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A.1 The pharmacological model for dexamethasone402

The expert ODE we used is adapted from [17]. As illustrated in Figure 5, it involves five expert403

variables z1 to z5 (the superscript e is omitted for brevity). The z1 represents the innate immune404

response to viral infection (measured in the laboratory using Type I IFNs [43, 1]). The z2 and405

z3 represent the concentration of dexamethasone in lung tissue and plasma respectively. The z4406

represents the viral load and z5 represents the adaptive immune response (measured in the laboratory407

using Cytotoxic T cells [1]).408

The expert model that describes these variables are developed based on specialized knowledge and409

laboratory experiments. Firstly, the immune responses and viral replication are modeled as:410

ż1 = kIR · z4 + kPF · z4 · z1 − kO · z1 +
Emax · zhP1
EChP50 + zhP1

− kDex · z1 · z2 (10)

ż4 = kDP · z4 − kIIR · z4 · z1 − kDC · z4 · zhC5 (11)
ż5 = k1 · z1 (12)

The five terms in the first Equation for z1 captures the initial immune reaction to the virus, the411

physiological positive feedback, the immune cell mortality, the pathological positive feedback, and412

the effect of dexamethasone [17]. The second equation of z4 captures the viral replication, and the413

effect of innate and adaptive immune systems on the virus. The last equation captures the adaptive414

immune response triggered by the innate immune response [1]. The unknown coefficients kIR, kPF ,415

kO, Emax, hP , kDex, kDP , kIIR, kDC , hC are positive real numbers.416

The concentration of dexamethasone (z2, z3) is described by a standard two-compartmental pharma-417

cokinetics model [52, 48]:418

ż2 = −k2 · z2 + k3 · z3 (13)
ż3 = −k3 · z3 (14)

The coefficients k2, k3 are positive real numbers. In the literature, it is often assumed for simplicity419

that the treatment is given at time t = 0, and the initial condition of the plasma concentration z3(0)420

corresponds to the dosage [22]. Since the plasma concentration z3 decays exponentially over time,421

we can equivalently express it as a sum of exponentials: z3(t) =
∑
i di · I(t > ti) · exp(k3(ti − t))422

when dosages di are given at time ti, i ≥ 1. The function I(·) is an indicator function.423

Prior distribution for real-data experiment. The initial condition z(0) corresponds to the patient424

state at the time of ICU admission. Since dexamethasone is generally administered during the ICU425

stay [57], its concentration at admission should be very close to zero. Hence we use an exponential426

distribution with rate λ = 100 as the prior of z2(0) and z3(0). On the other hand, the immune427

response and viral load may vary across patients greatly. To allows for more heterogeneity, we use an428

exponential distribution with rate λ = 0.1 as the prior of z1(0), z4(0), and z5(0). The exponential429

distribution also reflects the positivity of the expert variables because it has a positive support.430
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Figure 5: The expert variables and their temporal interactions as described by the expert ODE.

A.2 Medical importance and impact431

A.2.1 Medical importance of LHM432

Integration of machine learning (ML) and pathophysiology is a major challenge in adopting ML433

models in a clinical setting. While clinicians seek to understand the mechanisms that drive disease434

progression for prognosis and treatment allocation, machine learning models do not currently provide435

such disease dynamics. With these dynamics, however, model results would translate to clinically436

interpretable concepts, would resonate with clinicians, and could then support clinical decision437

making.438

In addition, disease dynamics are indispensable for the clinical interpretation of predictive modeling439

results. Predictive modeling has taken flight in the medical field, but many models are left stranded440

because clinicians can solely rely on feature importance and no mechanistic interpretation of the441

results. Such an interpretation, however, will increase clinicians’ trust in these models and expedite442

their use in clinical practice.443

Lastly, the relationship between fundamental and clinical research may yield novel hypotheses and444

foster subsequent research. There is a gap between benchwork and the bedside. Bridging this gap445

with ML and interpretable models could reveal novel relationships and could inspire research both446

ways. Overall, ML with a mechanistic interpretation can provide the next big step in medical data447

science and can help bring these models to the bedside.448

A.2.2 Dexamethasone in COVID-19449

Coronavirus disease 2019 (COVID-19) was an unknown disease to intensive care clinicians worldwide.450

