

2

66666664

(1, 0, 0, 0)
(0, 1, 0, 0)
(0, 0, µ, 0)
(0, 0, 0, µ)

(0, 0,W?
2 ,W?

1 )
(0, 0, 2W?

1 , 0)
(0, 0, 0, 2W?

2 )

3

77777775

(C.2)

For the higher derivatives, evidently we only have second derivatives in the last 3 variables each658

of which is given by a block diagonal matrix where only one block is non-zero and is given by an659

identity matrix. The third derivatives of all elements of un are zero.660

We can now express the loss, the population loss, and their respective derivatives and they (their laws661

at a fixed point) will evidently only depend on the summary statistics. One arrives at the following662

expressions for rL by direct calculation from (4.1).663

rviL = (Wi ·X)1Wi·X�0

�
� y + �(v · g(WX)

�
+ ↵vi (C.3)

rWiL = viX1Wi·X�0

�
� y + �(v · g(WX))

�
+ ↵Wi (C.4)

In what follows, for an arbitrary vector w 2 RN , we use the notation664

Ai = E
⇥
X1Wi·X�0

�
� y + �(v · g(WX)

�⇤
(C.5)

(Notice that if w 2 {µ,Wi,W?
i }, then Ai ·w is only a function of un by the same reasoning as used665

in Lemma C.1.) Then, we can also easily express666

rvi� = Wi ·Ai + ↵vi (C.6)
rWi� = viAi + ↵Wi (C.7)

and for H = L� �,667

rviH = Wi ·
⇣
X1Wi·X�0

�
� y + �(v · g(WX)

�
�Ai

⌘
, (C.8)

rWiH = vi
⇣
X1Wi·X�0

�
� y + �(v · g(WX)

�
�Ai

⌘
. (C.9)
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Finally, the matrix V can be expressed as follows:668

Vvi,vj = E
⇥
(Wi ·X)(Wj ·X)1Wi·X�01Wj ·X�0(�y + �(v · g(WX)))2

⇤
� (Wi ·Ai)(Wj ·Aj)

Vvi,Wj = vjE
⇥
(Wi ·X)X1Wi·X�01Wj ·X�0(�y + �(v · g(WX)))2

⇤
� vj(Wi ·Ai)Aj

VWi,Wj = vivjE
⇥
X⌦21Wi·X�01Wj ·X�0(�y + �(v · g(WX)))2

⇤
� vivjAi ⌦Aj . (C.10)

Let us conclude this subsection with the following simple preliminary bound that will be useful669

towards establishing the conditions of �n-localizability from Definition 2.1.670

Lemma C.2. For every fixed w 2 Rn, we have671

E[|X · w|2]  (w · µ)2 + kwk2��1 , and kAik  C(un) .

Proof. For the first bound, let Z ⇠ N (0, I) and consider672

E[|X · w|2] = 1

2
E[(w · µ+ ��1/2w · Z)2] +

1

2
E[(�w · µ+ ��1/2w · Z)2] .

Using the fact that Z is mean zero, and pulling out w · µ, we see that this is at most673

(w · µ)2 + ��1E[(w · Z)2] .

For the second term, notice that w · Z is distributed as z ⇠ N (0, kwk2), implying the desired.674

The bound on Ai goes as follows. Evidently it suffices to let Xµ = µ+ ��1/2Z for Z ⇠ N (0, I),675

and prove the bound on the norm of676

E[Xµ1Wi·Xµ�0(�1 + �(g(WXµ)))] = E[(µ+ ��1/2Z)1Wi·Xµ�0(�1 + �(g(WXµ)))] .

Now decompose Z as
Zµµ+ Z1,?W

?
1 + Z2,?W

?
2 + Z3 ,

where Zµ ⇠ N (0, 1) is independent of (Z1,?, Z2,?) which is distributed as N (0, A) with A given677

by (C.1), which is independent of Z3 distributed as a standard Gaussian vector orthogonal to the678

subspace spanned by (µ,W?
1 ,W?

2 ). By independence of Z3 from the indicator and the argument of679

the sigmoid, all those terms contribute nothing to the expectation, and therefore,680

kAik2 
X

w2{µ,W?
1 ,W?

2 }

E[(X · w)21Wi·X�0(�y + �(g(WX)))]  (1 +R?
11 +R?

22)(1 + ��1) .

Here, we used the first inequality of the lemma. This yields the desired.681

C.2 Verifying the conditions of Theorem 2.2 for fixed �682

Throughout this section we will take µ = e1. By rotational invariance of the problem, this is without683

loss of generality, and only simplifies certain expressions.684

Lemma C.3. For �n = O(1/N) and any fixed �, the 2-layer GMM with observables un is �n-685

localizable for EK being balls of radius K about the origin in R7.686

Proof. The condition on un was satisfied per Lemma C.1. Recalling r� from (C.6)–(C.7), one can687

verify that the norm of each of the four terms in r� is individually bounded, using the Cauchy–688

Schwarz inequality together with the bound of Lemma C.2 on kAik.689

Next, consider bounding E[krHk3] by690

E[krHk3] 
X

i=1,2

E[|rviH|3] + E[krWiHk3] ,

and recall the expressions for rH from (C.8)–(C.9). Using the trivial bound |�(x)|  1, and the691

inequality (a+ b)3  C(a3 + b3), for i 2 {1, 2}, the first term is at most692

C
�
E[|X ·Wi|3] + kWik3kAik3

�
,

22



which is bounded by a constant depending continuously on un per Lemma C.2. If we let Z be a693

standard Gaussian, the second term is evidently governed by694

C
⇣
v3i E

h
kX1Wi·X�0�(�v · g(WX))k3

i
+ v3i kAik3

⌘
 C|vi|3

⇣
1 +

E||Z||3

�3/2

⌘
.

