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1 Main Experimental Settings1

In this section, we provide detailed settings of the classification experiments and extended experiments2

conducted on vision transformer/object detection.3

1.1 Experiments on CIFAR-1004

Dataset. CIFAR-100 [14] is the most popular classification dataset for evaluating the performance of5

distillation methods. It contains 50,000 training images and 10,000 test images with 100 classes.6

Implementation. In the comparison experiments with other offline KD methods, we use the same7

training settings of CRD [24] to implement various KD methods, whose training epochs are 240.8

We use a mini-batch size of 64 and a standard SGD optimizer with a weight decay of 5 × 10−4.9

The multi-step learning rate is initialized to 0.05, decayed by 0.1 at 150, 180 and 210 epochs. For10

SHAKE, we set λ and τ as 1 and 4, respectively. In the comparison experiments with other online11

KD methods, we adopt the same training settings with OKDDip [2]. Specifically, all networks are12

trained for 300 epochs, the batch size is 128, the weight decay is 5× 10−4, and the optimizer is SGD.13

We set the initial learning rate to 0.1, decayed by 0.1 at epochs 150 and 225. To fairly compare these14

methods with multiple teacher structures, SHAKE chooses three pre-trained teacher models to distill15

the student models with multiple shadow heads.16

1.2 Experiments on ImageNet17

Dataset. We also conduct experiments on the ImageNet dataset (ILSVRC12) [23], which is consid-18

ered the most challenging classification task. It contains about 1.2 million training images and 5019

thousand validation images, and each image belongs to one of 1,000 categories.20

Implementation. In the ImageNet experiments, the student models (i.e., ResNet-18 [8] and Mo-21

bileNet [11]) are trained with 100 epochs. The batch size is set to 256 and the multi-step learning rate22

is initialized to 0.1, decayed by 0.1 at 30, 60, and 90 epochs. Other KD methods are implemented23

following the hyperparameter settings in the original paper. And SHAKE’s detailed settings are the24

same as those on the CIFAR-100.25

1.3 Experiments on vision transformer26

Vision transformer. Transformer model [27] has been widely used in natural language processing27

(NLP). Inspired by its success in NLP, Vision Transformer (ViT) is proposed by Google [5] and28

DeiT [25] improves its training process by data augmentation and knowledge distillation.29
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Table 1: Comparison of training time, Top-1 accuracy (%), and teacher-student gap (T-S gap) among
the (a) KD, (b) DML, (c) DML† without KDS→T , (d) KD† with KDS→T , and our SHAKE on
CIFAR-100. Training time (GPU-seconds) is measured on a single NVIDIA 2080Ti with a batch
size of 64. The teacher-student gap [3] is defined as KL divergence between their outputs (lower
is better). T (forward) represents the cost of forward propagation of the teacher model. T (head)
means only updating head, and T (60) means only updating for 60 epochs. T′ (share) denotes proxy
teacher shares student’s backbone. For SHAKE, we report the accuracy of the proxy model as the
performance of the teacher model, and the teacher-student gap in SHAKE refers to the gap between
the student and the proxy teacher.

Student & Teacher [S] ResNet-20 & [T] ResNet-110 [S] WRN-16-2 & [T] WRN-40-2 [S] VGG-8 & [T] VGG-13

Method Computation Time S-Top-1 T-Top-1 T-S gap Time [S] Top-1 [T] Top-1 T-S gap Time S-Top-1 T-Top-1 T-S gap

Baseline S 4,654 69.09 2,888 73.26 - - 1,601 70.36 - -
KD S + T (forward) 6,036 70.66 74.31 1.12 3,980 74.92 75.61 1.56 2,047 72.98 74.64 1.76
DML S + T 26,076 71.52 75.32 0.28 7,223 75.33 78.11 0.35 3,964 73.64 75.53 0.42
DML† S + T 26,619 70.55 74.02 0.62 7,016 73.97 76.01 0.69 3,560 71.72 74.79 0.85
KD† S + T 25,894 71.76 74.36 0.76 6,902 75.58 75.72 0.81 3,560 73.65 74.92 0.77
KD† S + T (head) 6,821 71.05 74.32 0.92 4,179 75.08 75.55 0.98 2,275 73.22 74.76 0.91
KD† S + T (60) 12,796 71.13 74.34 0.88 4,577 75.17 75.88 1.12 3,070 73.45 74.88 0.99
SHAKE S + T′ 11,167 71.82 71.75 0.33 4,776 76.36 76.22 0.66 2,862 74.35 74.28 0.57
SHAKE S + T′ (share) 7,122 72.02 71.96 0.21 4,278 76.82 76.78 0.26 2,139 74.99 74.92 0.31

Table 2: Top-1 accuracy (%) of SHAKE with proxy teachers under different distillation loss and
supervision signals. WRN-16-2 (73.26%) is distilled with pre-trained (Pre.) WRN-40-2 (75.61%),
and VGG-8 (70.36%) is distilled by pre-trained VGG-13 (74.64%), respectively.

