
APPENDIX573

A Preprocessing and tokenization details574

A.1 Search space primitives575

Below are the exact descriptions of the hyperparameter primitives used to define a given X (d).576

• Double: Specifies a continuous range of possible values in the closed interval [xmin, xmax]577

for some real values xmin ≤ xmax.578

• Integer: Specifies an integer range of possible values in [xmin, xmax] ∈ Z for some579

integers xmin ≤ xmax.580

• Discrete: Specifies a finite, ordered set of values from R.581

• Categorical: Specifies an unordered list of strings.582

A.2 Data preprocessing and tokenization583

We list out the full set of preprocessing steps (from Section 4.1) below:584

• Omit parameter and metric names in all trials, remove redundant keywords ("parameter",585

"trial", etc.), order trial parameters according to those in metadata m, and add key-586

words (e.g., "name", "algorithm") and enumerating types (e.g. "DOUBLE") in the tokenizer587

vocabulary so that they are encoded into single tokens.588

– List of keywords: name, metric, goal, type, algorithm, min_value, max_value,589

scale_type, categories.590

– Enumerating values for the parameter type: DOUBLE, INTEGER, DISCRETE, CAT-591

EGORICAL.592

– Enumerating values for the scale_type: LINEAR, LOG.593

• Insert short separator symbols, e.g. ? between parameter/metrics in a trial, "|" between trials,594

and "&" between experiment description and parameter configurations in metadata.595

• Convert all values in history h to single integers.596

– Represent discrete and categorical parameters with their index in the set of values.597

– Normalize float and integer parameter values in x(d)t with their value range and the598

function values yt with their minimum and maximum seen values in the entire study.599

Then quantize the normalized values to an integer, e.g., “0.12345"→ "123" with a600

quantization level of Q = 1000. More formally, we apply the following transformation601

q(·):602

q(z) = int[znorm ∗Q], where znorm = (z − zmin)/(zmax − zmin) (7)

The shortened text string is then converted to a sequence of tokens via the SentencePiece tokenizer603

[44] with a vocabulary of 33000 words. Quantized numbers in h are always converted into single604

tokens. As long asQ is sufficiently large, there is no concern from the loss of precision over numerical605

quantizations, and thus the serialized study contains nearly the same amount of information as the606

original data. For comparison, the naive tokenization for the example of Table 1 with t = 100 trials607

will produce 8221 tokens which can overload GPU memory, while our proposed tokenization will608

only produce 584 tokens, a 14x reduction.609
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B Algorithm and baseline details610

B.1 Dataset algorithms611

Grid Search: DOUBLE parameters are first log-transformed if specified. They are then converted612

into DISCRETE parameters by discretizing their ranges into 100 equidistant points. Suggestions613

are outputted using lexicographic ordering from the cartesian product over all parameters’ feasible614

points. The traversal order follows the alphabetical ordering of parameter names. That is, given615

two parameters "Foo" and "Bar", both in [0,1] range, the sequence of trials looks like: {"Foo":616

0, "Bar":0} , {"Foo": 0, "Bar":0.01}, ..., {"Foo": 0, "Bar":1},617

{"Foo": 0.01, "Bar":0}, {"Foo": 0.01, "Bar":0.01}, ....618

Shuffled Grid Search: Shuffled grid search is the same as Grid Search in how it handles DOUBLE619

parameters. Instead of traversing the grid in a deterministic order, it selects without replacement a620

random point from the grid at each iteration.621

Regularized Evolution [48]: In summary, this algorithm at every iteration randomly selects a622

tournament subset from the current population, and mutates the argmax member of the tournament.623

When inserting a new trial, the oldest trial will be removed. We use a population size of 25 and624

tournament size of 5. The mutation operation uniformly at random selects one of the parameters625

x(r) from x, and mutates x(r) based on the following: for DOUBLE, INTEGER, the new value is626

uniformly sampled from
[
x
(r)
min, x

(r)
max

]
, while for DISCRETE, CATEGORICAL, the new value is627

uniformly sampled from the feasible list.628

Hill Climbing: This is a naive implementation, where at every iteration t, the current xpivot629

is mutated (using the same operation as Regularized Evolution) to xmutated, and evaluated. If630

f(xmutated) > f(xpivot), then we reassign xpivot to be the mutated xmutated. An extension of this631

method can be "batched", as seen in [60], although we not include this for the sake of clarity and632

presentation.633

Eagle Strategy [49]: Eagle strategy is a metaheuristics algorithm that is a slight variation of Particle634