Using the well-known bound that E[kZk3]  N3/2, and the fact that � = O(1/N), we see that this695

is at most C��3/2 as needed.696

The last regularity to verify is the claimed bound that697

�2n sup
i

sup
x2u�1

n (EK)

E[hrH,ruii4]  C(K) . (C.11)

When ui is vi, this is simply a fourth moment bound on rviH , which follows as the third moment698

bound did, with no need for the �2n. When ui is mi, or R?
ij , the bound follows from699

E[hrWiH,wi4]  C|vi|4
�
E[|X · w|4] + kwk4kAik4

�
,

for choices of w being either µ in which case kwk = 1 or W?
i in which case kwk = R?

ii . For each700

K, this is at most some constant C(K) using the two bounds of Lemma C.2. Again, we note that the701

factor of �2n wasn’t needed.702

Proof of Proposition 4.1. The convergence of the population drift to f from Proposition 4.1 follows703

by taking the inner products of rL from (C.6) with the rows of J from (C.2), and noticing that Aµ
i704

from (4.3) is exactly Ai · µ and A?
ij from (4.3) is exactly Ai ·W?

j .705

Next consider the convergence of the correctors to the claimed g. The variables u 2 {v1, v2,m1,m2}706

are linear so LNu = 0 and for these, gu = 0. For u = R?
ij for i, j 2 {1, 2}, the relevant entries in V707

are those corresponding to W?
i and W?

j . For ease of notation, in what follows let ⇡ = �(v ·g(WX)).708

For ease of calculation taking µ = e1, we have709

LnR
?
ij =

X

k 6=1

VWik,Wjk ,

which by (C.10), and the choice of �n = c�/N , is given by710

�nLnR
?
ij =

c�
N

X

k 6=1

vivj
⇣
E
⇥
(X · ek)21Wi·X�01Wj ·X�0(�y + ⇡)2

⇤
� (Ai · ek)(Aj · ek)

⌘

=
c�
N

vivj
⇣
E
⇥
kX?k21Wi·X�01Wj ·X�0(�y + ⇡)2

⇤
� hAi �Aµ

i µ,Aj �Aµ
j µi
⌘
.

(C.12)

Let us first consider the two terms separately. For the first term, rewrite711

1

N
E
⇥
kX?k21Wi·X�01Wj ·X�0(�y + ⇡)2

⇤

= E
⇥�

1
N kX?k2 � ��1

�
1Wi·X�01Wj ·X�0(�y + ⇡)2

⇤
+ ��1Bij .

Of course the second term is exactly what we want to be gu, so we will show the first term here goes712

to zero. By Cauchy–Schwarz, if Z ⇠ N (0, I � e⌦2
1 ), the first term above is at most713

��1E
h⇣kZk2

N
� 1
⌘2i1/2

 2

�
p
N

,

where we used the fact that for a standard Gaussian, g ⇠ N (0, 1), we have E[(g2 � 1)2] = 2. It714

remains to show the inner product term in (C.12) goes to zero as n ! 1. For this term, rewrite715

1

N
hAi �Aµ

i µ,Aj �Aµ
j µi =

1

N
E
⇥
(X?

1 ·X?
2 )1Wi·X1�01Wj ·X2�0(�y + ⇡1)(�y + ⇡2)

⇤
,
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where X1, X2 are i.i.d. copies of X , and ⇡1,⇡2 are the corresponding �(v · g(WX1)) and �(v ·716

g(WX2)). By Cauchy–Schwarz, if Z,Z 0 are i.i.d. N (0, I � e⌦2
1 ), this is at most717

1

�N
E
⇥
(Z · Z 0)2

⇤1/2  1

�
p
N

.

This term therefore also vanishes as n ! 1, yielding the desired limit for the corrector,718

gR?
ij
=

c�vivj
�

E
⇥
1Wi·X�01Wj ·X�0(�y + ⇡)2

⇤
=

c�vivj
�

Bij .

which we emphasize is only a function of un.719

We lastly need to show that the diffusion matrix ⌃n goes to zero as n ! 1 when �n = O(1/n). This720

is straightforward to see by considering any element of JV JT and using Cauchy–Schwarz together721

with the two bounds of Lemma C.2 to bound it in absolute value by some C(K) independent of n.722

Then when multiplying by any �n = o(1), this entire matrix will evidently vanish.723

C.3 Preliminary estimate for small noise limits724

Our next aim is to consider the effective dynamics of Proposition 4.1 in the small noise (� ! 1)725

limit. In this subsection, we collect some simple estimates that will make obtaining that limit easier.726

The first of these is the following elementary fact bounding the exponential moment of a Gaussian.727

As before, let Xµ ⇠ N (µ, I/�).728

Fact C.1. Fix µ 2 SN�1(1), and let g(x) = x _ 0. There is a function C : R2 ! R+ such that the729

following holds: for all � > 0, ✓ 2 R, and (vi,Wi) 2 R⇥ RN ,730

E[exp(✓vig(Wi ·Xµ))]  exp
�
✓vimi +

1
2�✓

2v2iR
?
ii

�
.

