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A More discussion about LSR and KLSR1

Note that if n � m, using the push-through identity [?], we reformulate (??) as C = X>(λI +2

XX>)−1X to reduce the computational cost from O(n3) to O(mn2). In (??), when n is3

large (e.g.> 5000), we perform randomized SVD [?] on K: K ≈ VrΣrV
>
r . Then C ≈4

VrΣ
1/2
r (λI + Σ)−1Σ

1/2
r V >r , where r = 20k works well in practical applications. The time com-5

plexity of computing C is O(rτn+ rn2). The computation of the smallest k + 1 eigenvalues of L6

is equivalent to compute the largest k + 1 eigenvalues and eigenvectors of D−1/2AD−1/2, which7

is sparse. The time complexity is O(kτn). We have the follows.8

Proposition A.1. Let ĉ be the optimal solution of minimizec 1
2‖φ(y) − φ(X)c‖2 + λ

2 ‖c‖
2,9

where φ is induced by Gaussian kernel and y is arbitrary. Then ‖ĉi − ĉj‖ ≤10 √
2− 2 exp (−‖xi − xj‖2/(2ς2)).11

It shows that when two data points in X , e.g. xi and xj , are close to each other, the corresponding12

two elements in ĉ, e.g. ĉi and ĉj , have small difference. Hence (??) with Gaussian kernel utilizes13

local information to enhance C.14

In LSR and KLSR, let λ ∈ Λ, τ ∈ T , and Θ = Λ × T . The algorithm of AutoSC-GD with only
LSR and KLSR is shown in Algorithm 1. The total time complexity is

O
(
|Λ|(mn2 + rτ̄n+ rn2) + 2|Λ||T |kτ̄n

)
,

where τ̄ denotes the mean value in T . The time complexity is at most O(|Λ|
(
mn2 + |T |kmn)

)
15

when τ ≤ r ≤ m ≤ n. It is worth noting that Algorithm 1 can be easily implemented parallelly,16

which will reduce the time complexity to O(max(m, r)n2 + kmn). On the contrary, SSC, LRR,17

and their variants require iterative optimization and hence their time complexity is about O(tmn2),18

where t denotes the iteration number and is often larger than 100.19

B The algorithm of AutoSC+NSE20

See Algorithm 2.21

C More theoretical results22

C.1 Theoretical guarantee for KLSR23

Definition C.1 (Polynomial Deterministic Model). The columns of X0 ∈ Rm×n are drawn from a24

union of k different polynomials {gj : Rr → Rm, r < m}kj=1 of order at most p and are further25

corrupted by noise, say X = X0 + E. Denote the eigenvalue decomposition of the kernel matrix26

K of X as K = V ΣV >, where Σ = diag(σ1, . . . , σn) and σ1 ≥ σ2 ≥ · · ·σn. Let γ = σd+1/σd.27
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Algorithm 1 AutoSC-GD with Only LSR and KLSR

Input: X , k, F , Λ, T
1: Normalize the columns ofX to have unit `2 norm.
2: for fu in F do
3: for λi in Λ do
4: Construct C by (??) or (??).
5: for τj in T do
6: C ← |C � (1− I)|.
7: Truncate C with parameter τj .
8: For j = 1, . . . , n, let cj ← cj/|cj |1.
9: A = (C +C>)/2.

10: L = I −D−1/2AD−1/2.
11: Compute σ1, . . . , σk+1 and v1, . . . ,vk.
12: ∆uij = REG(L), Vuij = [v1, . . . ,vk].
13: end for
14: end for
15: end for
16: Z = V>

ūīj̄
, where {ū, ī, j̄} = argmaxu,i,j∆uij .

17: Normalize the columns of Z to have unit `2 norm.
18: Perform k-means on Z.
Output: k clusters: C1, . . . , Ck.