Swarm Optimization [61].635

The algorithm is originally formulated for continuous search spaces only. The reason is that it involves636

a subroutine (move step) where we take a convex combination of a particle (called firefly in [49]) and637

another particle that has a better objective value. Mathematically, given two particle vectors x and x′638

and the coefficient c ∈ [0, 1], the move step generates cx + (1− c)x′.639

The algorithm is extended to support DISCRETE and CATEGORICAL parameters by applying a
separate move operation for each non-continuous dimension d:

move(x(d), x′(d), c, α) =


x(d) with probability (1− α)c

x′(d) with probability (1− α)(1− c)
random value with probability α

where α is a small perturbation coefficient that decreases in the dimension of the search space.640

Vizier [2]: Vizier’s default algorithm is available via Google Cloud as Vertex Vizier. We have641

contacted the authors of the algorithm and received the the following details on its implementation.642

In summary, the algorithm uses a particular implementation of GP-UCB with trust regions. The GP643

regressor model consists of the following:644

• α ∼ TruncatedLogNormal controls the amplitude of Matern5/2 kernel.645

• λi ∼ TruncatedLogNormal (i.i.d. for each dimension i) controls the length scale for the646

i-th dimension.647

• σ ∼ TruncatedLogNormal controls the Gaussian noise.648

• z ∼ Normal(0, σ) is the observation noise.649

• f ∼ GP(λ, α) is the function.650
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• y(x) ∼ f(x) + z is the noisy function.651

where the prior distribution parameters are chosen depending on the user’s estimate of the observation652

noise.653

The algorithm then uses gradient descent with line search for step sizes to obtain the MAP estimate654

of α, λ and σ. Furthermore, the algorithm uses a variation of Eagle Strategy (explained above) to655

optimize the UCB acquisition function with coefficient of 1.8. In order to prevent overexploration656

that may result from the large UCB coefficient, the algorithm optimizes acquisition functions inside657

trust region. The trust region is the union of L∞-norm balls around explored points. The radius of658

the L∞-norm ball grows in the number of explored points. The algorithm also starts at the center of659

the search space (unless user specifies an alternative initial batch).660

GP-UCB: It is the same as Vizier’s GP-UCB, except for the model definition. We used the model661

definition from the github repository of the authors of "Heteroscedastic and Evolutionary Bayesian662

Optimisation solver" (HEBO) [62], the winner of 2020 Blackbox Optimization challenge [63]. It is663

worth noting that HEBO uses multi-dimensional acquisition functions derived from the GP model.664

The priors over hyperparameters are thus not tuned to optimize the performance of GP-UCB algorithm,665

which explains its suboptimal performance.666

B.2 Gaussian Process for uncertainty estimation667

We use the same GP model as GP-UCB.668

When comparing the function prediction performance with the OPTFORMER, we choose [ymin, ymax]669

to normalize function value token based on the range of observed value in the sampled sequence670

(x1, y1, . . .xt, yt), and therefore the real value of yt always resides in the prediction support of the671

OPTFORMER.672

To compensate for the fact that GP’s distribution is wider than the real support used by the Transformer,673

we truncate the GP’s prediction into [ymin, ymax] for a fairer comparison.674

B.3 Transfer learning baselines675

We use the following methods as transfer-learning baselines for the HPO-B dataset from Section 6.3:676

ABLR [12, 51]: BO with multi-task adaptive Bayesian linear regression. Our implementation of677

ABLR is equivalent to a GP with 0 mean and a dot-product kernel with learned basis functions.678

We use a neural net (NN) with (128, 128) hidden layers and tanh activation as the basis functions.679

We then train ABLR by optimizing the negative log likelihood (NLL) over NN weights θ as well680

covariance matrix SS> and bias parameters δ2 that define the dot-product kernel k, i.e.681

k(x, x′) = φϑ(x)>SS>φϑ(x′) + δ2, (8)

where matrix S ∈ R128×256, basis function φθ is parameterized by NN weights ϑ and δ ∈ R.682