The next lemma concerns the limits as � ! 1 of some of the building block terms we encounter.731

Lemma C.4. For each i, for every R?
ii < 1 and every mi > 0, we have732

lim
�!1

P
�
Wi ·Xµ < 0) = 0 . (C.13)

For every vi, R?
ij and mi 6= 0 for i, j = 1, 2, we have733

lim
�!1

E
⇥���(v · g(WXµ))� �(v · g(m))

��⇤ = 0 . (C.14)

Proof. The proof of (C.13) is easily seen by rewriting the probability in question as734

P(Wi ·Xµ < 0) = P
�
N (0,��1) < �mi(m

2
i +R?

ii )
�1/2

�
= e�m2

i�/2(m
2
i+R?

ii) ,

so that as long as mi > 0 this goes to zero as � ! 1.735

We turn to (C.14). Consider736

E
⇥���(v · g(WXµ))� �(v · g(m))

��⇤  E
h��ev·g(WXµ) � ev·g(m)

��
i

 E
⇥��ev1g(W1·Xµ)ev2g(W2·Xµ) � ev1g(m1)ev2g(m2)

��⇤ .

This in turn is bounded by737

E
⇥
ev2g(W2Xµ)

��ev1g(W1Xµ) � ev1g(m1)
��⇤+ ev1g(m1)E

⇥��ev2g(W2Xµ) � ev2g(m2)
��⇤ . (C.15)

Applying Cauchy–Schwarz to the first term, it suffices to establish the following bounds738

E
⇥
e2vig(WiXµ)

⇤
 C , and lim

�!1
E
⇥�
evig(WiXµ) � evig(mi)

�2⇤
= 0 .

To demonstrate the first of these inequalities, notice that739

E
h
e2vig(WiXµ)

i
 E

h
e2vi|WiXµ|

i
 C .
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uniformly over �, per Fact C.1. For the second desired bound, expand evig(Wi·Xµ) � evig(mi) as740
�
evi(Wi·Xµ)1Wi·Xµ�0 � evi(Wi·Xµ)1mi�0

�
+
�
evi(Wi·Xµ)1mi�0 � evimi1mi�0

�
.

It suffices to show the expectation of the square of each of these goes to zero as � ! 1. First,741

E
⇥�
evi(Wi·Xµ)1Wi·Xµ�0 � evi(Wi·Xµ)1mi�0

�2⇤  (1 _ evi(Wi·Xµ))E[1Wi·Xµ�0 � 1mi�0] .

If mi 6= 0, the expectation on the right goes to zero by (C.13). Second,742

E
⇥�
evi(Wi·Xµ)1mi�0 � evimi1mi�0

�2⇤  E
⇥
(evi(Wi·Xµ) � evimi)21mi�0

⇤
.

When mi < 0, this is evidently zero; when mi > 0, if G� ⇠ N (0, I/�), this is743

e2vimiE
⇥
(evi(Wi·G�) � 1)2

⇤
.

which goes to zero as O(��1) when � ! 1, by the explicit formula for the moment generating744

function of the Gaussian Wi ·G�, whose variance is (m2
i +R?

ii )�
�1.745

C.4 The small-noise limit of the effective dynamics746

Let us consider the behavior of the ODE system of Proposition 4.1 in the limit that � ! 1.747

Proof of Proposition 4.2. We begin with considering lim�!1 Aµ
i : its limiting value will depend748

on the signs of both m1 and m2. We can express Aµ
i from (4.3) as749

E[(X · µ)1Wi·X�0(�y + �(v · g(WX)))] =
1

2
E
h
(Xµ · µ)1Wi·Xµ�0(�1 + �(v · g(WXµ)))

i

+
1

2
E
h
(�Xµ · µ)1Wi·Xµ0�(v · g(�WXµ))

i
.

We claim that the two terms on the right-hand side converge to � 1
21mi>0�(�v · g(m)) and750

� 1
21mi<0�(v · g(�m)) respectively. This follows by e.g., writing the difference as751

E
h
(Xµ · µ)1Wi·Xµ�0�(�v · g(WXµ))

i
� 1mi�0�(�v · g(m)) (C.16)

= E
h
(Xµ · µ� 1)1Wi·Xµ�0�(�v · g(WXµ))

i

+ E
h
(1Wi·Xµ�0 � 1mi�0)�(�v · g(WXµ))

i

+ 1mi�0E
h
�(�v · g(WXµ))� �(�v · g(m))

i
.

Call these three terms I, II , and III . For I , we use the fact that E[|Xµ · µ � 1|] goes to zero as752

� ! 1; II is evidently bounded by P(Wi ·Xµ < 0) when mi > 0 or its symmetric counterpart753

when mi < 0—both vanishing as � ! 1 per (C.13) in Lemma C.4; finally, III goes to zero as754

� ! 1 by (C.14) in Lemma C.4.755

Putting the above together, we find that756

lim
�!1

Aµ
i =� 1

2
1mi>0�(�v · g(m))� 1

2
1mi<0�(v · g(�m)) ,

at which point, we see that if m1,m2 � 0, this becomes 1
2�(�v · m), as it is if m1,m2  0. If757

m1 � 0 and m2  0, then you get lim� A
µ
1 = � 1

2�(�v1m1) and lim� A
µ
2 = � 1

2�(�v2m2) and758

likewise if m1  0 and m2 � 0.759

Next consider the limit as � ! 1 of A?
ij from (4.3), which we claim converges to 0. Write760

A?
ij = �1

2
E
h
(Xµ ·W?

j )1Wi·X�0�(�v · g(WXµ))
i

(C.17)

� 1

2
E
h
(Xµ ·W?

j )1Wi·Xµ<0�(v · g(�WXµ))
i
.

