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A Experimental Protocols1

For each experiment, we begin by observing the latent fairness discrepancy in an unconstrained2

model, and use that to assign group labels a and b. In our results, we obscure these assignments and3

refer to the sensitive groups as a and b in order to reduce implicit biases associated with identity4

groups, as in Denton et al. [7].5

A.1 Fair Logistic Regression for Tabular Data6

For fairness-regularized logistic regression, we optimize Eq. (11) with negative log-likelihood loss7

function, linear model class fθ(x) = θT x, and an added L2 regularizer.8

To preprocess each data set, we make a random 2
3 - 1

3 train-test split and apply min-max normalization9

to improve regularization performance. To get an L2 penalty coefficient, we perform 5-fold cross-10

validation on the training data and search to find a coefficient which maximizes cross-validated AUC.11

We searched over the set of powers of 2 from 2−15 to 210. For Fig. 2 only, we use a penalty coefficient12

of 2−20 to better demonstrate the degeneracy of the surrogates.13

To set the fairness penalizer λ, we searched in the range [0, 1] to find a λ∗ for which ∆ was slightly14

less than 0 on the training data set. Note that this λ∗ varies for each relaxation and fairness criterion,15

even on the same data set. We then ran experiments on a dense uniform grid of λ from 0 to λ∗.16

All relaxations are optimized via our Lagrangian framework. All code was implemented using17

PyTorch, and optimized using L-BFGS. λ = 0 models were initialized at the all-0 parameter18

vector, and each subsequent model was initialized starting from the solution to the previous λ value.19
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Figure 1: Comparison of convergence rates for logis-
tic and piecewise linear relaxations on tabular data sets.
On the left, both use upper bound regularizer R+

g to
achieve demographic parity on the Adult data set. On
the right, the difference framework is used to achieve
equality of opportunity on COMPAS. Error bars show
the standard deviation of number of iterations until con-
vergence (changes in all parameters drop below 10−10),
across 5 independent train-test splits, for the L-BFGS
quasi-Newton method. For both relaxations, standard
gradient descent is orders of magnitude slower.

We set the initial learning rate 0.1, which was20

chosen to achieve quick convergence on the un-21

constrained model. Training was terminated22

when every component of θ changed by < 10−823

in a single iteration, which took less than 124

minute for every λ on both data sets. Our code25

is publicly available online.126

Logistic vs Hinge Convergence. Both Lohaus27

et al. [13] and Wu et al. [15] use the hinge func-28

tion as their surrogates. The hinge and logistic29

functions have the same asymptotic behavior,30

but in Fig. 1 we show that Lagrangian optimiza-31

tion of the logistic function is quicker and more32

consistent due to its smoothness. We compare33

our logistic upper bound formulation to a hinge34

upper bound g(r) = max(0, 1 + r), and our lo-35

gistic difference formulation to the rectified lin-36

ear relaxation g(r) = max(0, r) of Zafar et al.37
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[16]. We compare over 5 random train-test splits, with each constructed as described above. We38

found the optimal L2 penalty coefficient independently for each split.39

Adult. The Adult data set [12] is one of the most popular in the fair classification literature [1, 4, 6,40

8, 10, 11, 13, 15, 17]. The goal of the prediction task is to predict whether an individual is earning41

more or less than $50,000 per year. We use sex as a sensitive attribute with values male and female.42

We use the preprocessed data compiled by [10], which has 30,162 total data points and 100 attributes.43

After removing the target attribute and sensitive attributes race, sex, and race-sex, we further remove44

capital-gain and capital-loss as was done in [13]. This leaves us with p = 94 predictor attributes.45

Here we define equality of opportunity on false negative rates, i.e. predicting that someone earns46

under $50,000 per year when actually they earn more.47

COMPAS. The COMPAS data set was compiled by Angwin et al. [2], to investigate racial bias in48

recidivism prediction. The goal of the classification task is to predict whether the defendant will49

commit another crime or recidivate within two years. Importantly, the data set contains information50

compiled by Freedom of Information Act (FOIA) requests, and does not contain all data used by51

