APPENDIX A
UNDER LS RECONSTRUCTION, A; <0

For LS we have:
Rs = Uy(MsUy)'.
Lemma 1. For any matrix A, ||UzA||% = ||A||%
Proof.
UL A||% = r(Uy AATUL) = «(UF U, AAT)
= r(AAT) = [|A]|%.

Lemma 2. For LS, & (S) = k — rank(MsUy,).
Proof. Using Lemma [T}

&1(S) = ||U, — RsMsUy||%
= [|Ux — Up(MsUy) MsUy||%
= |[Ix — (MsUy,)  MsUy||%
Let IT = (MsU,,) MsUy,. I is of the form ATA, so is a
symmetric orthogonal projection onto the range of (MsUy)”
[24, p. 258]. Orthogonal projections are idempotent (II =
I1?) hence have eigenvalues which are 0 or 1, and therefore
tr(TIT) = rank((MsUy)T) = rank(MsUy}). We then have:
&(S) = [Ty — |7
= (I — M) (I - I)T)
= tr((I — ) (1) — II))
= tr(I — 211 + I1?)
= tI‘(Ik — H)
= tr(I}) — tr(II)
=k — rank(MsUy).

Lemma 3. For LS, A;(S,v) € {0,—-1}.

Proof. Removing a vertex from S removes a row from
MUy, reducing the rank by 0 or 1.

A1(S,v) = &1(8) = &(S\{v})
= —rank(MSUk) + rank(MS\{v}Uk)
€ {0,—1}.

O
Non-positivity of A; immediately follows from Lemma [3]

APPENDIX B
UNDER LS RECONSTRUCTION, A; <0 <= Ay >0
We first need the following lemmas.

Lemma 4.

&(S) =) A% (20)

AF#0 !

where X{ is the i*" eigenvalue of (MsUy)(MsUy)T.

Proof. By definition and Appendix [A] Lemma

&(S) = ||Rs||
= ||U(MsUy)"||%
= ||[(MsUy)"||%

which is the sum of the squares of the singular values of
(MsUyg)" [24, Corollary 2.4.3]. The pseudoinverse maps
the singular values of MgsUj onto the singular values of
(MsUy)" in the following way [24, Section 5.5.2]:

0 if Ui(MsUk) =0

O’i(MsUk)_l @1

oi(MsUy)') = { .
otherwise

and the squares of the singular values of MsUj, are \; [24}

Eq. (8.6.1)]. Summing them gives the result. O]

Lemma 5.
rank((MsUy)(MsUy)T) = rank(MsUy,) < k.

Proof. For the equality: rank(MgUj) is the number of
strictly positive singular values it has [24, Corollary 2.4.6].
By [24, Eq. (8.6.2)], this is the same as the number of
strictly positive eigenvalues of (MsUy)(MsUj)T), which is
rank((MsUy)(MsUy)T).

For the inequality: MsUj, has k columns and so must have
column rank less than or equal to k. Row rank being equal to
column rank gives the result. O

Lemma 6. For LS, A; =0 <— A, <0.

Proof. Note that (Mg, (,3Uy)(Ms\(,yUi)" is a principal
submatrix of (MsU})(MsUy)T. Write the eigenvalues of
(MS\{q,}Uk)(MS\{U}Uk)T as A1,..., A, and the eigenval-
ues of (MsUy)(MsUy)" as iy, . .. pint1. Then by Cauchy’s
Interlacing Theorem [_25, p. 59],

0<pur <M< <A, < ppg1 <1 (22)

where the outer bounds come from the fact that both matrices
are principal submatrices of U,U]!', an orthogonal projection
matrix.

1) Ay = 0 = A; < 0 A; = 0 implies the
rank of MsUj does not change with the removal of v, so
neither does the rank of (MsUy)(MsUy)T. As the rank is
unchanged, (MsUy)(MsUj)T has one more zero-eigenvalue
than (Mgs\ {1 Ui)(Ms\(,3Ui)”. This means:

p1 =0 (23)
=0 <— Miv1 = 0 24)
By Cauchy’s Interlacing Theorem, \; < ;41 and so
1
— > if \; #0 and w41 # 0. (25)
Ai T it
Therefore 1 1
w2 s (26)
X570 sz M

as we have the same number of non-zero terms in each of
these terms by and (24), and the inequality is proved by



summing over the non-zero terms using ([23). Equation (26)) is
exactly

£2(S\{v}) = &2(S).