FSBO [7]: Bare-bone few-shot BO. We did not include data-driven initialization due to lack of683

reproducing details. Following [7], our implementation of FSBO is equivalent to BO using a GP684

with 0 mean and a squared-exponential kernel on top of a NN with (128, 128) hidden layers and tanh685

activation functions. We train the NN weights as well as the parameters in the squared-exponential686

kernel.687

HyperBO [52, 53]: BO with pre-trained GPs. Following [53], we pre-train a GP with Matérn32688

kernel on top of a NN with one hidden layer of width 2×D and tanh activation functions. Here D is689

the input dimension of the search space.690

For training, we use the Adam optimizer with learning rate 0.001 and batch size 50 for all the691

transfer-learning baselines. Notice that these transfer-learning methods require “pre-training” a GP692

on the same search space. We sample 10000 random data points on each HPO-B surrogate functions693

from each search space. We train a separate GP for each search space.694
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C Data details695

C.1 Dataset details696

RealWorldData dataset: The RealWorldData dataset contains a total of 750K studies collected697

from users, and thus each study has a variable number of trials. Since some user studies can potentially698

have an excessive number of trials (e.g. 10K+), for all studies we only consider the first 300 trials for699

experiments. Since the dataset also includes usernames (due its origin from a proprietary database),700

we made sure to anonymize every study first.701

We split the dataset in temporal order to avoid information leak, use most studies for training, and702

select 16 studies generated by a different set of users for testing. To bootstrap these studies into actual703

functions to be evaluated, we fit a GP for each study and output the function value as the GP’s median704

function (due to the use of output warping).705

HPO-B dataset: For HPO-B dataset, a tuning task is identified with a (search space id, dataset id)706

pair, which refers to tuning the hyperparameters defined in a search space for some machine learning707

model trained on a dataset. we use the "v3-augmented" meta-training/validation/test splits that708

includes all the 16 test search spaces as well as less frequent search spaces in the meta-training split.709

There are uniquely 1730, 91, and 86 tasks for training, validation and testing respectively. For every710

tuning task, [5] fits an XGBoost model to the trial data of every tuning task as the objective function.711

Similar to the BBOB dataset, we generate 10M, 500K studies for training and validation respec-712

tively, along with the same set of controlled algorithms. For each of the test tuning task, we run 5713

optimizations each with a different initial set of observations provided in [5].714

The HPO-B uses the Apache 2.0 open-source license.715

BBOB dataset: The BBOB dataset contains a total of 10M studies for training, each containing716

exactly 300 trials. An additional 500K studies (using different randomization seeds) are used for717

validation. While the number of studies can be freely generated and effectively unlimited, we found718

that 10M studies were sufficient for the Transformer to train properly.719

The functions we use for data are from [47], and consist of separable functions (Sphere,720

Ellipsoid Separable, Rastrigin Separable, Bueche Rastrigin,721

{Linear Slope}), moderately conditioned, potentially multi-modal functions (Attractive722

Sector, Step Elllipsoid, {Rosenbrock Rotated}), ill-conditioned functions723

(Discus, Bent Cigar, Sharp Ridge, {Sum of Powers}), multi-modal functions724

(Weierstrass, Schaffers F7, Schaffers F7 Illconditioned, {Greiwank725

Rosenbrock}), and functions with weak global structures (Schwefel, Gallagher 21,726

Gallagher 101, Katsuura, {Lunacek}). The functions noted with the extra "{}" are for727

testing and excluded from the training data. We apply significant randomization over the functions728

for both the training dataset and test-time evaluation. In order, we randomize the following:729

• Function dimension D, which is uniformly selected from a range. For training data genera-730

tion, this range is [1, 20].731

• Orthonormal rotation matrix Γ, which is applied to the input first, i.e. producing a new732

function f ′(x) = f(Γx).733

• Shift vector xshift which is also applied to the input first, i.e. producing a new function734

f ′(x) = f(x− xshift), where xshift has all of its coordinate-wise entries sampled from735