Both the natural course of the disease as well as optimal treatment were unknown throughout the451

onset of the pandemic. Since inflammatory organ injury appeared to play an important role in the452

pathophysiology of COVID-19, glucocorticoids were proposed to mitigate the damaging effects of the453

immune system [54]. In particular, Dexamethasone treatment has been shown to reduce mortality in454

patients on invasive mechanical ventilation or oxygen alone in the RECOVERY trial [32]. Moreover,455

the CoDEX trial demonstrated an increase in the number of ventilator free days with Dexamethasone456

treatment in moderate to severe COVID-19 acute respiratory distress syndrome (ARDS)[80]. As a457

result, COVID-19 treatment guidelines recommend Dexamethasone treatment in these settings [57].458

Although beneficial effects have been shown of Dexamethasone on a group level, individual response459

to treatment remains unknown. Knowing this response would help clinicians to anticipate complica-460

tions, to improve individualized prognosis, and potentially determine beneficial treatments in these461

patients. Moreover, clinicians could identify patients in which Dexamethasone has a desired effect462

and in which patient it may not. For example, in the case of coinfection, Dexamethasone may be463

discontinued in selected patients. Lastly, these models can identify novel mechanistic pathways in464

COVID-19 patients that can inspire both fundamental and clinical research. Taken together, individu-465

alized disease progression in response to Dexamethasone treatment would bring about a large step466

forward in COVID-19 research.467
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A.2.3 Potential negative impact468

Any decision support system could be used negatively if the user intentionally chooses to worsen the469

outcome. This is very unlikely in our case because the intended users of LHM are clinicians.470

A.3 Optimization and gradient calculation471

We optimize ELBO by stochastic gradient ascent using the ADAM optimizer [45]. The gradient472

calculation is enabled by the following two methods.473

Reparameterization. To evaluate the ELBO, we need to take samples from the variational distribu-474

tion Qφ. Here we use the Gaussian reparameterization in all sampling steps to obtain the gradients475

for the encoder [46].476

Gradient for ODE. We use the torchdiffeq library to calculate the gradient with respect to the ODE477

solutions [13]. A variety of ODE solvers are available in the library, we used the adams solver, which478

is an adaptive step size solver.479

A.4 Simulation study480

A.4.1 Data generation details481

We generated a variety of datasets to evaluate the model performance under different scenarios. To482

evaluate how the number of clinical measurements affects performance, we generated datasets with483

D = 20, 40 or 80 measurable physiological variables x. For the pharmacological model, we used the484

model provided in Appendix A.1, which involves five inter-related variables. We set the coefficients485

hP = hC = 2 and the rest to be one.486

For each dataset, we set the number of un-modeled states zm according to the number of physiological487

variables to be M = D/10 = 2, 4 or 8 (respectively). (We made this choice to reflect the fact that a488

larger number of physiological variables often necessitates a larger number un-modeled states.) The489

un-modeled states zm are governed by a nonlinear ODE490

żmi = tanh(W1z
m
i + W2z

e
i ),

with the coefficient matrices W1 ∈ RM×M , W2 ∈ RM×E . For each dataset, we sampled the entries491

in these matrices independently from N(0, 1).492

For each patient i, each of the components of its initial condition zi(0) were independently drawn493

from an exponential distribution with rate λ = 100 (this distribution is also given to the algorithms as494

the prior distribution). We consider a time horizon of T = 14 days; this is the median length of stay495

in hospital for Covid-19 patients [66].496

Each patient i will receive a one-time dexamethasone treatment with dosage di at some time si,497

where di ∼ uniform[0, 10] mg and si ∼ uniform[0, T ].498

The true physiological variables are generated by499

xi = W3zi + W4ai,

with the coefficient matrices W3 ∈ RX×(M+E), W4 ∈ RX×1. For each dataset, each element in500

these matrices was drawn independently from N(0, 1) and then multiplied by a Bernoulli variable501

with p = 0.5, so that approximately half of the elements in each of these matrices W3, W4 were 0.502

(We did this in order to reflect the idea that each physiological variable is only related to some of the503

latent variables.) The measurements are generated by504

yi(t) = xi(t) + εit

with the measurement noise εit ∼ N(0, σ) for σ = 0.2, 0.4 or 0.8; Equation (1). We first simulate all505

the daily measurements at t = 1, 2, . . . , T , and then randomly remove measurements with probability506

0.5; this represents the fact that measurements of made irregularly.507

A.4.2 Hyper-parameter settings508

As a reminder, the number of measured clinical variables is D, the number of expert variables is E,509

the number of ML latent variables is M . The sample size is N0510

The following is the hyperparameter setting used in the simulation study:511
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Figure 6: Simulation results under different lengths of observed history t0. Prediction accuracy on future
measurements Y[t0 : T ] given the observed history Y[0 : t0] as measured by RMSE. The shaded areas represent
95% confidence intervals.

