
CodeRL: Mastering Code Generation through
Pretrained Models and Deep Reinforcement Learning

Supplementary

Anonymous Author(s)
Affiliation
Address
email

A Overview of Critic Model1

Figure 1 shows an overview of our critic model. In our CodeRL framework, besides the actor LM2

network θ, we introduce a critic model that is trained as an error predictor and parameterized as3

a neural network with parameters ϕ. The critic receives as inputs a problem description D and4

a corresponding synthetic program WS sampled from the actor. The critic is required to output5

a prediction of the unit test outcome of the input program. We define 4 possible outcomes u:6

CompileError, RuntimeError, FailedTest, and PassedTest. The critic model is trained by minimizing7

the following loss:8

Lcritic(ϕ) = − log pϕ(u|W s, D) (1)

The ground-truth outcome of a synthetic sample is obtained by passing it to the unit tests correspond-9

ing to the problem. Note that since our critic model is applied in a supervised learning environment10

with available ground truth, we also use the training samples from the original dataset with ground11

truth output u = PassedTest to train the critic.12

The learned hidden state representations of program tokens when passed through the critic are then13

used to measure their return estimates for our RL optimization objective. The return estimates are14

incorporated as intermediate returns at decoding steps to compute the expected gradient of the actor15

network ∇θLrl(θ).16

Problem

Linear & Softmax

Sampled/Baseline/Ground-truth Programs

Sequence-to-Sequence Model

Unit
Tests

Return Estimation

Sample Test Results

Max Pooling

Baseline Test Results

Figure 1: Overview of the critic model learning

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

B Additional Experimental Setup Details17

Pretraining Setup For CodeT5, we adopt the code-specific tokenizer as described by Wang et al.18

[2021]. Note that we employ 6 programming languages (PLs) in CodeSearchNet [Husain et al., 2019]19

(CSN) instead of 8 PLs in CodeT5 as C/C# datasets are not publicly available. We employ only the20

pretraining task of masked span prediction (MSP) in CodeT5 and hence, we do not have to parse21

programs into abstract syntax trees (ASTs) to obtain the identifier information. This preprocessing22

step was required in other original pretraining tasks like masked identifier prediction [Wang et al.,23

2021]. To further speed up training, we concatenate data samples to batch size 512 for pretraining24

with MSP and the resulting number of tokens is 1.1B.25

APPS Benchmark We follow the same preprocessing step as Hendrycks et al. [2021] to formu-26

late the input sequences from problem descriptions. APPS consists of 10,000 coding problems27

with a 50-50 train-test split. Each problem is accompanied by 23.2 correct Python programs and28

21.2 unit tests on average. The average length per problem is 293.2 words and the average length29

per program is 18.0 lines. The dataset is categorized into three levels of difficulty: Introduc-30

tory (3639, train/test=2639/100), Interview (5000, train/test=2000/3000), and Competition (1361,31

train/test=361/1000). Similar to [Hendrycks et al., 2021], we employ the strict accuracy to evaluate32

the functional correctness of a program, where it is counted as correct if it can pass all the unit tests33

corresponding to the problem.34

MBPP Benchmark We additionally include another smaller and simpler Python program synthesis35

dataset called MBPP [Austin et al., 2021] (Mostly Basic Programming Problems) for evaluation. The36

dataset contains 974 instances with 374/90/500 instances for training/validation/testing respectively37

and 10 reserved for few-shot learning. The problems are typically short, usually one sentence of38

natural language descriptions each. Each problem is accompanied by 1 correct solution (6.8 lines39

of code on average) and 3 unit tests in the form of assert statements for validating the functional40

correctness. Unlike APPS, unit tests in MBPP are not hidden and are explicitly incorporated into the41

source sequences for program synthesis models. This might encourage models to be overfitting to42

these assert statements via hard-coding an if-expression very occasionally. However, for a fair43

comparison with the baselines, we construct the source sequences in the same way as prior work.44

Specifically, we adopt the same prompt format as Austin et al. [2021] to prepare the input sequence45

as: problem descriptions + “Your code should satisfy these tests:” + 3 assert statements.46

Finetuning Setup Following [Bahdanau et al., 2016], since our RL method is applied in a su-47

pervised learning task, in addition to synthetic programs, we also use the ground-truth programs48

of training samples to train the critic. These samples are considered perfect programs and always49

have a label of PassedTest. To optimize the LM actor network, in practice, following previous work50

