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In this supplementary material we provide additional details about:1

• Video (with audio) for qualitative illustration of our task and qualitative evaluation of our2

model predictions (Sec. 1).3

• Potential societal impact of our work (Sec. 2), as noted in L557 of the main paper.4

• Evaluation of the impact of the query source location on our model’s prediction quality for a5

fixed receiver (Sec. 3).6

• Audio dataset details (Sec. 4), as mentioned in L245 and 571-2 of the main paper.7

• Model architectures details for RIR prediction (Sec. 5.1) and downstream tasks (Sec. 5.2),8

as noted in 245 of the main paper.9

• Training hyperparameters (Sec. 5.3), as referenced in L245 and 571-2 of the main paper.10

1 Supplementary Video11

The supplementary video shows the perceptually realistic SoundSpaces [2] audio simulation platform12

that we use for our experiments, and provides a qualitative illustration of our task, Few-Shot Audio-13

Visual Learning of Environment Acoustics. Moreover, we qualitatively demonstrate our model’s14

prediction quality by comparing the predictions with the ground truths, both at the RIR level and15

in terms of perceptual similarity when the RIRs are convolved with real-world monaural sounds,16

like speech and music. We also analyze common failure cases for our model (L290 in main) and17

qualitatively show how our model predictions can be used to successfully localize an audio source in18

a 3D environment. Please use headphones to hear the spatial audio correctly.19

2 Potential Societal Impact20

Our model enables modeling the acoustics in a 3D scene using only few observations. This has21

multiple applications with positive impact. For example, accurate modeling of the scene acoustics22

enables a robot to locate a sounding object more efficiently (like finding a crying baby, or locating a23

broken vase). Additionally, this allows for a truly immersive experience for the user in augmented24

and virtual reality applications. However, RIR generative models allow the user to match the acoustic25

reverberation in their speech to an arbitrary scene type, hence disguise their true location type from26

the receiver which may have both positive and negative implications. Finally, our model uses visual27

samples from the environment for more accurate modeling of the acoustic properties of the scene.28

However, the dataset used in our experiments contains mainly indoor spaces that are of western29

designs, and with certain object distribution that is common to such spaces. This may bias models30

trained on such data toward similar types of scenes and reduce generalization to scenes from other31

cultures. More innovations in the model design to handle strong shifts in scene layout and object32
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Figure 1: RIR prediction STFT error as a function of varying source locations (filled circles) for a given receiver
(a green square with an arrow). We show two scenes and two examples per scene. The color of the circle at the
source location indicates the STFT error in the RIR prediction associated with that source and receiver pair. The
error in each example is normalized between the min and max values shown underneath the map.

distribtutions, as well as more diverse datasets are needed to mitigate the impact of such possible33

biases.34

3 Impact of the Source Location on the Prediction Error35

In Fig. 1, we show the RIR prediction error as a function of different source locations for a fixed36

receiver location. As we can see, predictions error tend to be small when the source is relatively close37

to the receiver, or there are no major obstacles along the path connecting them. This indicates that the38

model leverages the local geometry of the scene and the acoustic information captured from echoes39

for better predictions. However, the error increases when there are large distances between the source40

and receiver (L290 in main), and especially when there are major obstacles for audio propagation in41

between (e.g., walls, narrow corridors). Modeling how audio gets transformed on such a long path42

becomes very challenging due to the limited observations available to the model and the larger scene43

area that contributes to transforming the audio.44

4 Audio Dataset45

For computing the mean opinion score error (MOSE) [1] (L269-71 in main), we sample 5 second46

long speech clips from the LibriSpeech [9] dataset, which comprise both male and female speakers.47

For every test query, we randomly choose one of the sampled clips and convolve with the true RIR48

or a model’s prediction for that query to estimate the corresponding mean opinion score (MOS) [7]49

and, subsequently, the error in MOS for a model’s prediction relative to the true RIR. We use a50

5-second-long temporal window for all model predictions and true RIRs when estimating their MOS.51

For our experiment with ambient environment sounds (L331-5 in main), we use ambient sounds from52

the ESC-50 [10] dataset (e.g., dog barking, running water). For every test query, we randomly sample53

a location in the 3D scene for an ambient sound and play a randomly chosen 1 second long clip from54

the ESC-50 dataset at that location. To retrieve the observed binaural echo response Ai (L111-4 and55

150-3 in main) in this setting, first we convolve the clean echo RIR for each observation Oi with the56

sinusoidal sweep sound, then mix it with the binaural the ambient sound for its pose Pi, and finally57

deconvolve using the inverse sweep (L150-3 in main).58

We will release our datasets upon acceptance.59
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5 Architecture and Training60