Northpointe in building their predictive model.52

As with the Adult data set, we use the preprocessed data of [10]. We drop the target and sensitive53

attributes to form a data set with p = 399 predictive attributes and 5,273 data points. In this case,54

equality of opportunity is concerned with false positive rates, where a defendant who will not55

recidivate is incorrectly labeled high-risk. We use only the subset of the data with sensitive attribute56

Caucasian or African-American.57

Toy Model. We use binary search [13] to find a model with ∆ = 0.03 for each relaxation. Adding an58

outlier with y = 1, s = a does not change the decision boundaries for any relaxation. Setting s = b,59

however, causes the linear relaxation to degenerate.60

A.2 Fair Deep Learning61

For our deep learning experiments, we used the approach of Sec. A.1 to construct a range of λ values.62

All results are reported on test data. All computation was done on NVIDIA GeForce RTX 2080Ti63

11GB GPUs, and GPU times are reported with respect to that hardware.64

CelebA. We used the pre-split data provided in torchvision which has 162,770 training images,65

19,867 validation images and 19,962 testing images. For our architecture, we used a wide residual66

network (WRN-50-2) [18] initialized with random low-noise parameter values. The last layer is a67

soft-max layer, which is mathematically equivalent to logistic regression performed on the attributes68

learned from the previous layers. Thus in order to enforce fairness, the only change we make is to add69

the scaled fairness surrogate to the loss function. For this data set, we defined equality of opportunity70

on false negative rates.71

The network was trained on training mini-batches of size 32 for 3 epochs. We used Adam to perform72

stochastic optimization with an initial learning rate of 0.01, and a scheduler which reduced the73

learning rate by a factor of 10 when validation loss plateaus for 2000 batches. Each epoch took 2574

minutes of GPU time. With 8 relaxations and 21 λ-values per relaxation, the total GPU time was 21075

hours.76

Faces of the World. The Looking at People CVPR Challenge Track 2 [9] required participants to,77

given an image, return the bounding box around the face, the subject’s gender, and whether or not the78

subject is smiling. The data set has 6,171 training images, 3,087 validation images and 8,506 test79

images. The participants were allowed to train on any additional data. The Faces of the World data80

set shows people from more varied angles than CelebA and is not limited to celebrities, a group that81

is not representative of the broader population in many physical or sensitive attributes.82

We crop the images according to the bounding boxes provided, and resize to 224 by 224 pixels as83

expected by the WRN. Because the data set is small, we first trained a WRN-50-2 on CelebA using84

the scheme described above for our CelebA results, and then froze the first two layers of the network85

to prevent overfitting on Faces of the World. All experiments were initialized at this same baseline.86

The network was trained on mini-batches of size 32 for 30 epochs using Adam. The initial learning87

rate was set to 0.01 and a scheduler reduced the learning rate by a factor of 10 when validation loss88

plateaued for 2000 batches. Each epoch took 1 minute of GPU time. With 3 relaxations and 21 λ89

values per relaxation, the total GPU time was 32 hours.90

2



On top of having performance costs, kernel-based methods have quadratic memory requirements91

in the number of data points. In order to get around this, Lohaus et al. [13] construct a small set of92

“reasonable points" and perform learning on those. We use their publicly available code2, converting93

the input images to 150,528-dimensional input vectors (224 by 224 by 3 channels) and run with as94

many reasonable points as we can hold in 125 gigabytes of RAM.95

Yelp. We took the subset of reviews from the 5,000 most prolific reviewers, totaling 337,723 reviews.96

To estimate those reviewers’ genders, we use Gender API [3] as in [14]. When no gender can be97

confidently inferred, we set the sensitive attribute to unknown.98

The reweighting baseline of Calders & Verwer [5] does not propose a way weighting data with no99

labelled sensitive attribute. For this baseline, we simply set those points to have weight 1.100

We modified publicly-available code from Onepoint Consulting3. Our model was initialized to101

the pretrained BertForSequenceClassification from the Pytorch Transformers library. No102

parameters were frozen during our training.103

The learning rate was initialized to 2 · 10−5 and decreased linearly to 0 over the 3 training epochs.104

Weight decay with parameter 10−3 was used to improve regularization. Each epoch took 200 minutes105

of GPU time. To save computation time we use the same λ = 0 training session for every relaxation.106