[Bahdanau et al., 2016, Rennie et al., 2017, Wang et al., 2018], in each training optimization step, we51

can simply approximate the expected gradient with a single sample Ws ∼ pθ:52

∇θLrl(θ) ≈ −(r(W s)− r(W b))
∑
t

q̂ϕ(w
s
t)∇θ log pθ(w

s
t |ws

1:t−1, D) (2)

Configurations For pretraining, we perform our experiments on a kubernetes with 16 A100-40G53

GPUs on Google Cloud Platform and the total pretraining duration is around 21 days. In the first54

pretraining stage with MSP, we employ a corruption rate of 15%, a peak learning rate (LR) of 2e-4,55

and a batch size of 2048. We pretrain on CSN for 150 epochs (10 days) and then on GCPY for56

10 epochs (5 days). For the second stage pretraining with NTP, we adopt a peak LR of 1e-4 and a57

batch size of 256, and pretrain for 10 epochs (6 days). We set the maximum length to 768 and 60058

for source and target sequences respectively for this objective. For all experiments, we employ an59

AdamW optimizer [Loshchilov and Hutter, 2019] with a 0.05 weight decay and a linear decay LR60

scheduler with a warmup step of 1000.61

For finetuning on APPS, we adopt a batch size of 64 and warmup LR from 0 to 2e-5 for the first 50062

steps and polynomially (power=0.5) decay to 1e-5 until the end of 10 epochs, which takes around 3063

2

Table 1: Code-to-Text generation results (smoothed BLEU-4) on CodeXGLUE
Model Ruby JavaScript Go Python Java PHP Overall
RoBERTa 11.17 11.90 17.72 18.14 16.47 24.02 16.57
CodeBERT 12.16 14.90 18.07 19.06 17.65 25.16 17.83
DOBF - - - 18.24 19.05 - -
PLBART 14.11 15.56 18.91 19.30 18.45 23.58 18.32
CoTexT 14.02 14.96 18.86 19.73 19.06 24.58 18.55
CodeT5-small 14.87 15.32 19.25 20.04 19.92 25.46 19.14
CodeT5-base 15.24 16.16 19.56 20.01 20.31 26.03 19.55
CodeT5-large 15.58 16.17 19.69 20.57 20.74 26.49 19.87

Table 2: Text-to-Code generation results on CodeXGLUE
Model EM BLEU-4 CodeBLEU
GPT-2 17.35 25.37 29.69
CodeGPT-2 18.25 28.69 32.71
CodeGPT-adapted 20.10 32.79 35.98
PLBART 18.75 36.69 38.52
CoTexT 20.10 37.40 40.14
UniXcoder 22.60 38.23 -
CodeT5-small 21.55 38.13 41.39
CodeT5-base 22.30 40.73 43.20
CodeT5-large 22.65 42.66 45.08

Table 3: Code-to-Code generation results on CodeXGLUE

Model Java to C# C# to Java Refine Small Refine Medium
BLEU-4 EM BLEU-4 EM BLEU-4 EM BLEU-4 EM

Naive copy 18.54 0.00 18.69 0.00 78.06 0.00 90.91 0.00
Roborta (code) 77.46 56.10 71.99 57.90 77.30 15.90 90.07 4.10
CodeBERT 79.92 59.00 72.14 58.00 77.42 16.40 91.07 5.20
GraphCodeBERT 80.58 59.40 72.64 58.80 80.02 17.30 91.31 9.10
PLBART 83.02 64.60 78.35 65.00 77.02 19.21 88.50 8.98
CoTexT - - - - 77.79 21.03 88.40 13.11
NSEdit - - - - 71.06 24.04 85.72 13.87
CodeT5-small 82.98 64.10 79.10 65.60 76.23 19.06 89.20 10.92
CodeT5-base 84.03 65.90 79.87 66.90 77.43 21.61 87.64 13.96
CodeT5-large 83.56 66.00 79.77 67.00 77.38 21.70 89.22 14.76

hours on one A100 GPU. We set the maximum source and target sequence length to 600 and 51264

respectively. For MBPP, due to its small training set, we finetune it for 60 epochs with a constant65