These two terms are bounded similarly. The absolute value of the first of these is bounded by761

(1/2)E[|Xµ ·W?
j |] which is at most (1/2)

q
R?

jj�
�1/2 by (C.2). The second is analogously bounded.762

These evidently go to zero as � ! 1.763

Finally, since |Bij |  1, the quantity gR?
ij
= c�

vivj
� Bij evidently goes to zero as � ! 1.764
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Remark 2. The above argument used mi 6= 0 for the limit of Aµ
i . If one considers the cases when765

mi = 0, the limiting drifts still apply. For this, it suffices to show that if mi = 0, then Aµ
i converges766

to zero. Without loss of generality, suppose m1 = 0 and consider767

A1 · µ = E
⇥
Z1,µ1Z1,?�0�(�v · g(Z1,?,m2Z2,µ + Z2,?))

⇤
.

This is zero independently of � by independence of Z1,µ from the other Gaussians in the expectation.768

We next turn to classifying the fixed points of this limiting ODE system. Evidently, every fixed point769

must have R?
ij = 0. Furthermore, if we let ui = vi �mi, then770

u̇i =

⇢
�ui

2 �(�v ·m)� ↵ui m1m2 > 0
�ui

2 �(�vimi)� ↵ui else
,

and therefore every fixed point of the ODE system must have ui = 0, which is to say vi = mi.771

Therefore, it suffices to characterize the fixed points in terms of (v1, v2) as claimed. This reduces to772

⇢
vi�(�kvk2) = 2↵vi v1v2 > 0
vi�(�v2i ) = 2↵vi else

.

Observe first that the point (v1, v2) = (0, 0) is a fixed point of this system. If (v1, v2) 6= 0, then773

dividing out by vi, the above reduces to774

⇢
�(�kvk2) = 2↵ v1v2 > 0
�(�v2i ) = 2↵ else

.

We obtain the claimed set of fixed points by inverting these equations (they only have a solution775

if ↵ < 1/4). The stability of these solutions can be deduced by examining the drifts in local776

neighborhoods of these fixed points.777

In particular, by studying this dynamical system with initialization that is 0 for (m1,m2) and N (0, I2)778

for (v1, v2). We see that the basin of attraction of the quarter circles of item (2) are the subset of779

(v1, v2) 2 R2 that have v1v2 > 0 and the basin of attraction of the stable fixed points of item (3) are780

the subset of (v1, v2) 2 R2 that have v1v2 < 0. Evidently, under N (0, I2) each of these gets mass781

1/2 under the limiting initialization ⌫.782

C.5 Rescaled effective dynamics around unstable fixed points783

In this section, we consider scaling limits of the rescaled effective dynamics in their noiseless limit,784

where the rescaling is about the unstable set of fixed points given by the quarter circle v21 + v22 = C↵785

per item (2) of Proposition 4.2. In what follows, let �n = c�/N, and fix (a1, a2) 2 R2
+ with786

a21 + a22 = C↵, and let un be the variables of (4.2) with vi,mi replaced by ṽi =
p
N(vi � ai) and787

m̃i =
p
N(mi � ai).788

Proof of Proposition 4.3. We start by considering the drift process for these rescaled variables. No-789

tice that the rescaling induces the transformation J̃ multiplying J by
p
N in its entries corresponding790

to vi,mi. The fact that the rescaled variables satisfy the conditions of Theorem 2.2 follows as in791

Lemma C.3 with the only distinction arising in the bound on (C.11), where previously we did not use792

the �2n factor—in the new coordinates, the factor of
p
N raised to the fourth power is cancelled out793

by �2n as long as �n = O(1/N).794

For the population drift of the new variables, if the variables ṽi, m̃i are in a ball of radius K in R4795

(which we take to be our EK), the signs of mi agree, and therefore796

fṽi = �
p
Nfvi = �

p
N

vi
2
�(�v ·m) + ↵

p
Nmi

fm̃i = �
p
Nfmi = �

p
N

mi

2
�(�v ·m) + ↵

p
Nvi .
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We wish to claim that these expressions have consistent limits when ṽi, m̃i are localized to EK for797

fixed K. notice that in mi = ai +N�1/2m̃i and vi = ai +N�1/2ṽi, and using
P

a2j = C↵,798

v ·m = C↵ +N�1/2
X

j=1,2

aj(ṽj + m̃j) +O(1/n) .

Now Taylor expanding the sigmoid function, and using the definition of C↵, we get799

�(�v ·m) = �(�C↵) + (v ·m� C↵)�(�C↵)(1� �(�C↵)) +O(n�1)

= 2↵+N�1/2aj
⇣ X

j=1,2

�
ṽj + m̃j

�
(2↵)(1� 2↵) +O(n�1) .

Plugging these into the earlier expressions for fṽi , we see that800

fṽi = �N1/2ai + m̃i

2

⇣
2↵+

1

N1/2
aj
X

j=1,2

�
ṽj + m̃j

�
(2↵)(1� 2↵) +O

⇣ 1
n

⌘⌘
+ ↵(n1/2ai + ṽi)

= �↵m̃i + ↵ṽi � ai(↵� 2↵2)
X

j=1,2

aj(ṽj + m̃j) +O(n�1/2) .