Figure 7: Simulation results under different levels of measurement noise σ. Prediction accuracy on future
measurements Y[5 : T ] given the observed history Y[0 : 5] as measured by RMSE and CRPS. The shaded areas
represent 95% confidence intervals.

1. Learning rate: 0.01512

2. Batch size: min(50, N0)513

3. Early stopping tolerance: 10 epochs514

4. Max iteration: 400515

5. Number of latent variables in NODE: Z = E +M , i.e. the true value. (additional settings516

E +M + 4 and E +M + 9 are reported in the sensitivity analysis)517

6. Number of ML latent variables in LHM: M , i.e. the true value.518

7. Latent dimensionality in Encoder: 2D519

8. Number of layers in NODE: 2520

9. ODE Solver: adams521

10. ODE rtol: 1E-7 (library default)522

11. ODE atol: 1E-8 (library default)523

A.4.3 Performance under different lengths of observed history524

As a reminder, we use the historical measurements Y[0 : t0] up to some time t0 to predict the525

future measurements Y[t0 : T ]. To evaluate the performance under different lengths of observed526

history, we set t0 = 2, 5 or 10 days and use the default setting σ = 0.2 and M = 2. The results are527

presented in Figure 6, where each panel corresponds to a different t0. As expected, the predictive528

performance improved when longer observed history is used to make prediction. LHM outperforms529

the benchmarks for all t0’s we study.530

A.4.4 Performance under different levels of measurement noise531

In Figure 7, we show the model performance under different levels of measurement noise σ =532

0.2, 0.4, 0.8 in a typical simulation with sample size N0 = 100 and M = 2 un-modeled latent533

variables zm. In addition to the benchmarks introduced in Section 5.1, we compared with the LHM534

using normalizing flow as the variational distribution (LHM-NF) (detailed in the next section). Both535

LHM and LHM-NF outperform other benchmarks in RMSE. LHM-NF achieves the best CRPS with536

a fairly big improvement from the second best method (LHM). The result shows LHM’s robustness537

to increased measurement noise.538
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Figure 8: Comparison between the standard LHM and the version with normalizing flow (LHM-NF).
Loss on training and evaluation datasets are plotted over training iterations. The loss is the negative ELBO.

Figure 9: NODE’s performance under different numbers of latent variables Z. The data are generated
from six true latent variables. Prediction accuracy on future measurements Y[5 : T ] given the observed history
Y[0 : 5] as measured by RMSE and CRPS.

A.4.5 Performance gain with Normalizing Flows539

To ensure a fair comparison with existing methods, we use the diagonal Gaussian distribution in LHM540

as the variational distribution. However, diagonal Gaussian is a restrictive approximation because it541

does not capture any correlation structure between the latent variables.542

Here we study if using a more flexible distribution will lead to further performance gain. We adopt543

the planar normalizing flow proposed in [67] with the number of flows set to 4. As is standard in the544

literature, we amortize the initial conditions z(0) as well as the flow parameters u, w and b. The545

following shows a typical simulation with N0 = 100, σ = 0.4 and M = 2.546

Figure 8 tracks the loss function (negative ELBO) during training on the training and the evaluation547

data respectively. As we expected, the version with normalizing flow (LHM-NF) consistently achieves548

smaller loss on the training data due to the increased flexibility of the variational distribution. The549

improvement persists when we turn to the evaluation data, and eventually translates into the perfor-550

mance gain illustrated in Figure 7. This suggests that using a more flexible variational distribution551

(e.g. normalizing flow) tends to improve accuracy as well as the uncertainty estimation.552