LR of 2e-5 and a batch size of 32, which takes less than 30 mins on one A100. We set its maximum66

source and target length to 382 and 306 respectively.67

C Additional Experimental Results68

C.1 CodeXGLUE Benchmark Results69

To validate the effectiveness of our simplified pretraining strategies of CodeT5-large, we extensively70

evaluate it on a variety of generation tasks in CodeXGLUE [Lu et al., 2021], including code-to-text71

generation (i.e. summarization, see Table 1), text-to-code generation (see Table 2), and code-to-code72

generation (i.e., code translation and code refinement, see Table 3). Different from APPS [Hendrycks73

et al., 2021] and MBPP [Austin et al., 2021], we follow the default similarity-based evaluation74

metrics in the CodeXGLUE benchmark, including BLEU [Papineni et al., 2002] and CodeBLEU75

[Ren et al., 2020], and exact match (EM) scores. Table 1, 2, and 3 show that our simplified pretrained76

CodeT5-large sets new SOTA results on a large majority of the tasks, and hence, can be served as a77

3

Table 4: Ablation results of CodeRL with different CodeT5 model variants with different sizes,
pretraining data and objectives on MBPP. CodeT5† is finetuned on APPS and evaluated on MBPP in
a zero-shot setting.

Model Size Data Objective pass@80 pass@1000
GPT finetuned results

GPT 224M Web Doc LM 7.2 -
GPT 422M Web Doc LM 12.6 -
GPT 1B Web Doc LM 22.4 -
GPT 4B Web Doc LM 33.0 -
GPT 8B Web Doc LM 40.6 -
GPT 68B Web Doc LM 53.6 -
GPT 137B Web Doc LM 61.4 -

CodeT5 finetuned results
CodeT5 60M CSN MSP 19.2 36.2
CodeT5 220M CSN MSP 24.0 42.8
CodeT5 770M CSN MSP 32.4 47.8
CodeT5 770M +GCPY MSP 34.6 51.6
CodeT5 770M +GCPY +NTP 46.8 66.2

CodeRL zero-shot results
CodeT5† 770M +GCPY +NTP 60.2 78.4
+CodeRL 770M +GCPY +NTP 63.0 81.8

better foundation model for other code-related generation tasks. Note that in these experiments, we78

employ the conventional finetuning objective with Lce and there might be potential to improve the79

performance further with our CodeRL framework.80

C.2 MBPP Benchmark Results81

Following Austin et al. [2021], we adopt temperature sampling to generate multiple candidate82

solutions. We empirically find that CodeT5 benefits from a higher temperature of 1.2 (less greedy83

decoding or more diverse) than their GPT’s temperature of 0.5 on this benchmark.84

Table 4 reports the pass@80 and pass@1000 results for both finetuned and zero-shot settings. For85

baselines, we compared with GPT models with sizes ranging from 224M to 137B [Austin et al.,86

2021], which are pretrained on 2.93B web documents (13.8M containing source code) using standard87

language modeling objective. Results of GPT models are obtained from the original authors. From88

the comparison among various CodeT5 variants, we again confirm that larger model sizes and89

pretraining data, and better pretraining objective of NTP all lead to a performance boost. Particularly,90

our CodeT5-770M yields a pass@80 of 46.8%, surpassing GPT-8B’s 40.6% with a much smaller91

model size. In addition, we find CodeT5 models finetuned on APPS can achieve a surprisingly good92

zero-shot performance on MBPP with a pass@80 of 60.2% and further improved to 63.0% with93

the help of CodeRL, which even outperforms the largest GPT-137B’s performance of 61.4%. This94

indicates APPS is a comprehensive program synthesis benchmark and CodeT5+CodeRL models95

trained on it are able to generalize to other simpler coding tasks. If we further increase the budget of96

attempts up to 1000, all models witness a consistent and significant boost of solving rate, especially97

our CodeT5+CodeRL yielding a new SOTA result of 81.8% pass@1000.98

A common concern about transfer learning is that the source (APPS) and target (MBPP) tasks might99

have overlap in their training data, which could result into the source model tending to memorize100

these substantially similar data when applied to the target task. To address this concern, we analyze101

how many lines of code appear in both training set of APPS and programs of MBPP following Austin102

et al. [2021]. For this analysis, we discard code comments and normalize the whitespaces for each103

line, and then exclude lines that appear more than twice anywhere in MBPP, as these are likely to be104

common Python keywords such as return and break.105

Figure 2 illustrates the number of absolute duplicated lines (Left) and relative fraction of duplicated106

lines (Right) in the MBPP programs. As can be seen, the overlap between APPS and MBPP seems to107