Algorithm 2 AutoSC+NSE

Input: X , k, F , Θ, n̂.
1: Select n̂ landmarks fromX by k-means to form X̂ .
2: Apply AutoSC-G or AutoSC-BO to X̂ with F and Θ.
2: Get Ẑ from the best Laplacian matrix given by AutoSC-G or AutoSC-BO.
3: Use mini-batch Adam to solve (14).
4: Compute Z by (15).
5: Perform k-means on Z.

Output: k clusters: C1, . . . , Ck.

Denote vi = (vi1, . . . , vin) the i-th row of V and let v̄i = (vi1, . . . , vid), where d < n. Suppose28

the following conditions hold: 1) for every i ∈ [n], the τ̄ -th largest element of {|v̄>i v̄j | : j ∈ Cπ(i)}29

is greater than α; 2) maxi∈[n] maxj∈[n]\Cπ(i)
|v̄>i v̄j | ≤ β; 3) maxi,j,l |vilvjl| ≤ µ.30

Here we consider polynomials because they are easy to analyze and can well approximate smooth31

functions provided that p is sufficiently large. Clustering the columns of X given by Definition32

C.1 according to the polynomials is actually a manifold clustering problem beyond the setting of33

subspace clustering. Similar to the subspace detection property, we define34

Definition C.2 (Manifold Detection Property). A symmetric affinity matrixA obtained fromX has35

manifold detection property if for all i, the nonzero elements of ai correspond to the columns ofX36

lying on the same manifold as xi.37

The following theorem verifies the effectiveness of (12) followed by the truncation operation in38

manifold detection.39

Theorem C.3. Suppose X and K are given by Definition C.1 and C is given by (12), where the40

kernel function is a polynomial kernel of order q, rank(K0) = d (K0 is fromX0), and41 (
ρ−
√
ρ2−4(2µd−∆)(2µn−2µd−∆)

)
σ2
d

4µd−2∆ < λ <

(
ρ+
√
ρ2−4(2µd−∆)(2µn−2µd−∆)

)
σ2
d

4µd−2∆ (1)

where ρ = 2µnγ2 −∆(1 + γ2). Then d ≤ k
(
r+pq
pq

)
and theC truncated by τ ≤ τ̄ has the manifold42

detection property.43
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In the theorem, σd can be much larger than σd+1 provided that the noise is small enough. Then44

we get a wide range for λ. Compared to Theorem 3.7, Theorem C.3 allows a much larger d, which45

means the kernel method is able to handle more difficult clustering problems than the linear method.46

C.2 Theoretical analysis for NSE47

The following proposition shows that a small number of hidden nodes in NSE are sufficient to make48

the clustering succeed.49

Proposition C.4. Suppose the columns (with unit `2 norm) of X are drawn from a union of k50

independent subspaces of dimension r:
∑k
j=1 dim(Sj) = dim(S1 ∪ · · · ∪ Sk) = kr. For j =51

1, . . . , k, let U j be the bases of Sj and xi = U jvi, if xi ∈ Sj . Suppose max{‖U i
:l
>
U j‖ : 1 ≤ l ≤52

r, 1 ≤ i 6= j ≤ k} ≤ µ. Suppose that for all i = 1, . . . n, max{v1i, . . . , vri} > µ. Then there exist53

W1 ∈ Rd×m, W2 ∈ Rk×d, b1 ∈ Rd, and b2 ∈ Rk such that performing k-means on Z given by54

(15) identifies the clusters correctly, where d = kr.55

D More details about AutoSC-BO56

In AutoSC-BO, we use Expected Improvement (EI) acquisition function57

aEI(s|Dt) = Ep [max(gmin − g(s), 0)] , (2)

where gmin is the best function value known. The closed-form formulation is58

aEI(s|Dt) = (gmin − µ)Φ

(
gmin − µ)

σ

)
+ φ

(
gmin − µ)

σ

)
, (3)

where µ = µ(s|Dt, θK) and σ = σ(s|Dt, θK) are the mean value and variance of the Gaussian59

process, φ and Φ are standard Gaussian cumulative density function and probability density func-60

tion respectively, and θK denotes the hyperparameters of the Gaussian process. For the covariance61

function, we use the automatic relevance determination (ARD) Matérn 5/2 kernel Matérn [2013]:62

kM52(s, s′) = θ0

(
1 +

√
5r2(s, s′) +

5

3
r2(s, s′)