Taking the limit as n ! 1, this yields exactly the population drift claimed for the ṽi variable.801

The calculation for fm̃i is analogous, and the equations for R?
ij are evidently unchanged by the802

transformation of vi,mi to ṽi, m̃i. Furthermore, these variables are still linear so no corrector is803

introduced.804

We now turn to computing the limiting diffusion matrix ⌃ in the new variables ṽi, m̃i. We first use805

the following expression for the matrix V when � = 1, by taking the � = 1 in (C.10).806

Vvi,vj =
mimj

4
·
⇢
�(�v ·m)2 m1m2 > 0
�(�vimi)�(�vjmj) else

,

Vvi,Wj =
mivj
4

µ ·
⇢
�(�v ·m)2 m1m2 > 0
�(�vimi)�(�vjmj) else

,

VWi,Wj =
vivj
4

µ⌦2 ·
⇢
�(�v ·m)2 m1m2 > 0
�(�vimi)�(�vjmj) else

.

Rewriting these in the coordinates ṽ and m̃, we see that in EK ,807

Vvi,vj = ↵2aiaj +O(n�1/2) , Vvi,Wj = µ(↵2aiaj +O(n�1/2)) ,

and808

VWi,Wj = µ⌦2(↵2aiaj +O(n�1/2)) .

Now multiplying this on both sides by J̃ , for the ũn variables, the two factors of
p
N from J̃ cancel809

out with the choice of �n = 1/N , and in the n ! 1 limit, leave810

⌃̃vivj = ⌃̃mimj = ⌃̃vimj =↵2aiaj ,

as claimed.811

D Deferred proofs from Section 5812

Fix two orthogonal vectors µ, ⌫ 2 RN and recall the cross-entropy loss with penalty p(v,W ) =813
↵
2 (kvk

2 + kWk2). For the XOR GMM with SGD, the cross-entropy loss is given by814

L(v,W ) = �yv · g(WX) + log
�
1 + ev·g(WX)

�
+ p(v,W ) (D.1)

where if the class label y = 1, then X is a symmetric binary Gaussian mixture with means ±µ, and if815

y = 0, then X is a symmetric Gaussian mixture with means ±⌫. This has the same form as the loss816

for the 2-layer binary GMM, and we will find many similarities in the below between them. Indeed,817

the only difference is in the distribution of X conditionally on the class label y as described, and818

the fact that v is now in R4 and W = (Wi)i=1,...,4 is now a 4⇥N matrix. In what follows we take819

n = 4N + 4. As such, all the formulae of (C.3)– (C.10) also hold for the XOR GMM, but with the820

law of (y,X) now understood differently.821

27



Remark 3. In principle, we can take W to be k⇥ d and v to be a k vector, but 4 is the first reasonable822

choice of k, as if k < 4 the network cannot express a good classifier. Taking k to be larger than 4 is823

interesting, and can in principle be handled by our methods–we leave this for future investigation.824

We could also have added a bias at each layer, however the Bayes classifier in this problem is an “X”825

centered at the origin so we can safely take the biases to be 0.826

D.1 Summary statistics and localizability827

Recall the set of summary statistics un from (5.1). The next lemma shows that un form a good set of828

summary statistics.829

Lemma D.1. The distribution of L((v,W )) depends only on un from (5.1). In particular, we have830

that �(x) = �(un) for some �. Furthermore, un satisfy the bounds in item (1) of Definition 2.1 if831

EK is the ball of radius K in R4N+4.832

Proof. Let Xw = N (w, I/�) for w 2 {µ,�µ, ⌫,�⌫}. Notice that the law of L at a fixed point833

(v,W ) 2 R4+4N can be written as834

L((v,W ))
d
=

8
>><

>>:

�v · g(WXµ) + log(1 + ev·g(WXµ)) + p(v,W ) w. prob. 1/4
�v · g(WX�µ) + log(1 + ev·g(WX�µ)) + p(v,W ) w. prob. 1/4
log(1 + ev·g(WX⌫)) + p(v,W ) w. prob. 1/4
log(1 + ev·g(WX�⌫)) + p(v,W ) w. prob. 1/4

(D.2)

Next, notice that as a vector835

WX◆ = (mi + Zi,◆m
◆
i + Zi?)i=1,...,4 for ◆ 2 {µ, ⌫} ,

where Zi,◆ are i.i.d. N (0,��1) and (Zi?) are jointly Gaussian with covariance matrix836

Cov(Zi?, Zj?) = ��1R?
ij .

Similarly, the law of WX�◆ depends only on (m◆
i, R

?
ij). Finally,837

p(v,W ) = ↵
2

X

i=1,...4

�
v2i +R?

ii

�
.

Therefore, at a fixed point (v,W ) the law of L(v,W ) is only a function of un(v,W ).838

To see that the summary statistics satisfy the bounds of item (1) in Definition 2.1, note that the839

non-zero entries of J = (ru`)` are as follows.840

@vivi = 1 , rWim
µ
i = µ , rWim

⌫
i = ⌫ , rWiR

?
jk = W?

j �ij +W?
k �ik , (D.3)

where �ij is 1 if i = j and 0 otherwise. For higher derivatives, we only have second derivatives in the841

R?
jk variables, each of which is given by a block diagonal matrix where only one block is non-zero842

and it is twice an identity matrix. Thus the operator norm of these second derivatives is 2. The third843

derivatives of all elements of un are zero.844

In the following, let845

Ai = E
⇥
X1Wi·X�0

�
� y + �(v · g(WX))

�⇤
.