Rearranging gives Ay < 0.
2) A1 =0 <= Ay < 0: We prove the equivalent
statement

27

AL #0 = Ay > 0. (28)

By Lemma 3 if A; # 0 then A; = —1. This means that the
rank of MsUj, is reduced by 1 by the removal of v, therefore
(MsU;)(MsUy)T has one more non-zero eigenvalue than
(Ms\ ;A Uk)(Ms\ {3 U)". This means:

Mnr1 > 0 (29)
N #0 = i #0 (30)
By Cauchy’s interlacing theorem, A; > p; and so
1 1
— < —if A\; #0 and yu; # 0. 31

Ao T
Let I be the number of
(MsUk)(MsUk)T. Then

1 1
2555 L s X
I<i<n "t I<i<n "t I<i<n+1
With the left inequality by matching terms via and then
summing over (3I)), and the right inequality because (29)
means 1+1 > 0. We then note the left and the right terms in

this equeﬁity say:

zero eigenvalues of

1

2 (32)

1 1
> 38 < > s 33)
ASA£0 * ps#£0 "
or equivalently,
£2(S\{v}) < &(S). (34)
Rearranging gives Ay > 0. O
We finally have the following:
Lemma 7. For LS, A1 <0 < Ay > 0.
Proof. By Lemma [3| and Lemma [§] O

APPENDIX C
PROOF OF THEOREMI]
Proof. For brevity, we fix S and v and write Ay = Aq(S,v)
and Ay = Ay(S,0).
Equation (??) comes from Appendix [B] Lemma
Rearranging (I4) gives us that v improves S if and only if

Ar+02- Ay >0 35)
or equivalently if and only if

AL > —0? - A, (36)
By definition, o2 = ﬁ, so this condition is equivalent to

k

Ay>—__ "
1~ TN SNR

Ay (37)

and as SNR is strictly positive, this is equivalent to

k
SNR - A; > _NAQ. (38)

We can now use the major lemmas from the previous
appendices. By Lemma [3] we have two possible values of

A1(S,v):
Al =0:

Lemma [f] means A, < 0, so

Ai40° Ny =0"-Ny <0 (39)
and so v does not improve S.
Al = —1:
Eq. (38) simplifies to:
k
—SNR > ——A 40
> =B (40)
which is equivalent to
k
SNR < —As. 41
< N2 41
On the one hand, v improves S implies A; = —1, which

implies (#I)). On the other hand, implies A > 0 which in
turn implies A; = —1, which means implies (38), which
implies v improves S. O

APPENDIX D
EQUATION IS SATISFIED UNDER LS

We restate the theorem:

Theorem 4. Consider any sequence of vertices vi,...,vyN
with no repeated vertices, and let S; = {v1,...,v;}. Then
there are exactly k indices Iy,...,I; such that under LS
reconstruction of a noisy k-bandlimited signal,

V1<j<k:7(S1,vr) >0 (42)
and so for some SNR > 0 removing v;, would improve Sy;.
Proof. By Appendix [C] Lemma [}

&1(S;) = k — rank(Ms, Uy,). (43)

By Appendix [C] Lemma[3] A, € {0,—1} and as rank(Uy) =
k, & (Sn) = 0. As & (Sp) = k, we must have exactly & indices

for which A¢(S;,v;) = —1, and by Appendix Lemma

[6| we have exactly k indices for which Ay(S;,v;) > 0. As

7(Si,vi) = £A9(S;,v;), we're done. O
APPENDIX E

PROOF OF THEOREM 3]
Proof. By Appendix |[C| Lemma [2} the noiseless error

£1(S) = k — rank(MsUy) (44)

must be 0, as we can perfectly reconstruct any k-bandlimited
signal. Therefore, rank(MsUy) = k.