With 3 relaxations and 7 λ values per relaxation, as well as the unconstrained training session, the107

total GPU time was 220 hours.108

B Conditions for Surrogate Degeneracy109

For the more general case, we must consider averages of Φ(x)j where we zero out negative values, as110

well as averages where we zero out the positive values. Define:111

γjsy =
1

Nsy

∑
(x,s′,y′)∈D
s′=s,y′=y

max(0,Φ(x)j), (1)

ηjsy =
1

Nsy

∑
(x,s′,y′)∈D
s′=s,y′=y

min(0,Φ(x)j). (2)

Note that the normalizing Nsy include all data with sensitive label s and target attribute y, even those112

which the thresholding functions replace with 0. Further let γj.y be the mean of Φ(x)j (with negative113

values zeroed out) for data with y′ = y but any group, and γjs. be the mean of Φ(x)j (with negative114

values zeroed out) for data with s′ = s but any target value. Define ηjs., ηj.y similarly. Note that115

when attribute Φ(x)j is non-negative, all ηjsy are 0 and γjsy = µjsy.116

We again assume that g(r) is continuous and monotonically increasing, and that δ+
g = limr→∞ g′(r)117

and δ−g = limr→−∞ g′(r) exist.118

Theorem 4 (General case for degeneracy in demographic parity). Consider a feature j.119

(1) If δ−g (γja. − γjb.) + δ+
g (ηja. − ηjb.) > 0 and λ > λ∗j =

γj.1p1−ηj.0p0
δ−g (γja.−γjb.)+δ+g (ηja.−ηjb.)

, then120

lim
wj→−∞

Lg,λ(θ) = −∞.121

(2) If δ+
g (γjb. − γja.) + δ−g (ηjb. − ηja.) > 0 and λ > λ∗j =

γj.0p0−ηj.1p1
δ+g (γjb.−γja.)+δ

−
g (ηjb.−ηja.)

, then122

lim
wj→+∞

Lg,λ(θ) = −∞.123

If either (1) or (2) hold and g(r) is linear, then for this fixed Φ(x), Lg,λ has no stationary points.124

2https://github.com/mlohaus/SearchFair, GNU General Public License v3.0
3https://github.com/onepointconsulting/yelp_bert/blob/master/bert_training.ipynb
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Proof of Theorems 1 and 4. We begin by proving Theorem 4. Consider the two cases separately.125

(1) It is sufficient to show that as wj → −∞, ∂
∂wj
Lg,λ(θ)→ κ > 0.126

∂

∂wj
Lg,λ(θ)

=
∂

∂wj

(
1

N

∑
(x,s,y)∈D

(
L(wTΦ(x), y) + λRg(Φ(x), y, s)

))

=
∂

∂wj

(
1

N

∑
(x,s,y)∈D
y=1

− log σ(wTΦ(x)) +
1

N

∑
(x,s,y)∈D
y=0

− log σ(−wTΦ(x))

+
λ

Na

∑
(x,s,y)∈D
s=a

g(wTΦ(x))− λ

Nb

∑
(x,s,y)∈D
s=b

g(wTΦ(x))

)
(3)

=
1

N

∑
(x,s,y)∈D
y=1

−σ(−wT x)Φ(x)j +
1

N

∑
(x,s,y)∈D
y=0

σ(wT x)Φ(x)j

+
λ

Na

∑
(x,s,y)∈D
s=a

g′(wTΦ(x))Φ(x)j −
λ

Nb

∑
(x,s,y)∈D
s=b

g′(wTΦ(x))Φ(x)j

Note that as wj → −∞, σ(−wTΦ(x)) → 0 for data with Φ(x)j < 0 and σ(−wTΦ(x)) → 1 for127

data with Φ(x)j > 0. Similarly, σ(wTΦ(x))→ 0 for data with Φ(x)j > 0 and σ(wTΦ(x))→ 1 for128

data with Φ(x)j < 0. Finally, g′(wTΦ(x)) → δ+
g for data with Φ(x)j < 0 and g′(wTΦ(x)) → δ−g129

for data with Φ(x)j > 0. Thus130

lim
wj→−∞

∂

∂wj
Lg,λ(θ) =

1

N

∑
(x,s,y)∈D
y=1

−Φ(x)j1{Φ(x)j>0} +
1

N

∑
(x,s,y)∈D
y=0

Φ(x)j1{Φ(x)j<0}

+
λ

Na

∑
(x,s,y)∈D
s=a

(
δ+
g Φ(x)j1{Φ(x)j<0} + δ−g Φ(x)j1{Φ(x)j>0}

)

− λ

Nb

∑
(x,s,y)∈D
s=b

(
δ+
g Φ(x)j1{Φ(x)j<0} + δ−g Φ(x)j1{Φ(x)j>0}

)

=− γj.1p1 + ηj.0p0 + λ
(
δ+
g (ηja. − ηjb.) + δ−g (γja. − γjb.)