By the same reasoning as in Lemma D.1, if w 2 {µ, ⌫,Wi,W?
i }, then w ·Ai is only a function of846

un. We then also have the conclusions of Lemma C.2 for X distributed according to the XOR GMM847

by simply decomposing it into two mixtures, and we will therefore appeal to this lemma meaning its848

analogue for the XOR GMM.849

Lemma D.2. For � = O(1/N) and any fixed �, the 2-layer XOR GMM with observables un is850

�n-localizable for EK being balls of radius K about the origin in R22.851

Proof. The condition on un was satisfied per Lemma D.1. Recalling r� from (C.6)–(C.7), one can852

verify that the norm of each of the four terms in r� is individually bounded, using the Cauchy–853

Schwarz inequality together with the bound of Lemma C.2 on kAik, naturally adapted to XOR. The854

remaining estimates are also analogous to the proof of Lemma C.3 with the analogue of Lemma C.2855

applied.856
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D.2 Effective dynamics for the XOR GMM857

For a point (v,W ) 2 R4+4N , let858

Aµ
i = µ ·Ai , A⌫

i = ⌫ ·Ai , A?
ij = W?

j ·Ai .

Furthermore, let859

Bij = E
⇥
1Wi·X�01Wj ·X�0

�
� y + �(v · g(WX))

�2⇤
.

Proposition D.1. Let un be as in (5.1) and fix any � > 0 and �n = c�/N . Then un(t) converges to860

the solution of the ODE system u̇t = �f(ut) + g(ut), initialized from limn(un)⇤µn with861

fvi = mµ
i A

µ
i (u) +m⌫

i A
⌫
i (u) +A?

ii(u) + ↵vi , fmµ
i
= viA

µ
i + ↵mµ

i ,

fR?
ij
= viA

?
ij(u) + vjA

?
ji(u) + 2↵R?

ij , fm⌫
i
= viA

⌫
i + ↵m⌫

i .

and correctors gvi = gmµ
i
= gm⌫

i
= 0, and gR?

ij
= c�

vivj
� Bij for 1  i  j  4.862

Proof. The convergence of the population drift to f from Proposition 4.1 follows by taking the inner863

products of rL from (C.6) with the rows of J from (D.3), and noticing that Aµ
i is exactly Ai · µ,864

A⌫
i is exactly ⌫ ·Ai, and A?

ij is exactly Ai ·W?
j .865

We next consider the population correctors. The fact that gvi = gmµ
i
= gm⌫

i
= 0 follows from the866

fact that the Hessians of vi,mµ
i ,m

⌫
i are zero. For the corrector gR?

ij
for 1  i  j  4, the relevant867

entries of V are those corresponding to W?
i and W?

j . For ease of notation, in what follows let868

⇡ = �(v · g(WX)).869

Similar to the calculation of (C.12),870

�nLnR
?
ij =

c�
N

vivj
⇣
E
⇥
kX?k21Wi·X�01Wj ·X�0(⇡ � y)2

⇤

� hAi �Aµ
i µ�A⌫

i ⌫,Aj �Aµ
j µ�A⌫

j ⌫i
⌘
.

By the same arguments on the concentration of the norm of Gaussian vectors as used in the binary871

GMM case, then we deduce from this that872

gR?
ij
=

c�vivj
�

E
⇥
1Wi·X�01Wj ·X�0(�y + ⇡)2

⇤
=

c�vivj
�

Bij .

Finally, let us establish that the limiting diffusion matrix is all-zero whenever �n = o(1). This follows873

exactly as it did in the proof of Proposition 4.1.874

D.3 Small noise limit of the effective dynamics875

The aim of this section is to establish the following small-noise � ! 1 limit of the effective dynamics876

ODE of Proposition D.1. This will again be quite similar to the analogous proofs for the binary GMM877

in Section C, and when these similarities are clear we will omit details.878

Proposition D.2. In the � ! 1 limit, the ODE from Proposition D.1 converges to879

v̇i =
mµ

i

4

⇣
1mµ

i �0�(�v · g(mµ))� 1mµ
i <0�(�v · g(�mµ))

⌘

� m⌫
i

4

⇣
1m⌫

i �0�(v · g(m⌫))� 1m⌫
i <0�(v · g(�m⌫))

⌘
� ↵vi ,

ṁµ
i =

vi
4

⇣
1mµ

i �0�(�v · g(mµ))� 1mµ
i <0�(�v · g(�mµ))

⌘
� ↵mµ

i ,

ṁ⌫
i = �vi

4

⇣
1m⌫

i �0�(�v · g(m⌫))� 1m⌫
i <0�(�v · g(�m⌫))

⌘
� ↵m⌫

i ,

and Ṙ?
ij = �2↵R?

ij for 1  i  j  4.880
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Proof. Let us begin with convergence of Aµ
i . We claim that it converges to881

lim
�!1

Aµ
i = �1

4
1mµ

i >0�(�v · g(mµ))� 1

4
1mµ

i <0�(v · g(�m)) .

In order to see this, expand882

Ai =
1

4
E
⇥
�Xµ1Wi·Xµ�0(�(�v · g(WXµ)))

⇤
� 1

4
E
⇥
X�µ1Wi·X�µ�0(�(�v · g(WX�µ)))

⇤

+
1

4
E
⇥
X⌫1Wi·X⌫�0(�(v · g(WX⌫)))

⇤
+

1

4
E
⇥
X�⌫1Wi·X�⌫�0(�(v · g(WX�⌫)))

⇤
.