MsUy is a k x k matrix of full rank, so its rows must be
linearly independent. Any subset of linearly independent rows



is linearly independent, so for any non-empty R C S, MUy,
has linearly independent rows.

Greedy schemes pick increasing sample sets: that is, if asked
to pick a vertex sample set S, of size m for m < k and a
sample set S of size k, S, C S. Therefore for any sample
set Sy, of size m < k picked by the scheme, Mg U} has
independent rows.

If Ms, U has independent rows, then removal of any row
(corresponding to removing any vertex) reduces its rank by 1;
that is,

Ym<k: YveS&,: A1(Sn,v)=-1 (45)
Then, by Appendix [C] Lemma
VYm<k: YveS&,: Ay(Sn,v) >0 (46)
and as 7(Sy,,v) = %Ag(Sm,v) and % > 0,
Ym<k: Yve€S&,: 7(Sn,v)>0. 47

This proves (I8).

As Ms, U, has k independent rows, it is of rank k.
Adding further rows can’t decrease its rank, so for m’ > k,
rank(Ms ,Uy) > k. As Uy, is of rank k, rank(Ms_,Uy) <
k. This means for all samples sizes m’ > k, rank(Ms_,U}) =
k. This says that further additions of rows do not change rank;
that is:

Vm' >k Vo € Sp\Sk i A1(Sm,v) =0 (48)
Then, by Appendix [C] Lemma [6]
Vm' >k: Yo € S \Sk: Ax(Sm,v) <0 (49)

and, like for l, as 7(Sp,v) = %Az(sm,v) and % >0,
vm'>k: Vo€ Sm/\Sk : T(Sm/,v) <0. (50)
This proves (19). O

APPENDIX F
PROOF OF REMARK [4]

A-Optimality

A-optimality depends on the existence of the inverse of
(MsUy)(MsU;)T existing, which requires it to be of full
rank. By Appendix [C} Lemma[3] if an A-optimal scheme picks
a set S of size k, then rank(MsUy) = k. Therefore, S is
a uniqueness set [[17] and can perfectly reconstruct any k-
bandlimited signal.

D- and E-optimality

We show that for sample sizes less than k& we can always
pick a row which keeps (MsUy,)(MsU})T full rank (of rank
|S]), and that D- and E-optimal schemes do so.

By Appendix Lemma [5| rank(MsUy)(MsU)T =
rank(MsUj,), so we only need to ensure rank(MsUy) = |S|.

We proceed by induction: given & with |1 = 1,
rank(Ms, Uy) = 1. Assume that for S; with |S;| = @ < k,
rank(Ms,Uy) = i. As rank(Uy) = k and ¢ < k, we can find
a row to add to M, U, which will increase its rank (else all

other rows would lie in the i-dimensional space spanned by the
rows of M, Uy, which would imply rank(U},) = 4, which is a
contradiction as 7 < k). Adding the vertex which corresponds
to the row to S; gives S; 11 with rank(Ms,  Ux) =i + 1.

We have shown that we can greedily choose to keep
rank(MsUy) = |S]. We now show that D- and E-optimal
schemes do so. The eigenvalues of (MgsUy)(MsUy)T are
non-negative (see Appendix Eq. (22)), so any invertible
(MsU)(MsU)T will have a strictly positive determinant
and minimum eigenvalue, which are preferable under the D-
and E- optimality criterion respectively to a non-invertible
(MsUy;)(MsUy)T, which has a determinant and minimum
eigenvalue of 0. Therefore, greedy D- and E- optimal sampling
schemes will make sure (MsUy)(MsU)T is invertible,
and thus keep rank(MsUy) = |S| for |S| < k. Therefore
when D- and E- optimal schemes pick a set S of size k,
rank(MsUy) = k. Therefore, S is a uniqueness set [17] and
can perfectly reconstruct any k-bandlimited signal.

APPENDIX G
ADDITIONAL RESULTS

We show thresholds for the ER, BA and SBM graphs with
100 vertices (Fig. [3). We also present MSE plots for the larger
BA (Fig @) and SBM (Fig [3) graphs.
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