Here, we provide our architecture and additional training details for reproducibility. We will release61

our code upon acceptance.62

5.1 Model Architectures for RIR Prediction63

Visual Encoder. Our visual encoder fV is a ResNet-18 [4] model (L147-9 in main) that takes64

egocentric RGB and depth images from the observation set, which are concatenated channel-wise, as65

input and produces a 512-dimensional feature.66

Acoustic Encoder. Our acoustic encoder fA is another ResNet-18 [4] (L156-7 in main) that67

separately encodes the binaural log magnitude spectrogram for an echo RIR Ai into a 512-dimensional68

feature.69

Pose Encoder. To embed an observation pose Pi or a query source-receiver pair Q (L114-7 in70

main), we use sinusoidal positional encodings [14] (L158-60 and 179-81 in main) with 8 frequencies,71

which generate a 16-dimensional feature vector (the positional encodings comprise both sine and72

cosine components with 8 features per component) for every attribute of an observation pose or a73

query (i.e., x, y, and θ).74

Modality Encoder. For our modality embedding m (L161-8 in main), we maintain a sparse lookup75

table of 8-dimensional learnable embeddings, which we index with 0 to retrieve the visual modality76

embedding (mV ) and 1 to retrieve the acoustic modality embedding (mA).77

Fusion Layer. To generate the multimodal memory S (L169-73 in main) for our context encoder78

(L169-77 in main), we separately concatenate the modality features (produced by fV for vision and79

fA for echo responses) for an observation, the corresponding sinusoidal pose embedding, and the80

modality embedding (mV for visual features and mA for acoustic features), and project using a single81

linear layer to 1024-dimensional embedding space. Similarly, to generate the query encoding q for82

our conditional RIR predictor (L181-2 in main), we use another linear layer to project the query’s83

sinusoidal positional encodings to a 1024-dimensional feature vector. Furthermore, we don’t use bias84

in any fusion layer.85

Context Encoder. Our context encoder (L179-88) is a transformer encoder [14] with 6 layers,86

8 attention heads, a hidden size of 2048 and ReLU [13, 8] activations. Additionally, we use a87

dropout [12] of 0.1 in our context encoder.88

Conditional RIR Predictor. Our conditional RIR predictor (L179-88 in main) has 2 components:89

1) a transformer decoder [14] to perform cross-attention on the implicit representation C (L173-790

in main), which is produced by the previously described context encoder, using the query encoding91

q (L182-4 in main), and 2) a multi-layer transpose convolution network U (L186-7 in main) to92

upsample the decoder output dQ and predict the magnitude spectrogram for the query Q in log space.93

The transformer decoder [14] has the same architecture as our context encoder.94

The transpose convolution network U comprises 7 layers in total. The first 6 layers are transpose95

convolutions with a kernel size of 4, stride of 2, input padding of 1, ReLU [13, 8] activations and96

BatchNorm [5]. The number of input channels for the transpose convolutions are 128, 512, 256, 128,97

64 and 32, respectively. The last layer of U is a convolution layer with a kernel size of 3, stride of 1,98

padding of 1 along the height dimension and 2 along the width dimension, and 16 input channels.99

Finally, we switch off bias in all layers of U .100

5.2 Model Architectures for Downstream Tasks101

Sound Source Localization. We use a ResNet-18 [4] feature encoder that takes the log magnitude102

spectrogram of an RIR (predicted or ground truth as input). We take the encoded features and feed103

them to a single linear layer that predicts the location coordinates of a query’s source relative to the104

query’s receiver pose.105

3



Depth Estimation. Following VisualEchoes [3], we use a U-net [11] that takes the log magnitude106

spectrogram of an echo as input and predicts the depth map (L347-58) as seen from the echo’s pose.107

The encoder of our U-net has 6 layers. The first layer is a convolution with a kernel size of 3, stride108

of 2, padding of 1 along the height dimension, and 2 input channels. The remaining 5 layers are109

convolutions with a kernel size of 4, padding of 1 and stride of 2. These 5 layers have 64, 64, 128,110

256 and 512 input channels, respectively. Each convolution is followed by a ReLU activation [13, 8]111

and a BatchNorm [5].112

The decoder of the U-net has 5 transpose convolution layers. Each transpose convolution has a kernel113

size of 4, stride of 2 and input padding of 1. Except for the last layer that uses a sigmoid activation114

function to generate depth maps, which are normalized such that all pixels are in the range of [0, 1],115

each transpose convolution has a ReLU activation [13, 8] and a BatchNorm [5]. The decoder layers116

have 512, 1024, 512, 256 and 128 channels, respectively. We use skip connections between the117

encoder and the decoder starting with their second layer.118

5.3 Training Hyperparameters119

In addition to the training details specified in main (L215-6), we use a batch size of 24 during training.120

Furthermore, for every entry of the batch, we query our model with 60 arbitrary source-receiver121

pairs for the same observation set, which effectively increases the batch size further and improves122

training speed. Other training hyperparameters specific to our Adam [6] optimizer include β1 = 0.9,123

β2 = 0.999 and ϵ = 10−5.124
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