)
× exp

(
−
√

5r2(s, s′)
)
, (4)

where r2(s, s′) =
∑d
j=1(sj − s′j)2/θ2

j . AutoSC-BO is implemented in MATLAB.63

E More about the experiments64

E.1 Dataset description65

The description for the benchmark image datasets considered in this paper are as follows.66

• Extended Yale B Face [Kuang-Chih et al., 2005] (Yale B for short): face images67

(192×168) of 38 subjects. Each subject has about 64 images under various illumination68

conditions. We resize the images into 32× 32.69

• ORL Face [Samaria and Harter, 1994]: face images (112×92) of 40 subjects. Each sub-70

ject has 10 images with different poses and facial expressions. We resize the images into71

32×32.72

• COIL20 [Nene et al., 1996]: images (32 × 32) of 20 objects. Each object has 72 images73

of different poses.74

• AR Face [Martı́nez and Kak, 2001]: face images (165×120) of 50 males and 50 females.75

Each subject has 26 images with different facial expressions, illumination conditions, and76

occlusions. We resize the images into 42× 30.77

• MNIST [LeCun et al., 1998]: 70,000 grey images (28× 28) of handwritten digits 0− 9.78

• MNIST-1k(10k): a subset of MNIST containing 1000(10000) samples, 100(1000) ran-79

domly selected samples per class.80
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• Fashion-MNIST [Xiao et al., 2017]: 70,000 gray images (28× 28) of 10 types of fashion81

product.82

• Fashion-MNIST-1k(10k): a subset of Fashion-MNIST containing 1000(10000) samples,83

100(1000) randomly selected samples per class.84

• MNIST-feature: following the same procedures of [Chen et al., 2020], we compute a fea-85

ture vector of dimension 3,472 using the scattering convolution network Bruna and Mallat86

[2013] and then reduce the dimension to 500 using PCA.87

• Fashion-MNIST-feature: similar to MNIST-feature.88

• GTSRB [Stallkamp et al., 2012]: consisting of 12,390 images of street signs in 14 cate-89

gories. Following [Chen et al., 2020], we extract a 1568-dimensional HOG feature, and90

reduce the dimension to 500 by PCA.91

All experiments are conducted in MATLAB on a MacBook Pro with 2.3 GHz Intel i5 Core and 8GB92

RAM.93

E.2 Hyperparameter settings for the small datasets and the results on COIL20 and94

Fashion-MNIST 1k95

The parameter λ in each of SSC, LRR, and KSSC is chosen from96

{0.01, 0.02, 0.05, 0.1, 0.2, . . . , 0.5}. The λ in BDR is chosen from {5, 10, 20, . . . , 80}. The97

γ in BDR-B and BDR-Z is chosen from {0.01, 0.1, 1}. The parameter s in SSC-OMP is chosen98

from {3, 4, . . . , 15}. We report the results of these methods with their best hyperparameters. In99

AutoSC, we set Λ = {0.01, 0.1, 1} and T = {5, 6, . . . , 15}. In AutoSC-BO, we consider two100

models: 1) Gaussian kernel similarity; 2) KLSR with polynomial kernel; 3) KLSR with Gaussian101

kernel, in which the hyperparameters of kernels are optimized adaptively. Then we needn’t to102

consider LSR explicitly because it is a special case of KLSR with polynomial kernel. See Appendix103

E.5.104

The clustering results on COIL20 and Fashion-MNIST-1k are shown in Table 1.105

Table 1: Clustering results on COIL20 and Fashion-MNIST-1k
SSC LRR EDSC KSSC SSC-OMP BDR-Z BDR-B AutoSC-GD AutoSC-BO

COIL20 acc 0.871 0.729 0.759 0.912 0.658(0.030) 0.713 0.791 0.782(0.012) 0.878
time 61.8 221.2 15.4 100.6 2.5 86.8 86.8 7.6 39.2