A.4.6 Performance of NODE is not sensitive to adding more latent variables553

In the simulations reported above, we set the number of latent variables in NODE to be the true554

value, i.e. Z = M + E. In practice, Z is a hyper-parameter that we do not know a priori. Here555

we study if the performance is sensitive to the exact choice of Z. We consider a setting where the556

data is generated from 6 latent variables (including both zm and ze) and we vary Z = 6, 10, 15. We557

present the results in a typical simulation setting with N0 = 100, σ = 0.2. As we show in Figure558

9, the predictive performance does not significant change even when Z is more than doubled. Note559

that similar findings have been reported in prior research [21]. This supports our choice of setting560

Z = M + E by default.561
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Table 2: Different methods to create hybrid ML models. We consider a static prediction problem with covariates
x ∈ RD and target outcome y ∈ RK (notations differ from the rest of the paper). The r := y − ŷ denotes the
residuals.

Method Example Expert model ML model Final output

Residual Model [51, 82] ŷ = fe(x) r̂ = fm(x) ŷ + r̂
Ensemble [89, 87] ŷ1 = fe(x) ŷ2 = fm(x) w1ŷ1 + w2ŷ2

Feature Extraction [40] ze = fe(x) ŷ = fm(ze) ŷ
LHM This work Eq. 3 Eq. 4, 5 Eq. 4

A.4.7 Computational resources562

The simulations were performed on a server with a Intel(R) Core(TM) i5-8600K CPU @ 3.60GHz563

and a Nvidia(R) GeForce(TM) RTX 2080 Ti GPU. All individual simulations were finished within 3564

hours.565

A.5 Extended related works566

A.5.1 Hybrid models567

Table 2 categorizes various hybrid modeling frameworks in terms the kind of expert model and the568

kind of machine learning that are used. For illustrative purposes, we consider a static prediction569

problem with measurements (covariates) x ∈ RD and target outcome y ∈ RK .570

A.5.2 Other research areas that involve ML and expert ODEs571

There are several research areas that involve ML and expert ODEs but they are unrelated to hybrid572

model or LHM. We briefly describe them for clarification and completeness.573

Reduced-Order Models. The expert model may involve a large number of variables, but not all of574

them are important to the system dynamics (e.g. in large, high-fidelity models of fluid dynamics575

[49]). Reduced-Order Models (ROMs) are compact representations of the more complex models576

[84]. They are often constructed using dimensionality reduction to retain only the most important577

dynamical characteristics of the original model. ROMs often achieve better estimation efficiency578

and lower the computational cost. Recently, ML has been applied to ROMs and achieved promising579

results [12, 86].580

In ROMs, we start with an expert model that is over-complete and contains redundant variables.581

In contrast, in LHM, we are given a pharmacological model that is incomplete, i.e. it cannot fully582

explain the high-dimensional clinical measurements or provide the link between expert variables583

and the measurements. Hence, LHM is essentially solving the opposite problem of ROMs as we are584

introducing additional machine-learned latent variables into the system.585

Using ML to solve expert equations. Some expert models involves ODEs or PDEs that are computa-586

tionally challenging to solve (e.g. the quantum many-body problem [11]). ML has been used to speed587

up the solution process by making various approximations [35, 76]. However, the pharmacological588

models are generally well-behaved and the standard ODE solvers are able to find the solutions589

efficiently.590

Learning unknown ODEs from data Step-wise regression is a general framework to discover591

unknown ODEs from data. It applies symbolic or sparse regression to the the observed time derivatives.592

When these time derivatives are not observed, they are first estimated from the (frequently-sampled)593

observations (e.g. by finite difference method) [9, 10, 71]. This approach is not applicable to our594

setting because the time derivatives of the expert variables żm are not observed or can be easily595

estimated from the data.596

In addition to neural ODEs, Gaussian Processes (GP) have also been used to approximate unknown597

governing equations [5, 72]. However, most existing works focus on the discrete-time setting or use598

fixed step ODE solvers.599
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A.5.3 Using Pharmacology/Biology models in ML600

Several other works have proposed to integrate pharmacological models into machine learning. But601

the problem settings they considered and the approach they took is different from LHM.602

[38] introduces a pharmacological model (the log-cell kill model) to modulate the state transition603

dynamics of a state-space model. Their work considers discrete-time dynamical systems rather than604

the continuous-time systems we focus on. The authors recognize that the existing log-cell kill models605

are inadequate to model the disease dynamics (e.g. failure to capture relapses). To address this606

shortcoming, the authors designed a new set of expert equations to allow for more complex dynamics607

before integrating them with ML. Hence, this approach requires a deep understanding of the expert608

model, and a fair amount of mathematical knowledge and manual work to modify the expert model.609