)
>− γj.1p1 + ηj.0p0 + λ∗j

(
δ+
g (ηja. − ηjb.) + δ−g (γja. − γjb.)

)
= 0

(4)

Where λ∗j =
γj.1p1−ηj.0p0

δ−g (γja.−γjb.)+δ+g (ηja.−ηjb.)
is the lower bound on λ. The derivative converges to131

κ = −γj.1p1 + ηj.0p0 + λ
(
δ+
g (ηja. − ηjb.) + δ−g (γja. − γjb.)

)
> 0.132

For condition (2) it is sufficient to show that as wj → ∞, ∂
∂wj
Lg,λ(θ) → κ < 0. Equation (3)133

still holds, but we instead note that as wj → ∞, σ(−wTΦ(x)) → 0 for data with Φ(x)j > 0 and134

σ(−wTΦ(x)) → 1 for data with Φ(x)j < 0. Similarly, σ(wTΦ(x)) → 0 for data with Φ(x)j < 0135

and σ(wTΦ(x))→ 1 for data with Φ(x)j > 0. Finally, g′(wTΦ(x))→ δ+
g for data with Φ(x)j > 0136
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and g′(wTΦ(x))→ δ−g for data with Φ(x)j < 0. Thus137

lim
wj→∞

∂

∂wj
Lg,λ(θ) =

1

N

∑
(x,s,y)∈D
y=1

−Φ(x)j1{Φ(x)j<0} +
1

N

∑
(x,s,y)∈D
y=0

Φ(x)j1{Φ(x)j>0}

+
λ

Na

∑
(x,s,y)∈D
s=a

(
δ+
g Φ(x)j1{Φ(x)j>0} + δ−g Φ(x)j1{Φ(x)j<0}

)

− λ

Nb

∑
(x,s,y)∈D
s=b

(
δ+
g Φ(x)j1{Φ(x)j>0} + δ−g Φ(x)j1{Φ(x)j<0}

)

=− ηj.1p1 + γj.0p0 + λ
(
δ+
g (γja. − γjb.) + δ−g (ηja. − ηjb.)

)
<− ηj.1p1 + γj.0p0 + λ∗j

(
δ+
g (γja. − γjb.) + δ−g (ηja. − ηjb.)

)
= 0

(5)

Where λ∗j =
γj.0p0−ηj.1p1

δ+g (γjb.−γja.)+δ
−
g (ηjb.−ηja.)

is the lower bound on λ. The derivative converges to138

κ = −ηj.1p1 + γj.0p0 + λ
(
δ+
g (γja. − γjb.) + δ−g (ηja. − ηjb.)

)
< 0, and thus Lg,λ(θ)→ −∞.139

When g(r) is linear and Φ(x) is considered fixed, the entire objective is a sum of convex functions and140

therefore convex with respect to w. A convex function’s only stationary point is its global minimum,141

which does not exist for an unbounded function. Thus there are no stationary points.142

Theorem 1 is a special case of Theorem 4 where all ηjsy = 0, γjsy = µjsy. The conditions in143

Theorem 1 make use of the fact that δ+
g , δ

−
g > 0 from the monotonicity assumption.144

Theorem 5 (General case for degeneracy in equality of opportunity). Consider a feature j.145

(1) If δ−g (γja0 − γjb0) + δ+
g (ηja0 − ηjb0) > 0 and λ > λ∗j =

γj.1p1−ηj.0p0
δ−g (γja0−γjb0)+δ+g (ηja0−ηjb0)