Fashion-
MNIST-1k

acc 0.553
(0.025)

0.515
(0.014)

0.544
(0.017)

0.548
(0.016)

0.566
(0.034)

0.574
(0.019)

0.563
(0.031)

0.581
(0.025)

0.584
(0.021)

time 24.1 68.5 5.1 35.9 1.2 25.7 25.7 2.6 22.7

E.3 Clustering results in terms of NMI106

In addition to the clustering accuracy reported in Table 4, here we also compare the normalized107

mutual information (NMI) in Table 2. We see that the comparative performance of all methods are108

similar to the results in Table 4 and our methods AutoSC-GD and AutoSC-BO outperformed other109

methods in almost all cases.

Table 2: Normalized Mutual Information on the six small datasets

SSC LRR EDSC KSSC SSC-OMP BDR-Z BDR-B AutoSC-GD AutoSC-BO
Yale B 0.817 0.703 0.835 0.730 0.841 0.666 0.743 0.919 0.928
ORL 0.849 0.872 0.856 0.872 0.815 0.875 0.865 0.907 0.903

COIL20 0.954 0.706 0.843 0.983 0.671 0.843 0.873 0.897 0.963
AR 0.818 0.872 0.825 0.809 0.691 0.865 0.861 0.887 0.904

MNIST-1k 0.612 0.538 0.631 0.626 0.546 0.634 0.580 0.667 0.652
Fashion-MNIST-1k 0.616 0.601 0.621 0.621 0.559 0.614 0.605 0.633 0.629

110
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E.4 The stability of AutoSC111

Though we have used a relatively compact search space in AutoSC to reduce the highly unnecessary112

computational cost, the search space can be arbitrarily large. Figure 1 shows the clustering accuracy113

and the corresponding relative-eigen-gap. We can see that the region with highest relative-eigen-gap114

is in accordance with the region with highest clustering accuracy.

Figure 1: Visualization of the clustering accuracy and the corresponding relative-eigen-gap when a
large search space is used.

115

E.5 More about AutoSC-BO in the experiments116

For SSC, we consider the following problem117

minimize
C

1
2 Tr

(
K − 2KC +C>KC

)
+ λ‖C‖1, (5)

where K is an n× n kernel matrix with [K]ij = k(xi,xj). Note that when we use a linear kernel118

function, (5) reduces to the vanilla SSC. We solve the optimization via alternating direction method119

of multipliers (ADMM) Boyd et al. [2011], where the Lagrange parameter is 0.1 and max number of120

iterations is 500. In this study, we consider polynomial kernel and Gaussian kernel, and optimize all121

hyperparameters including the order of the polynomial kernel. Particularly, for Gaussian kernel, we122

set ς = ξ
n2

∑
ij ‖xi−xj‖ and optimize ξ. The search space for the hyperparameters are as follows:123

10−3 ≤ λ ≤ 1, 5 ≤ τ ≤ 50, 0 ≤ b ≤ 103, 1 ≤ q ≤ 5, 0.5 ≤ ξ ≤ 5.124

In addition to Figure 2 of the main paper, here we report the best hyperparameters of the four models125

found by AutoSC-BO in Table 3. It can be found that the accuracy of KLSR with a linear kernel is126

higher than other models, which is consistent with its highest reg.127

Table 3: The best hyperparameters and the corresponding clustering accuracy given by AutoSCBO
on the first 10 subjects of YaleB Face dataset.

method hyperparameters reg accuracy
KLSR

(Polynomial)
λ = 0.207, b = 19.09,

q = 1, τ = 5
2.379 0.966

KLSR
(Gaussian)

λ = 0.013,
ξ = 4.92, τ = 5

2.217 0.963

KSSC
(Polynomial)

λ = 0.519, b = 44.57,
q = 2, τ = 5

1.388 0.859

KSSC
(Gaussian)

λ = 0.0011,
ξ = 4.97, τ = 6

0.892 0.584
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E.6 Hyperparameter settings of large-scale clustering128