Furthermore, this modification process has to be repeated for a different expert model. In contrast,610

LHM learns the missing dynamics by introducing the ML latent variables zm and neural ODEs fm.611

[90] considers a problem with more expert variables than observable physiological variables, which612

is opposite to the setting we consider.4 The problem setting is similar to the reduced-order models613

discussed above. The authors use a neural network with time t as input and outputs the system status614

at that time. In contrast, LHM uses neural ODEs to model the time derivatives and obtains the system615

status at time t by solving the ODEs. Finally, the authors evaluate the gradient of the neural network616

with respect to t by automatic differentiation and introduce an additional loss function to ensure the617

network gradient matches the expert ODEs. LHM does not involve any heuristic modification on the618

loss function and follows the standard practice in Bayesian inference.619

A.5.4 Causal treatment effect estimation620

Causal effect estimation is a diverse field with many different (and often incompatible) theories, no-621

tions and methods. Here we compare the approach taken by LHM with other well-known approaches622

in the literature.623

As discussed in Section 4, LHM predicts the future health status given treatments using the governing624

equations (ODEs). This corresponds to the mechanistic (or physical) notion of the causality, which is625

recognized as the “gold standard” for modeling natural phenomena by [73].626

The potential outcome framework widely used in Statistics is based on a different notion of causality627

[70]. It makes assumptions about the statistical properties of the unobservable potential outcomes (e.g.628

independence) to make inference about the (conditional) average treatment effect. Here, the focus629

is not on using or discovering the underlying governing equations, but on leveraging the statistical630

associations between the observed and the potential outcomes. Unlike the mechanistic framework,631

the potential outcome framework does not require the system to be observed over time, making it632

suitable for problems involving only static variables.633

The causal graphical models [62] use another notion of causality. Causal graphical models describe634

the causal structure between variables as a graph (typically a directed acyclic graph, DAG). Various635

identification strategies have been developed to infer the causal effect given the graph (e.g. the636

backdoor criterion [63]). A closely related framework is the structural causal model [63], where a set637

of structural equations are given in addition to the causal graph. Typically, the structural equations638

are standard equations that link the (static or discretely sampled) variables, but they are not ODEs639

that describe the continuous-time dynamics. Some existing works attempt to establish the connection640

between the mechanistic ODEs with the structural equations [53].641

A.6 Real data experiment642

A.6.1 List of clinical variables643

We use the measurements of the following temporal physiological variables. These variables are644

chosen by our clinical collaborators and reflect the information accessible and important to a clinician645

when deciding the treatment plan. They include vital signals, lung mechanics, and the biomarkers646

measured in blood tests.647

4The Systems Biology models considered in [90] usually involve a large number of expert variables. This is
not the case in the pharmacological models we consider.
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1. P/F ratio648

2. PEEP649

3. SOFA650

4. Temperature651

5. Arterial blood pressure652

6. Heart Rate653

7. Bilirubin654

8. Thrombocytes655

9. Leukocytes656

10. Creatinine657

11. C Reactive Protein658

12. Arterial lactate659

13. Creatine kinase660

14. Glucose661

15. Alanine transaminase662

16. Aspartate transaminase663

17. Prone positioning664

18. Tidal volume665

19. Driving pressure666

20. FiO2667

21. Lung compliance (static)668

22. Respiratory rate669

23. Pressure above PEEP670

24. Arterial PaCO2671

25. Arterial PH672

26. PaCO2 (unspecified)673

27. PH (unspecified)674

We used the following static covariates:675

1. Age676

2. Sex677

3. Body Mass Index678

4. Comorbidity: cirrhosis679

5. Comorbidity: chronic dialysis680

6. Comorbidity: chronic renal insufficiency681

7. Comorbidity: diabetes682

8. Comorbidity: cardiovascular insufficiency683

9. Comorbidity: copd684

10. Comorbidity: respiratory insufficiency685

11. Comorbidity: immunodeficiency686

A.6.2 Eligibility criterion687

We selected all patients in DDW who stayed in the ICU for more than 2 days and less than 31 days688

(2097 out of 3464). Patients with a very short length of stay will not give us enough data points for689

training or evaluation.690

18



Table 3: Prediction accuracy (RMSE) on Y[t0 : t0 +H] over different time horizons H (hours). The
standard deviations are shown in the brackets.