4

Figure 2: Analysis of duplicated lines between MBPP and APPS

Figure 3: Results on APPS competition-level test samples of CodeRL+CodeT5 and CodeRL+GPT-J

be minimal. Only 12.6% MBPP programs have more than half of their lines matched somewhere in108

the APPS training data. Besides, more than half (514 out of 974) of programs have a zero overlap and109

90.9% have only no more than 3 lines overlapped with the APPS training set. If we further require110

the lines to be consecutive, there are no more than 2 consecutive duplicated lines.111

C.3 APPS Benchmark Results on Competition-level Tasks112

Figure 3 shows the results of pass@k and n@k with k ranging from 1 to 200 and n = {1, 5}, for113

CodeRL+CodeT5 and CodeT5 only. We choose to investigate a subset of the APPS test split, which114

contains the test samples of the highest difficulty level (i.e. competition programming tasks). Since115

CodeRL is model-agnostic, we also integrate it with GPT-J [Wang and Komatsuzaki, 2021] and report116

the results. To focus on the impact of our RL optimization, during test time, we compare models117

using only nucleus sampling and without the CS procedure. Figure 3 shows that the performance118

gains are quite consistent on both GPT-J and CodeT5. In particular, as k increases, the performance119

gain of CodeRL is more significant on both GPT-J and CodeT5 models. We attribute these gains to120

the CodeRL learning objective Lrl that encourages models to explore code solutions drawn from the121

model’s sampling distribution. During test time with an increasing k sampling budget, models are122

allowed to generate diverse code solutions and the impact of Lrl becomes more significant.123

5

Figure 4: Ablation results by finetuning epochs of CodeT5-770M model variants on APPS

Figure 5: Qualitative results of CodeT5 and CodeT5+CodeRL: We generate 200 programs per test
sample and report the % programs per sample by their unit test signals, including CompileError,
RuntimeError, FailedTest, and PassedTest.

C.4 CodeT5 Ablation by Training Epochs124

Figure 4 shows the performance of CodeT5 model variants by finetuning epochs and by difficulty125

levels of programming tasks. Note that in these experiments, we only need to compare among126

CodeT5 model variants by pretraining strategies, and hence, only engage Lce (imitation learning)127

in the finetuning stage on APPS. Consistent with our prior analysis (See §4.3 of the main paper),128

enhancing both pretraining data (with larger data of GCPY) and pretraining objectives (with NTP129

objective) improves model performance across training epochs in general. Moreover, as noted by our130

analysis of learning objectives, only using Lce often leads to overfitting performance, typically after131

epoch 10 in our case. Hence, to further finetune large-scale LMs, we recommend adopting our RL132

objective Lrl to utilize synthetic training samples and avoid overfitting models.133

C.5 Impacts of CodeRL on Program Quality by Unit Test Signals134

Figure 5 demonstrates the average percentages of generated programs by their test signals. Specifically,135

we use CodeT5 or CodeRL+CodeT5 to generate programs and randomly select 200 generated136

programs per test sample in the APPS test split. We pass programs to either example unit tests or137

hidden unit tests corresponding to the problem and group the output programs by their output signals,138

including CompileError, RuntimeError, FailedTest, and PassedTest. We observe that integrating139

6

Input: 3 4 5
Output: 6

QUESTION:
There is a right triangle ABC with ∠ABC=90°.
Given the lengths of the three sides, |AB|,|BC| and |CA|, find the
area of the right triangle ABC.
It is guaranteed that the area of the triangle ABC is an integer.

-----Constraints-----
 - 1 \leq |AB|,|BC|,|CA| \leq 100
 - All values in input are integers.
 - The area of the triangle ABC is an integer.

-----Input-----
Input is given from Standard Input in the following format:
|AB| |BC| |CA|

-----Output-----
Print the area of the triangle ABC.

-----Sample Input-----
3 4 5

-----Sample Output-----
6

This triangle has an area of 6.
Use Standard Input format

ANSWER:

Input Problem

CodeT5 Output Program

CodeRL+CodeT5 Output Program (after CS)

CodeRL+CodeT5 Output Program (before CS)

Example Unit Tests

Ground-truth Program

Input: 5 12 13
Output: 30

Input: 24 7 25
Output: 84
...