On MNIST-10k, MNIST, Fashion-MNIST-10k, and Fashion-MNIST, the parameter settings of Chen129

and Cai [2011], SSSC Peng et al. [2013], SSC-OMP You et al. [2016], and S5C Matsushima and130

Brbic [2019], and S3COMP-C Chen et al. [2020], and AutoSC+NSE are shown in Table 4. These131

hyper parameters have been determined via grid search and the best (as possible) values are used.132

Table 4: Hyper-parameter settings of the compared methods on MNIST-10k, MNIST, Fashion-
MNIST-10k, and Fashion-MNIST. s denotes the number of landmark data points. In the optimiza-
tion (mini-batch Adam) of AutoSC+NSE, the epoch number, batch size, and step size are 200, 128,
and 10−3 respectively.

LSC-K s = 1000, r = 3
SSSC s = 1000, λ = 0.01
SSC-OMP K = 10 (sparsity)
S5C s = 1000, λ = 0.1 or 0.2
S3COMP-C T = 20, λ = 0.4, δ = 0.9
AutoSC+NSE s = 1000, d = 200, γ = 10−5

AutoSCBO+NSE s = 1000, d = 200, γ = 10−5

E.7 Influence of hyper-parameters in AutoSC+NSE133

We investigate the effects of the type of activation function and the number (d) of nodes in the134

hidden layer of NSE. For convenience, we used a fixed random seed of MATLAB (rng(1)). Figure 2135

shows the clustering accuracy on MNIST given by AutoSC+NSE with different activation function136

and different d. We see that ReLU outperformed tanh consistently. The reason is that the nonlinear137

mapping g from the data space to the eigenspace of the Laplacian matrix is nonsmooth and ReLU138

is more effective than tanh in approximating nonsmooth functions. In addition, when d increases,139

the clustering accuracy of AutoSC+NSE with ReLU often becomes higher because wider network140

often has higher ability of function approximation.141

Figure 2: ReLU v.s. tanh (hyperbolic tangent) in the hidden layer of AutoSC+NSE on MNIST.
When using ReLU, we set γ = 10−5 and α = 10−3 (the step size in Adam). When using tanh, we
set γ = 10−3 and α = 10−2, which perform best in this case. Notice that the clustering accuracy
when using ReLU is higher than 0.78 in almost all cases, which is higher than the value (say 0.755)
we reported in the main paper. The reason is than in the main paper, we reported the mean value of
10 repeated trials but here we reports the value of a single trial.

Figure 3 shows the clustering accuracy on MNIST given by AutoSC+NSE with different γ and142

α. When α is too small (say 10−4, the clustering accuracy is low, because the training error is143

quite large in 200 epochs. In fact, by increasing the training epochs, the clustering accuracy can144

be improved, which however will increase the time cost. When α is relatively large, the clustering145
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accuracy is often higher than 0.755. On the other hand, AutoSC+NSE is not sensitive to γ provided146

that it is not too large.147

Figure 3: Influence of γ and α in AutoSC+NSE on MNIST. We set d = 200 and use ReLU.

Figure 4 shows the mean value and standard deviation (10 repated trials) of the clustering accuracy148

on MNIST given by AutoSC+NSE with different number (denoted by s) of landmark points. It149

can be found that when the s increases, the clustering accuracy increases and its standard deviation150

becomes smaller. When s is large enough, the improvement is not significant.

Figure 4: Influence of the number of landmark points in AutoSC+NSE on MNIST. We set d = 200,
γ = 10−5, and α = 10−3. The shadow denotes the standard deviation of 10 trials.