The point will be that when taking the inner product with µ, the first two terms here contribute to the883

limit and the latter two vanish, while when taking the inner product with ⌫, the first two terms vanish884

in the � ! 1 limit while the latter two contribute.885

Consider e.g., the first of the four terms above, and inner product with µ. In this case, consider886

E
⇥
(Xµ · µ)1Wi·Xµ�0�(�v · g(WXµ))

⇤
� 1mµ

i �0�(�v · g(mµ)) ,

which is precisely the quantity that was exactly shown to go to zero as � ! 1 in (C.16). To see that887

the third and fourth terms above go to zero when taking their inner product with µ, observe that they888

become889

��E
⇥
(X⌫ · µ)1Wi·X⌫�0�(v · g(WX⌫))

⇤��  E[|X⌫ · µ|] ,

which by orthogonality of µ and ⌫ is at most ��1/2 by the reasoning of Lemma C.2, therefore890

vanishing as � ! 1. Together with its analogue for X�⌫ , this implies the claim for the convergence891

of Aµ
i , as well as its analogous limit of A⌫

i .892

We next consider the limit as � ! 1 of A?
ij , which we claim goes to 0. Using the expansion of893

Ai from earlier in this proof, we can consider A?
ij = Ai ·W?

j as four terms having the form of the894

terms in (C.17), which were there showed to go to zero as � ! 1. Since W?
j here is orthogonal895

both to µ and ⌫, the same proof applies.896

Finally, in order to see that the limit as � ! 1 of gR?
ij
= c�

vivj
� Bij is zero, which follows from the897

fact that |Bij |  1.898

Proposition D.3. The fixed points of the ODE system of Proposition D.2 are classified as follows. If899

↵ > 1/8, then the only fixpoint is at un = 0.900

If 0 < ↵ < 1/8, then let (I0, I+µ , I�µ , I+⌫ , I�⌫ ) be any disjoint (possibly empty) subsets whose union901

is {1, ..., 4}. Each such partition fully dictates a connected component of fixpoints for that dynamial902

system. Corresponding to that tuple (I0, I+µ , I�µ , I+⌫ , I�⌫ ), the connected component of fixpoints has903

R?
ij = 0 for all i, j, and904

1. mµ
i = m⌫

i = vi = 0 for i 2 I0,905

2. mµ
i = vi > 0 such that

P
i2I+

µ
v2i = logit(�4↵) and m⌫

i = 0 for all i 2 I+µ ,906

3. �mµ
i = vi > 0 such that

P
i2I�

µ
v2i = logit(�4↵) and m⌫

i = 0 for all i 2 I�µ ,907

4. m⌫
i = vi < 0 such that

P
i2I+

⌫
v2i = logit(�4↵) and mµ

i = 0 for all i 2 I+⌫ ,908

5. �m⌫
i = vi < 0 such that

P
i2I�

⌫
v2i = logit(�4↵) and mµ

i = 0 for all i 2 I�⌫ .909

There are therefore 54 = 625 many connected components of fixpoints. Of these, there are 4! = 24910

many that are stable, corresponding to the possible permutations in which each of I+µ , I�µ , I+⌫ , I�⌫911

are singletons.912

Proof. Evidently, any fixed point must have R?
ij = 0 for all i, j. Furthermore, the point vi = mµ

i =913

m⌫
i = 0 for i = 1, ..., 4 evidently forms a fixed point of the system. Now suppose there is some fixed914
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point with vi = 0 for some i; in that case, it must be that mµ
i = 0 and m⌫

i = 0. Therefore, we can915

select a subset I0 of {1, ..., 4} such that vi = mµ
i = m⌫

i for i 2 I0.916

For any such choice of I0, consider next, i /2 I0. We first claim that if vi > 0 at a fixed point, then917

mµ
i 2 {±vi} and m⌫

i = 0, whereas if vi < 0 then m⌫
i 2 {±vi} and mµ

i = 0. To see this, notice that918

at any fixed point,919

4↵mµ
i = vi

⇣
1mµ

i �0�(�v · g(mµ))� 1mµ
i <0�(�v · g(�mµ))

⌘
,

4↵m⌫
i = �vi

⇣
1m⌫

i �0�(�v · g(m⌫))� 1m⌫
i <0�(�v · g(�m⌫))

⌘
.

Since � is non-negative, if vi > 0, the sign of the right-hand side of the first equation is the same as920

the sign of mµ
i so it can have a non-zero solution, while the sign of the right-hand side of the second921

equation is the opposite of the sign of m⌫
i , so any such fixed point must have m⌫

i = 0. To see that922

mµ
i = ±vi at such a fixed point, now set m⌫

i = 0 and take the fixed point equations for vi and mµ
i ,923

dividing one by vi and the other by mµ
i to see that924

4↵
vi
mµ

i

= 4↵
mµ

i

vi
, or v2i = (mµ

i )
2 ,

as claimed. The fixed points having vi < 0 are solved symmetrically.925

Our classification now reduces to understanding the possible values taken by (v1, ..., v4) given their926

signs (when non-zero). Fix a partition (I0, I+µ , I�µ , I+⌫ , I�⌫ ) of {1, ..., 4} and consider the set of fixed927

points having mµ
i = m⌫

i = vi = 0 for i 2 I0, mµ
i = vi > 0 on I+µ and so on as designated by928

Proposition D.3; by the above any fixed point is of this form. It remains to check that the values of vi929

on each of these sets are as described by the proposition.930

In order to see this, fix e.g., i 2 I+µ . Then, mµ
i = vi and m⌫

i = 0, and so the fixed point equations931

reduce to932

4↵vi = vi�(�v · g(mµ)) , or 4↵ = �
⇣
�
X

j2I+
µ

v2j

⌘
,

since the only coordinates where g(mµ) will be non-zero are j 2 I+µ , where mµ
j = vj . Inverting the933

sigmoid function, this implies exactly the claimed
P

j2I+
µ
v2j = logit(�4↵). The cases of I�µ , I+⌫ , I�⌫934

are analogous, concluding the proof.935

The stability of these fixed points can be deduced by examining the drifts in local neighborhoods of936

these fixed points.937

D.4 Diffusive limit on critical submanifolds938

We now consider scaling limits of the rescaled effective dynamics in their noiseless limit, where the939

rescaling is about the unstable set of fixed points given by the product of two quarter circles where940