[−4, 4], while the domain is [−5, 5].736

• Discretization, in which the parameter space X (d) is uniformly at random chosen to be either737

a DOUBLE, DISCRETE, CATEGORICAL parameter. The DOUBLE parameter "discretiza-738

tion" is actually a no-op, as it allows the original continuous space X (d) ⊂ R. Otherwise, a739

number L of feasible points is uniformly selected from the range [2, 8], and used to divide740

the original [−5, 5] range into L equally-spaced points. If DISCRETE was chosen, then the741

ordering of the grid points is preserved, otherwise if CATEGORICAL was chosen, then all742

of the gridpoints become effectively unordered strings.743

• Noise Type, in which one of 10 noise settings (including no noise) is uniformly chosen.744

Noise consists of either Gaussian (multiplier sampled from a random Gaussian of varying745
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scale is applied), Uniform (multiplier sampled from uniform distribution of varying scale is746

applied), or Cauchy (additive noise which only occurs at a probabilistic frequency, with a747

varying fixed strength is applied).748

For evaluation, we randomly sample 100 configurations for each of the five test functions, resulting749

in 500 optimization trajectories in total.750

For BBOB, as all parameters are named as "x_i" with i ∈ [0, D) and always have value range in751

[−5, 5], significantly different from the other two datasets, we omit their parameter names and value752

in the metadata m and only keep parameter type information.753
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Table 5: Example of studies in RealWorldData (left), BBOB (middle) and HPO-B (right).
"name": "gan1d 500 iters -
"2022-05-18"
"parameter": {
"name": "learning_rate",
"min_value": 1e-06,
"max_value": 0.01,
"type": "DOUBLE",
"scale_type": "LOG",

}
"parameter": {
"name": "modifier",
"min_value": 0.1,
"max_value": 1000000.0,
"type": "DOUBLE",
"scale_type": "LOG",

}
"parameter": {
"name": "weight_init_std",
"min_value": 0.01,
"max_value": 2.0,
"type": "DOUBLE",

}
"parameter": {
"name": "optimizer",
"type": "CATEGORICAL",
"categories": "sgd",
"categories": "adam",
"categories": "rmsprop",

}
"goal": "MINIMIZE",
"max_num_trials": 500,
"metric": "",
"observation_noise": "HIGH",
"trial": {
"parameter": {

"learning_rate": 0.0001,
"modifier":

316.2277660168381,
"optimizer": "sgd",
"weight_init_std": 1.005,

}
"metric": {

"": -0.946908021738347,
}
}
"trial": {
"parameter": {

"learning_rate": 0.000504,
"modifier":

12.346786652749216,
"optimizer": "rmsprop",
"weight_init_std":

1.2192566347109868,
}
"metric": {

"": -1.5144472008077585,
}
}
...

"name": "SCHAFFERS_F7",
"algorithm": "gp",
"parameter": {
"name": "x0",
"type": "CATEGORICAL",
"categories": ["0.0", "5.0",

"-5.0"],
},
"parameter": {
"name": "x1",
"min_value": -5.0,
"max_value": 5.0,
"type": DOUBLE,
"scale_type": UNIT_LINEAR_SCALE,

},
"parameter": {
"name": "x2",
"min_value": -5.0,
"max_value": 5.0,
"type": DOUBLE,
"scale_type": UNIT_LINEAR_SCALE,

},
"parameter": {
"name": "x3",
"type": DISCRETE,
"values": [-5.0, 5.0],

},
"parameter": {
"name": "x4",
"type": CATEGORICAL,
"categories": ["5.0",

"-1.66666666667",
"-5.0",

"1.666666666667"],
},
"parameter": {
"name": "x5",
"min_value": -5.0,
"max_value": 5.0,
"type": DOUBLE,
"scale_type": UNIT_LINEAR_SCALE,

}
"metric": "",
"goal": MAXIMIZE,
"observation_noise": HIGH
"trial": {
"parameter": {

"x0": "0.0",
"x1": 0.0,
"x2": 0.0,
"x3": 5.0,
"x4": "-5.0",
"x5": 0.0,

}
"metric": {

"": -334.4782223514127,
}
}
"trial": {
"parameter": {

"x0": "5.0",
"x1": -1.9867479768748013,
"x2": -1.7665621302793095,
"x3": -5.0,
"x4": "1.666666666666667",
"x5": -1.7634306558106605,

}
"metric": {

"": -323.84900527589326,
}
}
...