151

F Proof for the theoretical results152

F.1 Proof for Claim 3.2153

Proof. The stochastic transition matrix of G is defined as154

P = D−1A. (6)

In Meila [2001], it was showed that155

MNCut(C) ≥ k −
k∑
i=1

%i(P ), (7)
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where %i(P ) denotes the i-th largest eigenvalue of P and 1 = %1(P ) ≥ %2(P ) ≥ · · · %k(P ).156

According to Lemma 3 of Meila [2001], we have157

σi(L) = 1− %i(P ), ∀i = 1, . . . , n. (8)

Substituting (8) into (7), we have158

MNCut(C) ≥
k∑
i=1

σi(L). (9)

159

Remark F.1. C can be any partition of the nodes of G. Let C∗ be the optimal partition. Then160

MNCut(C∗) =
∑k
i=1 σi(L). If

∑k
i=1 σi(L) = 0, there are no connections (edges) among161

C∗1 , . . . , C
∗
k .162

F.2 Proof for Claim 3.3163

Proof. For i = 1, . . . , k, we aim to partition Ci into two subsets, denoted by C1
i and C2

i . Then we164

define165

MNCut(Ci) =
Cut(C1

i , C
2
i )

V ol(C1
i )

+
Cut(C2

i , C
1
i )

V ol(C2
i )

. (10)

It follows that166

MNCut(Ci) ≥
2∑
j=1

σj(LCi) ≥ σ2(LCi) = ac(Ci), (11)

where LCi denotes the Laplacian matrix of Ci an i = 1, . . . , k. Since σk+1(L) =167

min{ac(C1), . . . , ac(Ck)}, we have168

min
1≤i≤k

MNCut(Ci) ≥ σk+1(L). (12)

Therefore, σk+1(L) measures the least connectivity of C1, . . . , Ck. This finished the proof.169

Remark F.2. When σk+1(L) is large, the connectivity in each of C1, . . . , Ck is strong. Otherwise,170

the connectivity in each of C1, . . . , Ck is weak. When σk+1(L) = 0, at least one of C1, . . . , Ck171

contains at least two components, which means the nodes of G can be partitioned into k+ 1 or more172

clusters.173

F.3 Proof for Theorem 3.4174

Proof. According to Theorem 1 of Meila et al. [2005], we have175

dist(C, C′) < 3δ

σk+1(L)− σk(L)
. (13)

Since reg(L) =
σk+1(L)− 1

k

∑k
i=1 σi(L)

1
k

∑k
i=1 σi(L) + ε

, we have176

σk+1(L)− σk(L) = reg(L)(σ̄ + ε) + σ̄ − σk(L), (14)

where σ̄ = 1
k

∑k
i=1 σi(L) ≥ ε. Invoking (14) into (13), we arrive at177

dist(C, C′) < 3δ

reg(L)(σ̄ + ε) + σ̄ − σk(L)

≤ 3δ

2εreg(L) + σ̄ − kσ̄

≤ 3δ

2εreg(L) + (1− k)ηε

≤ 1.5δε−1

reg(L) + (1− k)η/2
.

This finished the proof.178
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F.4 Proof for Proposition A.1179

Proof. Since ĉ is the optimal solution, we have
φ(xi)

> (φ(y)− φ(X)ĉ) + λĉi = 0,

φ(xj)
> (φ(y)− φ(X)ĉ) + λĉj = 0.

It follows that180

‖ĉi − ĉj‖ = ‖ (φ(xi)− φ(xj))
>

(φ(y)− φ(X)ĉ) ‖
≤ ‖φ(xi)− φ(xj)‖‖φ(y)− φ(X)ĉ‖

=
√
k(xi,xi)− 2k(xi,xj) + k(xj ,xj)

× ‖φ(y)− φ(X)ĉ‖

=
√

2− 2k(xi,xj)‖φ(y)− φ(X)ĉ‖

≤
√

2− 2k(xi,xj)‖φ(y)‖

=

√
2− 2 exp

(
−‖xi − xj‖

2

2ς2

)
.