Method \H= 6 12 24 72

Expert 0.734 (0.99) 0.724 (1.00) 0.713 (0.03) 0.993 (0.03)
Residual 0.555 (0.98) 0.575 (1.08) 0.607 (0.04) 0.983 (0.05)
Ensemble 0.556 (0.71) 0.573 (0.73) 0.599 (0.04) 0.713 (0.05)
NODE 0.661 (1.00) 0.654 (1.00) 0.650 (0.02) 0.996 (0.02)
ODE2VAE 0.627 (1.11) 0.616 (1.09) 0.619 (0.02) 1.113 (0.01)
GRU-ODE 0.549 (0.71) 0.571 (0.72) 0.601 (0.04) 0.711 (0.05)
Time LSTM 0.610 (0.81) 0.620 (0.82) 0.631 (0.04) 0.807 (0.05)
LHM 0.517 (0.72) 0.511 (0.73) 0.511 (0.03) 0.691 (0.03)

A.6.3 Hyper-parameter settings691

The following is the hyperparameter setting used in the real-data study. They are decided based on a692

pilot study.693

1. Learning rate: 0.01694

2. Batch size: 100695

3. Early stopping tolerance: 10 epochs696

4. Max iteration: 1500697

5. Number of latent variables in NODE: 20698

6. Number of ML latent variables in LHM: 15 (this is to ensure the total number of latent699

variables is the same as NODE).700

7. Latent dimensionality in Encoder: 1.2D701

8. Number of layers in NODE: 2702

9. ODE Solver: adams703

10. ODE rtol: 1E-7 (library default)704

11. ODE atol: 1E-8 (library default)705

A.6.4 Accuracy over different time horizons706

Table 3 shows the performance over different prediction horizons H given N0 = 1000 training707

samples. LHM achieves the best or equally the best performance in all cases.708

A.6.5 License and anonymity709

Access to the DDW is regulated. We have signed an end user license before access to the data was710

granted. All data were pseudonymized in DDW.711

A.7 Practical extensions712

Incorporating static covariates. Static covariates such as the demographics often impact disease713

progression. We can easily incorporate these variables in LHM by treating them as time-constant714

“treatments”. This will allow the static covariates to impact the latent dynamics as well as the mapping715

between the latent and physiological variables (Equation 3 to 5).716

Informative sampling. It is well known that the sampling frequency may carry information about717

the variables being measured (e.g. clinicians tend to take measurements more often if a patient is718

critically ill) [3]. One approach to incorporate informative sampling is to explicitly model it as a719

marked point process [69]. Another popular approach is to concatenate the measurements x with720

the masking vector that indicates which variable is measured, and train the model on the extended721

measurement vector [44]. Both approaches are compatible with LHM.722

Correcting model mis-specification. Equation Replacement is a general approach that applies to723

any misspecified expert model and it can be combined with all the methods discussed above, and724
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to LHM [34, 61, 94]. In this approach, one first identifies which equations in the expert model are725

misspecified, and then replaces these by flexible function approximators (such as neural networks),726

that will approximate the true equation after training. Equation replacement only attempts to correct727

the misspecifications in the original model, but does not introduce any new variables.728

Efficient online inference. The inference method presented in Section 3.4 requires to re-process the729

entire history each time a new measurement is made. Instead, it may be desirable to incrementally730

update the posterior of zi(0) based on the most recent measurement only. Fortunately, online Bayesian731

update (also known as Bayesian Filtering) is a well studied problem with many proven solutions (e.g.732

Kalman filter and extensions [68]). These inference methods can be applied when the efficiency of733

online inference is of concern.734

Improving encoder architecture. For a fair comparison with related works, we used the reversed735

time-aware LSTM encoder proposed in [13]. Essentially, it is a LSTM with the observation time as736

an additional input channel and running backward through time. To further improve performance,737

one may explore other architectures. Essentially, any architecture that takes irregularly sampled data738

as input is applicable. Examples include the Neural Controlled Ordinary Differential Equation [44]739

and the Neural ODE Processes [58].740
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