Distillation signals Top-1

Pre. teacher Ground truth WRN-16-2 VGG-8

KL 7 76.82 74.99
CE 7 76.45 74.52
l2 7 76.68 74.86
KL CE 75.73 74.14

Student architectures. In vision transformer, the input images are firstly divided into a sequence of30

patches and the transformer network is utilized to extract the image features for visual recognition.31

First, the patches are flattened and projected into patch embeddings by a linear layer. Next, these32

patch embeddings are added with a set of learnable position embeddings to maintain positional33

information. Finally, a class token is concatenated with these enhanced patch embeddings. The inner34

structure of the vision transformer is composed of position encoding, multi-head self-attention (MSA)35

blocks, and a feed-forward network, with Layernorm and residual connection add-on. In addition,36

DeiT introduces a distillation token to learn from the hard labels of the teacher. We extend SHAKE37

to DeiT-Tiny as the student model with the same convolution teacher RegNetY-16GF [20]. DeiT-Tiny38

has a hidden dimension of 192, 12 layers (each with three attention heads).39

Implementation. For comparison purpose, we use the same data augmentation and regularization40

methods described in DeiT (e.g., Auto-Augment, Rand-Augment, mixup). The weights of our41

transformers are randomly initialized by sampling from a truncated normal distribution. We use42

AdamW as optimizer with learning rate equal to 0.001 and weight decay equal to 0.05. The whole43

Table 3: Comparison of training time and Top-1 accuracy (%) of SHAKE with proxy teachers under
different weight sharing strategies for ResNet-20 (69.09%) via pre-trained teacher (Pre. T) ResNet-
110 (74.31%) on CIFAR-100. Training time is measured on a single 2080Ti GPU. S-Backbone
refers to the weight sharing with student’s backbone. S-Head means shadow head, and S-BN means
separate BatchNorm. × represents the scaling factor of the channels of the subnetwork.

Weight sharing strategy Time Top-1

S-Backbone+S-Head 7,122 72.02
S-Backbone+S-Head+S-BN 7,186 72.16
0.75×S-Backbone+S-Head+S-BN 6,968 71.53
0.5×S-Backbone+S-Head+ S-BN 6,753 71.15
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Table 4: Comparison of results with other distillation methods reported in CRD [24] under the same
training setting of 240 epochs. Most results of other methods refer to the CRD. We report Top-1
mean accuracies (%) over 3 runs.

Teacher WRN-40-2 WRN-40-2 ResNet-110 ResNet-110 ResNet-32x4 VGG-13 ResNet-50 ResNet-32×4 ResNet-32×4
Student WRN-16-2 WRN-40-1 ResNet-20 ResNet-32 ResNet-8×4 VGG-8 MobileNetV2 ShuffleNetV1 ShuffleNetV2

Teacher 75.61 75.61 74.31 74.31 79.42 74.64 79.34 79.42 79.42
Student 73.26 71.98 69.06 71.14 72.50 70.36 64.60 70.50 71.82

FitNets [22] 73.58 72.24 68.99 71.06 73.50 71.02 63.16 73.59 73.54
AT [30] 74.08 72.77 70.22 72.31 73.44 71.43 58.58 71.73 72.73
SP [26] 73.83 72.43 70.04 72.69 72.94 72.68 68.08 73.48 74.56
CC [19] 73.56 72.21 69.48 71.48 72.97 70.71 65.43 71.14 71.29
VID [1] 74.11 73.30 70.16 72.61 73.09 71.23 67.57 73.38 73.40
RKD [17] 73.35 72.22 69.25 71.82 71.90 71.48 64.43 72.28 73.21
PKT [18] 74.54 73.45 70.25 72.61 73.64 72.88 66.52 74.10 74.69
AB [9] 72.50 72.38 69.53 70.98 73.17 70.94 67.20 73.55 74.31
FT [13] 73.25 71.59 70.22 72.37 72.86 70.58 60.99 71.75 72.50
NST [12] 73.68 72.24 69.53 71.96 73.30 71.53 64.96 74.12 74.68
CRD [24] 75.48 74.14 71.46 73.48 75.51 73.94 69.11 75.11 75.65
CRD+KD 75.64 74.38 71.56 73.75 75.46 74.29 69.54 75.12 76.05

KD [10] 74.92 73.54 70.67 73.08 73.33 72.98 67.35 74.07 74.45
KD† 75.58 74.24 71.76 73.35 74.91 73.65 68.81 75.21 75.95
DML [31] 75.33 73.98 71.52 73.28 74.30 73.64 68.52 75.58 76.44
DML† 74.83 73.26 70.55 72.98 73.15 72.86 67.22 74.02 74.32

SHAKE 76.82 75.62 72.02 74.49 77.95 74.99 70.18 77.46 78.51
SHAKE+FitNets 76.91 75.73 72.15 74.62 78.06 75.15 70.23 77.62 78.69
SHAKE+CRD 77.17 75.89 72.32 74.88 78.13 75.26 70.42 77.86 78.82

Table 5: Top-1 accuracy (%) of SHAKE with one shadow head and multiple shadow heads. VGG-16
is distilled with three pre-trained VGG-16 models as multiple teachers, and other models are distilled
with three same-architecture pre-trained models, respectively.