(15)

In the second and last equalities, we used the fact that ‖φ(y)‖ = ‖φ(x)‖ = 1. In the second181

inequality, we used the fact that
1

2
‖φ(y)− φ(X)ĉ‖2 +

λ

2
‖ĉ‖2 ≤ 1

2
‖φ(y)− φ(X)0‖2 +

λ

2
‖0‖2 =182

1

2
‖φ(y)‖2 because ĉ is the optimal solution.183

F.5 Proof for Theorem 3.7184

Proof. Invoking the SVD ofX into the closed-form solution of LSR, we get185

C = V diag
(

σ2
1

σ2
1 + λ

, . . . ,
σ2
n

σ2
n + λ

)
V >. (16)

It means186

cit =

n∑
l=1

vilvjlσ
2
l

σ2
l + λ

=v̄>i v̄t −
d∑
l=1

vilvtlλ

σ2
l + λ

.+

n∑
l=d+1

vilvtlσ
2
l

σ2
l + λ

.

(17)

Suppose j ∈ Cπ(i) and k ∈ [n] \ Cπ(i). We have187

|cij | − |cik|

=

∣∣∣∣∣v̄>i v̄j −
d∑
l=1

vilvjlλ

σ2
l + λ

.+

n∑
l=d+1

vilvjlσ
2
l

σ2
l + λ

∣∣∣∣∣
−

∣∣∣∣∣v̄>i v̄k −
d∑
l=1

vilvklλ

σ2
l + λ

+

n∑
l=d+1

vilvklσ
2
l

σ2
l + λ

∣∣∣∣∣
≥
∣∣v̄>i v̄j∣∣− ∣∣v̄>i v̄k∣∣−

∣∣∣∣∣
d∑
l=1

vilvjlλ

σ2
l + λ

∣∣∣∣∣−
∣∣∣∣∣
d∑
l=1

vilvklλ

σ2
l + λ

∣∣∣∣∣
−

∣∣∣∣∣
n∑

l=d+1

vilvjlσ
2
l

σ2
l + λ

∣∣∣∣∣−
∣∣∣∣∣

n∑
l=d+1

vilvklσ
2
l

σ2
l + λ

∣∣∣∣∣
≥
∣∣v̄>i v̄j∣∣− ∣∣v̄>i v̄k∣∣− 2µ

d∑
l=1

λ

σ2
l + λ

− 2µ

n∑
l=d+1

σ2
l

σ2
l + λ

≥
∣∣v̄>i v̄j∣∣− β − 2µdλ

σ2
d + λ

−
2µaσ2

d+1

σ2
d+1 + λ

,

(18)
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where a = min(m,n)− d = m− d.188

To ensure that there exist at least τ̄ elements of {|cij | : j ∈ Cπ(i)} greater than |cik| for all k ∈189

[n]\Cπ(i), we need190 ∣∣v̄>i v̄j∣∣− β − 2µdλ

σ2
d + λ

−
2µaσ2

d+1

σ2
d+1 + λ

> 0 (19)

holds at least for τ̄ different j, where j ∈ Cπ(i). It is equivalent to ensure that191

α− β − 2µdλ

σ2
d + λ

−
2µaσ2

d+1

σ2
d+1 + λ

> 0. (20)

We rewrite (20) as192

u1λ
2 + u2λ+ u3 > 0, (21)

where u1 = α−β−2µd, u2 = (α−β)(σ2
d+σ2

d+1)−2µ(d+a)σ2
d+1, and u3 = (α−β−2µa)σ2

dσ
2
d+1.193

The definition of µ, α, and β imply u1 < 0. Then we solve (21) and obtain194 λ >
2µmσ2

d+1−(α−β)(σ2
d+σ2

d+1)−
√
w

2(2µd−(α−β))

λ <
2µmσ2

d+1−(α−β)(σ2
d+σ2

d+1)+
√
w

2(2µd−(α−β))

(22)

where w = u2
2 − 4u1u3. To simplify the notations, we let ∆ = α− β, σd+1 = γσd and get195 λ >

(
2µmγ2−∆(1+γ2)−

√
(∆(1+γ2)−2µmγ2)2−4(∆−2µd)(∆−2µm+2µd)

)
σ2
d

4µd−2∆

λ <

(
2µmγ2−∆(1+γ2)+

√
(∆(1+γ2)−2µmγ2)2−4(∆−2µd)(∆−2µm+2µd)