"name": "5859_145853",
"algorithm": "GP UCB",
"parameter": {
"name": "minsplit",
"max_value": 60.0,
"type": "DOUBLE",
"scale_type": "LINEAR",

}
"parameter": {,
"name": "minsplit.na",
"max_value": 1.0,
"type": "DOUBLE",

}
"parameter": {
"name": "minbucket",
"min_value": 1.0,
"max_value": 60.0,
"type": "DOUBLE",
"scale_type": "LINEAR",

}
"parameter": {
"name": "cp",
"min_value": 0.000100788830221,
"max_value": 1.000092678873241,
"type": "DOUBLE",
"scale_type": "LOG",

}
"parameter": {
"name": "maxdepth",
"max_value": 29.0,
"type": "DOUBLE",
"scale_type": "LINEAR",

}
"parameter": {
"name": "maxdepth.na",
"max_value": 1.0,
"type": "DOUBLE",

}
"observation_noise": AUTOMATIC,
"metric": "objective_value",
"goal": "MAXIMIZE"
"trial": {
"parameter": {
"minsplit": 4.0,
"minsplit.na": 0.0,
"minbucket": 18.0,
"cp": 0.7342895964927976,
"maxdepth": 3.0,
"maxdepth.na": 0.0,

}
"metric": {
"objective_value": 0.500024080276,

}
}
"trial": {
"parameter": {
"minsplit": 8.0,
"minsplit.na": 0.0,
"minbucket": 32.0,
"cp": 0.30972302652187583,
"maxdepth": 4.0,
"maxdepth.na": 0.0,

}
"metric": {
"objective_value": 0.50002408028,

}
}
...
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D Model and training details754

The open-sourced T5 model codebase we use can be found at https://github.com/755

google-research/t5x.756

D.1 Conditional probability decomposition757

From Section 4.2, the joint distribution of the optimization history h conditioned on metadata m can758

be written using the chain rule as759

P (h̄|m̄) = P
(
x̄
(1)
1 , x̄

(2)
1 , . . . , x̄

(D)
1 , ?, ȳ1, "|", . . . , x̄(1)T , x̄

(2)
T , . . . , x̄

(D)
T , ?, ȳT |m̄

)
=

T∏
t=1

(
D∏
d=1

P
(
x̄
(d)
t |m̄, h̄t−1, x̄

(1:d−1)
t

))
P
(
?|m̄, h̄t−1, x̄t

)
P
(
ȳt|m̄, h̄t−1, x̄t

)
P
(
"|"|m̄, h̄t

)
(9)

We note that this correctly formalizes the prediction of objects we are most interested in, which are760

parameter values P
(
x̄
(d)
t |m̄, h̄t−1, x̄

(1:d−1)
t

)
and function values P

(
ȳt|m̄, h̄t−1, x̄t

)
.761

D.2 Training762

During training, the encoder (denoted as Eθ) input sequence length is selected to be the maximum763

length of the tokenized metadata m̄ from a dataset, ranging from 256 to 1024. The decoder (denoted764

as Dθ) input sequence is fixed at 1024, which means it can model up to 1024//(D + 3) trials where765

D is the number of parameters. We use Adam optimizer with a rsqrt learning rate schedule and a766

mini-batch size of 256, and train each model up to 1M steps, with early stopping according to the767

validation loss. Each model is trained with a 4x4 TPU-v3 slice.768

Thus the prediction for h̄(n) is:769

Pθ

(
h̄(n)

∣∣∣m, h̄(1:n−1)
)

= SoftMax
[
Dθ(Eθ(m̄), h̄(1:n−1))

]
(10)

D.3 Data augmentation770

We adopt the following three data augmentations to reduce overfitting to the offline datasets:771

1. In order for the model to be invariant to parameter ordering, we apply random parameter772

permutations over metadata m̄ and every suggestion x̄t.773

2. In order for the model to be robust to a different normalization range given a new function,774

we apply random scaling and shifting to the normalized function value ynorm = (y −775

ymin)/(ymax − ymin) before quantization:776

y′norm = ynorm ∗ s+ c, s ∼ Uniform[0.3, 1], c ∼ Uniform[0, 1− s] (11)

and thus y′norm ∈ [c, c+ s] ⊆ [0, 1] after transformation.777

3. Randomly drop textual and parameter value range information in metadata.778

D.4 Inference779

At inference time, we choose the decoder input sequence length according to the maximum number of780

trials to run. E.g. to optimize a function with 18 parameters (highest possible dimension D over our781

test functions) over 105 trials, we set the input sequence length to be at least (18 + 3) ∗ 105 = 2205.782