Network Baseline One Multiple

VGG-16 73.81 75.95 76.89
ResNet-110 75.88 78.98 79.61
WRN-20-8 77.50 81.22 81.94

training process includes 300 epochs. The first five epochs are for warm-up, and in the remaining44

epochs, the learning rate follows a cosine decay function. Following DeiT, SHAKE also employs the45

distillation token with shadow head as the proxy model. In addition, SHAKE adds mutual distillation46

between the shadow head and the classification head, resulting in significant gains than DeiT.47

1.4 Experiments on object detection.48

Dataset. We evaluate SHAKE on MS-COCO dataset [16] , which contains more than 120K images,49

covering 80 categories. All performance is evaluated on the MS-COCO validation set.50

Implementation. We apply SHAKE to two-stage detector (e.g., Faster R-CNN [21]) and one-stage51

detector (e.g., RetinaNet[15]), which are widely used object detection frameworks. We initialize52

the backbone with weights pre-trained on ImageNet [23]. Following the common practice [15], all53

models are trained with 2× learning schedule (24 epochs). Horizontal image flipping is utilized in54

data augmentation. For SHAKE, we build an extra shadow head with the same architecture as the55

original classification head, which performs distillation in the detector fine-tuning stage.56

2 More Comparisons and Discussions57

Detailed comparisons of KD, DML and SHAKE. Table 1 presents more detailed results of KD,58

DML, and SHAKE on various student models. These results demonstrate that (a) Reversed distillation59

significantly reduces the teacher-student gap, resulting in accuracy improvements. (b) Thanks to the60

mutual distillation between proxy teacher and student, SHAKE has the lowest teacher-student gap61

and the best performance on different student models. (c) SHAKE only needs slight extra training62

costs than KD and is more efficient than DML.63

More analysis with the proxy teacher in SHAKE. The proxy teacher model plays a key role in64

SHAKE. Table 2 and Table 3 present more results of the proxy teacher with different optimization and65

weight sharing settings. For different ways to mimic the predictions of the teacher model in Table 2,66
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Kullback-Leibler (KL) loss achieves the best accuracy, and Cross-Entropy (CE) loss and l2-loss also67

obtain considerable gains. Moreover, additive supervision from ground truth labels for proxy teacher68

results in accuracy reduction since logits diversity collapse. For different weight sharing settings in69

Table 3, the setting of the separate BatchNorm [29] parameter will improve the accuracy, and some70

strategies using subnetworks [29] can bring efficiency gains. Note that the proxy model does not71

appear in the model inference.72

More analysis with multiple shadow heads. In the multi-teacher scenario, SHAKE constructs73

multiple shadow heads to follow each teacher model individually to ensure the diversity of multi-74

logits. As shown in Table 5, such a multi-shadow head strategy brings a significant improvement75

compared to single shadow head.76

2.1 More comparison with different KD methods.77

Apart from logits feature distillation, feature KD and relation distillation can also achieve state-of-78

the-art performance boosts. Our SHAKE could naturally combine with these methods to obtain79

additional gains. That is to say, SHAKE is orthogonal to feature and relation distillations. Table 480

introduces more comparisons and combinations of SHAKE with these methods. The results indicate81

that SHAKE can surpass recent advanced KD methods and achieve considerable gains with other82

categories of distillation on different student models.83

Table 6: Top-1 (%) accuracy of SHAKE with other techniques on CIFAR-100. ↑ refers to the
performance gain than baseline.

Method ResNet-32 WRN-16-2

Baseline 71.14 73.26
SHAKE 74.49 (3.35↑) 76.82 (3.56↑)
SHAKE + Cutout 74.68 (3.54↑) 76.96 (3.70↑)
SHAKE + AutoAug 74.87 (3.73↑) 77.12 (3.86↑)
SHAKE + Dropblock 74.72 (3.58↑) 77.03 (3.77↑)
SHAKE + α divergence 74.92 (3.78↑) 77.17 (3.91↑)

Augmenting SHAKE with other orthogonal techniques. SHAKE serves as the logits KD methods84

and is orthogonal to other training methods (e.g., data augmentation and feature-based techniques).85

As shown in Table 6 , Cutout [4] and AutoAugment [6] bring 3.54% ∼ 3.86% accuracy gains, and86

Dropblock [7] obtains 3.58% ∼ 3.77% gain. Moreover, recent KD design (e.g., α divergence [28])87

can also help SHAKE obtain more improvements.88
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