)
σ2
d

4µd−2∆

(23)

Further, let ρ = 2µmγ2 −∆(1 + γ2), we arrive at196 λ >
(
ρ−
√
ρ2−4(∆−2µd)(∆−2µm+2µd)

)
σ2
d

4µd−2∆

λ <

(
ρ+
√
ρ2−4(∆−2µd)(∆−2µm+2µd)

)
σ2
d

4µd−2∆

(24)

That means, if (24) holds, for every i, the indices of the largest τ̄ absolute elements in the i-th197

column of C are in Cπ(i). Therefore, the truncation operation with parameter τ ≤ τ̄ ensures the198

subspace detection property. This finished the proof.199

200

F.6 Proof for Proposition 3.8201

Proof. The condition of reg means202

σk+1(L)− 1
k

∑k
i=1 σi(L)

1
k

∑k
i=1 σi(L) + ε

=
σk+1(L)

ε
> 0.

For convenience, denote ϑ = 1
k

∑k
i=1 σi(L). We have203

−ϑε = ϑσk+1.

It indicates ϑ = 0 and σk+1 6= 0. Therefore the graph has exactly k connected components. Since204

the subspace or manifold detection property hold for A, each component of G is composed of the205

columns of X in the same subspace or manifold. Thus, all the columns of X in the same subspace206

or manifold must be in the same component. Otherwise, the number of connected components is207

larger than k.208

F.7 Proof for Theorem C.3209

The proof is nearly the same as that for Theorem 3.7, except that d < n and rank(K0) ≤ k
(
r+pq
pq

)
,210

where K0 = φ(X0)>φ(X0). In this case, K can be well approximately by a low-rank matrix of211

rank at most k
(
r+pq
pq

)
provided that the noise is small enough. More details about K0 can be found212

in Fan et al. [2020].213
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F.8 Proof for Proposition C.4214

Proof. We only need to provide an example of W1 ∈ Rd×m, W2 ∈ Rk×d, b1 ∈ Rd, and b2 ∈ Rk,215

where d = kr, such that the clusters can be recognized by k-means.216

We organize the rows of W1 into k groups: W j
1 ∈ Rr×m, j = 1, . . . , k. Let W j

1 = U j>,217

j = 1, . . . , k. LetW1xi = αi = (α1
i , . . . ,α

r
i ). When xi ∈ Sj , we have218

αji = U j>xi = U j>U jvi = vi. (25)

It follows from the assumption that219

max
p

αjpi > µ. (26)

Let b1 = [b1
1; . . . ; bk1 ] = −µ1. Then hji = ReLU(αji + bj1) has at least one positive element. On220

the other hand, since221

αli = U l>xi = U l>U jvi l 6= j, (27)
using the assumption of µ, we have222

|αlpi| = |U l
:p

>
U jvi| ≤ ‖U l

:p

>
U j‖‖vi‖ ≤ µ, (28)

where we have used the fact ‖vi‖ = 1 because ‖xi‖ = 1. It follows that

hli = ReLU(αli + bl1) = 0, l 6= j.

Now we formulateW2 as223

W2 =


q11 q12 . . . q1k

q21 q22 . . . q2k

...
...

. . .
...

qk1 qk2 . . . qkk

 , (29)

where qlj ∈ R1×r, l, j = 1, . . . , k. We have

zji = qj1h
1
i + qj2h

2
i · · ·+ qjkhki = qjjh

j
i .

and
zli = ql1h

1
i + ql2h

2
i · · ·+ qlkhki = qljh

j
i .

Here we have let b2 = 0. Let qjj ≥ 0 and qlj = 0, we have

zji > zli = 0.

Therefore, if xi ∈ Sj , we have zji > 0 and zli = 0 ∀1 ≤ j 6= l ≤ k. Now performing k-means on224

Z = [z1, . . . ,zn] can identify the clusters trivially.225

226

References227

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimiza-228

tion and statistical learning via the alternating direction method of multipliers. Found. Trends229

Mach. Learn., 3(1):1–122, 2011.230
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