I+µ = {1, 2} and I+⌫ = {3, 4}. In what follows, fix (a1,µ, a2,µ) 2 R2
+ with a21,µ + a22,µ = C↵, and941

a23,⌫ + a24,⌫ = C↵, and let un be the variables of (4.2) with vi,m
µ
i ,m

⌫
i replaced by942

ṽi =

⇢p
N(vi � ai,µ) i = 1, 2

�
p
N(vi � ai,⌫) i = 3, 4

and943

m̃µ
i =

⇢p
N(mµ

i � ai,µ) i = 1, 2
0 i = 3, 4

, m̃⌫
i =

⇢
0 i = 1, 2p
N(m⌫

i � ai,⌫) i = 3, 4
.

By the choices of m̃µ
i = 0 and m̃⌫

i = 0, we mean that we formally mean that we remove those944

variables from ũn, and for us now EK will be the ball of radius K in the other coordinates, and the945

point {0} for (m̃µ
i )i=3,4 and (m̃⌫

i )i=1,2.946
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Proof of Proposition 5.1. The fact that the rescaled variables ũn satisfy the conditions of Theo-947

rem 2.2 follows as in Lemma D.2 with the only distinction arising in the bound on (C.11), where948

previously we did not use the �2n factor, but is still satisfied using �n = O(1/n).949

We next consider the population drift of the new variables ṽi, m̃µ
i and m̃⌫

i . If we take these variables950

to be in EK , and recall the population drifts etc. in the � = 1 setting from Proposition D.2, for951

i = 1, 2, we have fṽi is the n ! 1 limit of952

p
N

mµ
i

4
�(�v · g(mµ))�

p
N↵vi

If we then use the expansion953

v · g(mµ) = C↵ +N�1/2
X

j=1,2

aj,µ(ṽj + m̃µ
j ) +O(1/n)

from which we obtain954

�(�v · g(mµ)) = �(�C↵) +
1p
N

⇣ X

j=1,2

aj,µ(ṽj + m̃µ
j )
⌘
(4↵)(1� 4↵) +O( 1n )

Plugging these in, and taking the n ! 1 limit we find that for i = 1, 2,955

fṽi = ↵(ṽi � m̃µ
i )� ai,µ(↵� 4↵2)

X

k=1,2

ak,µ(ṽk + m̃µ
k) .

By a similar reasoning, for i = 3, 4, we have956

fṽi = ↵(ṽi � m̃⌫
i )� ai,⌫(↵� 4↵2)

X

k=3,4

ak,⌫(ṽk + m̃⌫
k) .

The claimed equations for fm̃µ
i

when i = 1, 2 and fm̃⌫
i

when i = 3, 4 hold by analogous reasoning,957

and the equations for fR?
ij

are evidently unaffected by the change of variables to ũn. Regarding the958

population correctors, they are also unaffected (all zero) since the variables that were changed in ũn959

are all linear.960

It remains to compute the volatility matrix in the coordinates vi, m̃µ
i , m̃

⌫
i . We first use the following961

expression for the matrix V when � = 1, by taking � = 1 in (C.10). If i, j 2 {1, 2}, then962

Vvi,vj =

⇢ 3
16m

µ
i m

µ
j �(�v ·mµ)2 i, j 2 {1, 2}

3
16m

⌫
i m

⌫
j�(v ·m⌫)2 i, j 2 {3, 4}

and if i 2 {1, 2} and j 2 {3, 4}, then963

Vvi,vj = � 1

16
mµ

i m
⌫
j�(�v ·mµ)�(v ·m⌫)

When considering ⌃vi,vj we multiply this by N coming from J̃ and J̃T , but also multiply by964

� = 1/N , so that taking the limit as n ! 1, we get965

⌃̃vi,vj =

8
<

:

3↵2ai,µaj,µ i, j 2 {1, 2}
3↵2ai,⌫aj,⌫ i, j 2 {3, 4}
�3↵2ai,µaj,⌫ i 2 {1, 2}, j 2 {3, 4}

.

By a similar reasoning, if i, j 2 {1, 2}, then966

Vvi,Wj · µ =
3

16
vjm

µ
i �(�v ·mµ)2 i, j 2 {1, 2}

Vvi,Wj · ⌫ =
3

16
vjm

⌫
i �(v ·m⌫)2 i, j 2 {3, 4}

and if i 2 {1, 2} and j 2 {3, 4}, then967

Vvi,Wj · ⌫ = � 1

16
vjm

µ
i �(�v ·mµ)�(v ·m⌫) .

Taking the limit as n ! 1, we again recover the claimed limiting diffusion matrix, and similar968

calculations yield the same for ⌃m̃µ
i ,m̃

µ
j

, ⌃m̃⌫
i ,m̃

⌫
j

and ⌃m̃µ
i ,m̃

⌫
j
, concluding the proof.969
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