We compute the (ymin, ymax) range for function value normalization in the tokenization process with783

the current minimal and maximum observations. We set c = 0.2, s = 0.6 so that all normalized784

observations fall in the range of y′norm ∈ [0.2, 0.8], and the model’s y value predicted distribution785

support, [0, 1], is sufficiently large.786
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We also use a softmax temperature hyperparameter when predicting function values. We choose the787

temperature to maximize the log-likelihood of the validation split of each dataset seperately. On788

RealWorldData, the function prediction temperature is set as 1.1 and on HPO-B it is 1.5. The policy789

prediction temperature is always set to be 1.790

23



E Additional experimental results791

We provide additional experimental results in this section. The most important result to note is when792

we compare different acquisition function choices in Appendix E.1 and observe that the augmented793

policy with EI outperforms all baselines on both RealWorldData and HPO-B benchmarks across794

all metrics.795

E.1 Ablation on acquisition functions: EI augmented policy outperforms all baselines796

We provide additional ablations on acquisition function choices on both the RealWorldData and HPO-797

B datasets, and show that the OPTFORMER augmented with Expected Improvement (EI) produces798

the best performance across the board, over all other OPTFORMER variants and baselines.799

In Fig. 6, we compare the Thompson Sampling (TS) used in the main body with Probability of Im-800

provement (PI), Expected Improvement (EI) and Upper Confidence Bound (UCB) with a confidence801

level of 0.9. We also include the best performing standalone baseline, Vizier, and transfer learning802

baseline, HyperBO, for reference. We observe that the prior policy is improved by all the acquisition803

functions. Particularly, OPTFORMER (EI) is the best among all acquisition functions and clearly804

outperforms all the baseline methods (HyperBO and Vizier) on both datasets across all trial steps.805
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Figure 6: Ablation on the choice of acquisition functions. The plot shows the best normalized
function values averaged over HPO-B test functions. Ablation curves are shown with© markers.
To further bolster this hypothesis, we also compare using other metrics such as performance profiles806

[64], which are widely used performance evaluation tools for comparing optimization methods. In our807

case, the y-axis is the fraction of tasks that each method succeeds in, for a given trial index (x-axis).808

The specific criteria of success depends on the problem itself, and we present natural performance809

profiles based on the following criterion: outperforming 90% of the best function value obtained810

by all methods at the 50th iteration. As this metric depends on the set of methods being compared,811

we include all baselines from the main body. As we can see, Fig. 7 demonstrates that augmented812

OPTFORMER policies, especially OPTFORMER (EI), produce superior performance compared to813

other baselines.814
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Figure 7: Ablation on the choice of acquisition functions. The plot shows the performance profile
metric with success threshold: median best function value at 50th iteration.
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E.2 Imitating HPO policies815
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Figure 8: Policy distribution p(x(d)40 |m,h39,x
(1:d−1)
40 ) for d = 1, 2 on a 2D GRIEWANK ROSEN-

BROCK function.
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Figure 9: Best normalized function value with std, averaged over 5 test functions each with 100 runs.
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Figure 10: Best normalized function value of LINEAR SLOPE with std, averaged over 100 runs.
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Figure 11: Best normalized function value of ROSENBROCK ROTATED with std, averaged over
100 runs.
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Figure 12: Best normalized function value of SUM OF POWERS with std, averaged over 100 runs.