, then146

lim
wj→−∞

Lg,λ(θ) = −∞.147

(2) If δ+
g (γjb0 − γja0) + δ−g (ηjb0 − ηja0) > 0 and λ > λ∗j =

γj.0p0−ηj.1p1
δ+g (γjb0−γja0)+δ−g (ηjb0−ηja0)

, then148

lim
wj→+∞

Lg,λ(θ) = −∞.149

If either (1) or (2) hold and g(r) is linear, then for this fixed Φ(x), Lg,λ has no stationary points.150

Proof of Theorems 2 and 5. The proof is identical to the proof for Theorems 1 and 4, except with151

the fairness metrics defined only on the negative instances.152

Finally, we present a generalization of Theorem 3:153

Theorem 6. For any surrogate g(r) such that δ−g = 0, both thresholds in Theorem 5 are bounded154

below by pb0/δ+
g :155

(1) If δ−g (γja0 − γjb0) + δ+
g (ηja0 − ηjb0) > 0, then λ∗j =

γj.1p1−ηj.0p0
δ−g (γja0−γjb0)+δ+g (ηja0−ηjb0)

≥ pb0/δ+
g .156

(2) If δ+
g (γjb0 − γja0) + δ−g (ηjb0 − ηja0) > 0 then λ∗j =

γj.0p0−ηj.1p1
δ+g (γjb0−γja0)+δ−g (ηjb0−ηja0)

≥ pb0/δ+
g .157

Proof of Theorems 3 and 6. We start by proving condition (1). Applying the assumption that158

δ−g = 0, we see that δ+
g (ηja0 − ηjb0) > 0. Because all ηjsy ≤ 0 and δ+

g ≥ 0, we know −ηjb0δ+
g ≥159

δ+
g (ηja0 − ηjb0) > 0. Thus160

λ∗j =
γj.1p1 − ηj.0p0

δ−g (γja0 − γjb0) + δ+
g (ηja0 − ηjb0)

=
γj.1p1 − ηj.0p0

δ+
g (ηja0 − ηjb0)

≥ γj.1p1 − ηj.0p0

−ηjb0δ+
g

≥ −ηj.0p0

−ηjb0δ+
g

The last inequality uses γj.1p1 ≥ 0. Further note that,161

−ηj.0 =
1

N0

∑
(x,s,y)∈D
y=0

−min(0,Φ(x)j) ≥
1

N0

∑
(x,s,y)∈D
s=b,y=0

−min(0,Φ(x)j) = −Nb0
N0

ηjb0

This follow from the fact that every term in these sums is non-negative. Thus162

λ∗j ≥
−ηj.0p0

−ηjb0δ+
g
≥
−ηjb0Nb0

N0

N0

N

−ηjb0δ+
g

=
pb0

δ+
g

5



Next we prove condition (2). Applying the assumption that δ−g = 0, we see that δ+
g (γjb0− γja0) > 0.163

Because all γjsy ≥ 0 and δ+
g ≥ 0, we know γjb0δ

+
g ≥ δ+

g (γjb0 − γja0) > 0. Thus164

λ∗j =
γj.0p0 − ηj.1p1

δ+
g (γjb0 − γja0) + δ−g (ηjb0 − ηja0)

=
γj.0p0 − ηj.1p1

δ+
g (γjb0 − γja0)

≥ γj.0p0 − ηj.1p1

δ+
g γjb0

≥ γj.0p0

δ+
g γjb0

The last inequality uses −ηj.1p1 ≥ 0. Further note that165

γj.0 =
1

N0

∑
(x,s,y)∈D
y=0

max(0,Φ(x)j) ≥
1

N0

∑
(x,s,y)∈D
s=b,y=0

max(0,Φ(x)j) =
Nb0
N0

γjb0

This follows from the fact that every term in these sums is non-negative. Thus166

λ∗j ≥
γj.0p0

δ+
g γjb0

≥
γjb0

Nb0

N0

N0

N

δ+
g γjb0

=
pb0

δ+
g

Theorem 3 is a special case of Theorem 6, where Φ(x)j ≥ 0 so all ηjsy = 0 and all γjsy = µjsy.167

Thus condition (1) of Theorem 6 cannot hold, and given condition (2), λ∗j ≥ pb0/δ+
g . Note that for168

all relaxations we consider where δ+
g 6= 0, δ+

g = 1 and thus λ∗j ≥ pb0.169
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