Hidden Unit Tests

PASSED
TESTS

FAILED
TESTS

FAILED
TESTS

Figure 6: An example of an introductory-level program from the APPS benchmark and corresponding
programs generated by CodeT5 variants

CodeRL can increases the likelihood that a program can pass unit tests, and reduces the likelihood140

that it fails one or more unit tests, or whether it contains compiling or runtime errors. However, we141

note that there are significant gaps in performance by test signals between example unit tests and142

hidden unit tests. This observation suggests that example tests are not as comprehensive as hidden143

tests and hence, applying our CS procedure might lead to false positive samples for regeneration. We144

recommend additional methods to improve example unit tests, such as through data augmentation by145

mutating input/output pairs [Austin et al., 2021].146

C.6 Example Generated Programs and Qualitative Analysis147

Figure 6 to 8 show examples of programming problems from the APPS benchmark and corresponding148

programs generated by CodeT5 variants. Specifically, based on the same foundation pretrained149

CodeT5 (pretrained with GCPY data and NTP objective), we compare the CodeT5 model that is150

finetuned by Lce only and another model that follows our CodeRL framework. In CodeRL+CodeT5,151

we further show programs before and after applying the CS procedure. The example programs152

show that applying CodeRL can improve the quality of generated programs and the CS procedure153

further improves the functional correctness of the programs. For instance, in Figure 8, CodeT5 model154

misunderstands the problem and focuses on finding the greatest common divisor between a and b155

only. Instead, the CodeRL model avoids this mistake and tackles the problem based on the factorials156

of a and b. In Figure 7, we note that the CS procedure improves the program by reordering the elif157

code blocks. The resulting program is more correct and is able to pass all hidden unit tests.158

We also found that CodeRL can improve the efficiency of the programs, an important quality in159

complex programming problems. For instance, in the interview-level programs in Figure 8, we note160

that without applying CS, the generated program is functionally correct but fails during execution due161

to a timeout error. Applying the CS procedure can condition models on parts of the prior program and162

(re)generates new tokens to produce a more efficient program. Hence, the resulting final program is163

able to pass all hidden unit tests (including tests with extremely large values) without timeout errors.164

7

Input: 125
Output: 3

Input: 43
Output: 5
...

QUESTION:
Allen has a LOT of money. He has n dollars in the bank. For
security reasons, he wants to withdraw it in cash (we will not
disclose the reasons here). The denominations for dollar bills are
1, 5, 10, 20, 100. What is the minimum number of
bills Allen could receive after withdrawing his entire balance?

-----Input-----

The first and only line of input contains a single integer n ($1
\le n \le 10^9$).

-----Output-----

Output the minimum number of bills that Allen could receive.

-----Examples-----
Input
125

Output
3

Input
43

Output
5

Input
1000000000

Output
10000000

-----Note-----

In the first sample case, Allen can withdraw this with a 100
dollar bill, a 20 dollar bill, and a 5 dollar bill. There is no way
for Allen to receive 125 dollars in one or two bills.

In the second sample case, Allen can withdraw two 20 dollar
bills and three 1 dollar bills.

In the third sample case, Allen can withdraw 100000000 (ten
million!) 100 dollar bills.
Use Standard Input format

ANSWER:

Input Problem

CodeT5 Output Program

CodeRL+CodeT5 Output Program
(after CS)

CodeRL+CodeT5 Output Program
(before CS)

Example Unit Tests

Ground-truth Program

Input: 74
Output: 8

Input: 82655
Output: 830
...

Hidden Unit Tests

PASSED
TESTS

FAILED
TESTS

FAILED
TESTS

Figure 7: An example of an interview-level program from the APPS benchmark and corresponding
programs generated by CodeT5 variants

References165

J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan, E. Jiang, C. Cai, M. Terry,166

Q. Le, et al. Program synthesis with large language models. arXiv preprint arXiv:2108.07732,167

2021.168

D. Bahdanau, P. Brakel, K. Xu, A. Goyal, R. Lowe, J. Pineau, A. Courville, and Y. Bengio. An169

actor-critic algorithm for sequence prediction. arXiv preprint arXiv:1607.07086, 2016.170

D. Hendrycks, S. Basart, S. Kadavath, M. Mazeika, A. Arora, E. Guo, C. Burns, S. Puranik, H. He,171

D. Song, and J. Steinhardt. Measuring coding challenge competence with apps. NeurIPS, 2021.172

H. Husain, H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt. Codesearchnet challenge:173

Evaluating the state of semantic code search. CoRR, abs/1909.09436, 2019.174

I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In ICLR (Poster). OpenRe-175

view.net, 2019.176

S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. B. Clement, D. Drain, D. Jiang,177