0 20 40 60 80 100
Trial

6

4

2

0

2

Be
st

 n
or

m
al

ize
d 

fu
nc

tio
n

Grid Search

Target policy
OptFormer

0 20 40 60 80 100
Trial

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Be
st

 n
or

m
al

ize
d 

fu
nc

tio
n

Shuffled Grid Search

Target policy
OptFormer

0 20 40 60 80 100
Trial

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Be
st

 n
or

m
al

ize
d 

fu
nc

tio
n

Random Search

Target policy
OptFormer

0 20 40 60 80 100
Trial

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Be
st

 n
or

m
al

ize
d 

fu
nc

tio
n

Eagle Strategy

Target policy
OptFormer

0 20 40 60 80 100
Trial

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Be
st

 n
or

m
al

ize
d 

fu
nc

tio
n

Regularized Evolution

Target policy
OptFormer

0 20 40 60 80 100
Trial

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Be
st

 n
or

m
al

ize
d 

fu
nc

tio
n

Hill-Climbing

Target policy
OptFormer

0 20 40 60 80 100
Trial

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Be
st

 n
or

m
al

ize
d 

fu
nc

tio
n

Vizier

Target policy
OptFormer

Figure 13: Best normalized function value of GRIEWANK ROSENBROCK with std, averaged over
100 runs.
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Figure 14: Best normalized function value for LUNACEK with std, averaged over 100 runs.

27



E.3 Learning priors for hyperparameter response functions816

We apply the same goodness-of-fit analysis on function prediction from Section 6.2 to the test split of817

HPO-B. The results are shown in Fig. 15.818
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Figure 15: Fitness of predicted CDF(y) on HPO-B test set.

The ECE metric is defined for a classification model. To obtain a similar measurement for a continuous819

regression model, we convert the continuous regression problem into a multi-class classification820

problem by discretizing the range [ymin, ymax] for each study into 100 equal intervals. Then, we821

follow the definition of ECE in [27] and estimate the metric using 10 confidence bins.822

E.4 Augmenting a prior policy with function prediction823

Transfer learning results on HPO-B Fig. 4 shows the best normalized function values observed824

so far at each trial. Though HyperBO uses a smaller NN for feature extraction, HyperBO has a825

flexible mean function, which captures important information that benefits BO in beginning trials.826

While we implemented a bare-bone FSBO, its performance is still better than ABLR in part thanks to827

FSBO’s use of a squared exponential kernel instead of a dot-product one. Compared to a dot-product828

kernel with a finite feature space, a squared exponential kernel introduces infinite features.829

In Fig. 16 and Fig. 17, we show the performance profiles of all compared methods over 2 different830

metrics: outperforming 90% of the best function value obtained by all methods at the 50th iteration,831

and outperforming the median of the best function values obtained by each method at the 50th832

iteration.833
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Figure 16: Performance profile on RealWorldData and HPO-B test functions with success threshold:
90% best function value at 50th iteration.

Despite the relatively better performance of HyperBO, FSBO, and ABLR especially during earlier834

trials as shown by Fig. 4, these methods do not achieve a high percentage success rate on the 86835

HPO-B test functions as reflected by Fig. 17. As pointed out by Wang et al. [53], ABLR, FSBO can836

be viewed as special cases of HyperBO with specific settings of kernel and mean functions. These837
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Figure 17: Performance profile on RealWorldData and HPO-B test functions with success threshold:
median best function value at 50th iteration.

methods have guarantees only if each function (corresponding to each task) is an i.i.d. sample from838

the same GP. However, for some search spaces in HPO-B, there exist surrogate functions that return839

constant values. The constant surrogate function is unlikely to be an i.i.d. sample from the same840

GP as other surrogates in the same search space. This means ABLR, FSBO, and HyperBO can be841

sensitive to how the data is generated and outliers in the training data.842

Summarizing the results in Fig. 4, Fig. 16 and Fig. 17, HyperBO is able to achieve very good overall843

performance on a subset of all search spaces, which leads to a better averaged best normalized844

function values. It is likely that these search spaces have surrogate functions that meet the i.i.d845

function sample assumption from Wang et al. [53]. However, if we only look at the fraction of tasks846

each method surpasses a success metric, HyperBO may not be a method with superior performance847

that is comparable to the OPTFORMER. This reveals another benefit of the OPTFORMER: robustness848

to function outliers.849

HPO-B plotting We further compare the augmented policies from Section 6.3 to the provided850

baselines for HPO-B in [5], using the same plotting format from [5] for fair comparison.851

Figure 18: (Lower is better) Aggregated comparisons of normalized regret and mean ranks across all
search spaces on the continuous search spaces of HPO-B-v3.
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