D. Tang, G. Li, L. Zhou, L. Shou, L. Zhou, M. Tufano, M. Gong, M. Zhou, N. Duan, N. Sundaresan,178

8

Input: 4 3
Output: 6

QUESTION:
Holidays have finished. Thanks to the help of the hacker Leha,
Noora managed to enter the university of her dreams which is
located in a town Pavlopolis. It's well known that universities
provide students with dormitory for the period of university
studies. Consequently Noora had to leave Vičkopolis and move
to Pavlopolis. Thus Leha was left completely alone in a quiet
town Vičkopolis. He almost even fell into a depression from
boredom!

Leha came up with a task for himself to relax a little. He chooses
two integers A and B and then calculates the greatest common
divisor of integers "A factorial" and "B factorial". Formally the
hacker wants to find out GCD(A!, B!). It's well known that the
factorial of an integer x is a product of all positive integers less
than or equal to x. Thus x! = 1·2·3·...·(x - 1)·x. For example 4! =
1·2·3·4 = 24. Recall that GCD(x, y) is the largest positive integer
q that divides (without a remainder) both x and y.

Leha has learned how to solve this task very effective. You are
able to cope with it not worse, aren't you?

-----Input-----

The first and single line contains two integers A and B (1 ≤ A, B ≤
10^9, min(A, B) ≤ 12).

-----Output-----

Print a single integer denoting the greatest common divisor of
integers A! and B!.

-----Example-----
Input
4 3

Output
6

-----Note-----

Consider the sample.

4! = 1·2·3·4 = 24. 3! = 1·2·3 = 6. The greatest common divisor of
integers 24 and 6 is exactly 6.
Use Standard Input format

ANSWER:

Input Problem

CodeT5 Output Program

CodeRL+CodeT5 Output Program (after CS)

CodeRL+CodeT5 Output Program (before CS)

Example Unit Tests

Ground-truth Program

Input: 10 399603090
Output: 3628800

Input: 5 5
Output: 120
...

Hidden Unit Tests

PASSED
TESTS

RUNTIME
ERROR

(timeout)

FAILED
TESTS

Figure 8: An example of an interview-level program from the APPS benchmark and corresponding
programs generated by CodeT5 variants

S. K. Deng, S. Fu, and S. Liu. Codexglue: A machine learning benchmark dataset for code179

understanding and generation. In NeurIPS Datasets and Benchmarks, 2021.180

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic evaluation of machine181

translation. In Proceedings of the 40th annual meeting on association for computational linguistics,182

pages 311–318. Association for Computational Linguistics, 2002.183

S. Ren, D. Guo, S. Lu, L. Zhou, S. Liu, D. Tang, N. Sundaresan, M. Zhou, A. Blanco, and S. Ma.184

Codebleu: a method for automatic evaluation of code synthesis. arXiv preprint arXiv:2009.10297,185

2020.186

S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and V. Goel. Self-critical sequence training for image187

captioning. In Proceedings of the IEEE conference on computer vision and pattern recognition,188

pages 7008–7024, 2017.189

9

B. Wang and A. Komatsuzaki. GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model.190

https://github.com/kingoflolz/mesh-transformer-jax, May 2021.191

X. Wang, W. Chen, J. Wu, Y.-F. Wang, and W. Y. Wang. Video captioning via hierarchical rein-192

forcement learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern193

Recognition, pages 4213–4222, 2018.194

Y. Wang, W. Wang, S. R. Joty, and S. C. H. Hoi. Codet5: Identifier-aware unified pre-trained195

encoder-decoder models for code understanding and generation. In EMNLP (1), pages 8696–8708.196

Association for Computational Linguistics, 2021.197

10

https://github.com/kingoflolz/mesh-transformer-jax

	Overview of Critic Model
	Additional Experimental Setup Details
	Additional Experimental Results
	CodeXGLUE Benchmark Results
	MBPP Benchmark Results
	APPS Benchmark Results on Competition-level Tasks
	CodeT5 Ablation by Training Epochs
	Impacts of CodeRL on Program Quality by Unit Test Signals
	Example Generated Programs and Qualitative Analysis

