
Table 1: Detailed configurations of architecture variants of RTFormer.

Models #Channels #Blocks Spatial size of cross-feature
RTFormer-Slim [32, 64, 64/128, 64/256, 64/256] [2, 2, 1/2, 1, 1] 8× 8
RTFormer-Base [64, 128, 128/256, 128/512, 128/512] [2, 2, 1/2, 1, 1] 12× 12

A Architecture of RTFormer1

Table 2: Training settings on Ima-
geNet classification.

config value
optimizer AdamW
base learning rate 0.0005
weight decay 0.04
optimizer momentum β1, β2=0.9, 0.999
batch size 1024
learning rate schedule cosine decay
minimum learning rate 5e-6
warmup epochs 5
warmup learning rate 5e-7
training epochs 300
augmentation RandAug(9, 0.5)
color jitter 0.4
mixup 0.2
cutmix 1.0
random erasing 0.25
drop path 0.0

In this section, we describe the detailed configurations of2

RTFormer-Slim and RTFormer-Base, which are recorded in3

Table 1. For the number of channels and number of blocks,4

each array contains 5 elements, which are corresponding to5

the 5 stages respectively. Especially, the elements with two6

numbers are corresponding to the dual-resolution stages. For7

instance, 64/128 means the number of channels is 64 for high-8

resolution branch and 128 for low-resolution branch. While9

1/2 means the number of basic convolution blocks is 1 for10

high-resolution branch and 2 for low-resolution branch. It is11

worth to be noted that, the last two elements in block number12

array denote the number of RTFormer blocks, and they are13

both 1 for RTFormer-Slim and RTFormer-Base. The spatial14

sizes of cross-feature are set as 64(8× 8) and 144(12× 12) for15

RTFormer-Slim and RTFormer-Base respectively.16

B ImageNet Pre-training17

RTFormer is consist of several convolution blocks and RT-18

Former blocks, and RTFormer block contains different types19

of attention. Thus, we pre-train RTFormer on ImageNet-20

1K[2] mainly following the settings of training transformer21

network[9], and the detail configuration is provided in Table 2.22

Table 3 shows the performance of RTFormer on ImageNet classification. Both RTFormer-Slim23

and RTFormer-Base outperform the corresponding DDRNet variants. In addition, RTFormer-Base24

achieves the best performance among the existing backbones adopted in real-time semantic segmen-25

tation task.26

C More Experiments27

C.1 Comparison with state-of-the-arts on COCOStuff28

COCOStuff. COCOStuff[1] is a dense annotated dataset derived from COCO. It contains 10K29

images (9K for training and 1K for testing) with respect to 182 categories, including 91 thing and30

91 stuff classes. And 11 of the thing classes have no annotations. We train RTFormer 110 epochs31

on COCOStuff with AdamW optimizer, and the initial learning rate and weight decay are set as32

0.0001 and 0.05 respectively. In the training phase, we first resize the short side of image to 640 and33

randomly crop 640× 640 patch for augmentation. While in the testing phase, we resize all images34

into 640× 640. Other training settings are identical to Cityscapes.35

Results. As shown in Table 4, our RTFormer-Base achieves 35.3 mIoU at 143.3 FPS, which36

outperforms the DDRNet-23 about 3% with a comparable inference speed and set a new state-of-37

the-art. In addition, when we set the spatial size of cross-feature in RTFormer-Base as 8 × 8, the38

performance drops to 34.6 while the inference speed only increases a little. This indicates that39

144 = 12× 12, which is close to the feature dimension in high-resolution branch(128 for RTFormer-40

Base), is a relative good setting for the spatial size of cross-feature in RTFormer-Base. And from this41

comparison, we can find the cross-resolution attention can also works well on COCOStuff.42
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Table 3: Classification accuracy on the ImageNet validation set. Performances are measured with a
single 224× 224 crop. “#Params” refers to the number of parameters. “FLOPs” is calculated under
the input scale of 224× 224.

Method #Params↓ FLOPs↓ Top-1 Acc. ↑
ResNet-18[5] 11.2M 1.8G 69.0
RestNet-50[5] 23.5M 3.7G 75.3
DF1[8] 8.0M 0.7G 69.8
DF2[8] 17.5M 1.7G 73.9
MobileNetV2[10] 3.4M 0.3G 72.0
MobileNetV3[7] 5.4M 0.2G 75.2
Efficient-Net-B0[11] 5.3M 0.4G 76.3
STDC1[3] 8.4M 0.8G 73.9
STDC2[3] 12.5M 1.4G 76.4

DDRNet-23-slim[6] 7.6M 1.0G 70.2
DDRNet-23[6] 28.2M 3.9G 75.9

RTFormer-Slim 5.3M 0.8G 72.3
RTFormer-Base 20.5M 3.0G 77.4

Table 4: Comparisons with state-of-the-arts on COCOStuff. The #Params, FLOPs and FPS are
measured at resolution 640 × 640. RTFormer-Base-8 means the spatial size of cross-feature in
RTFormer-Base is set as 8× 8.

Method GPU #Params↓ FLOPs↓ FPS↑ test mIoU(%)↑
PSPNet50[15] - - - 6.6 32.6
ICNet[14] TitanX M - - 35.7 29.1
BiSeNetV2[13] GTX 1080Ti - - 87.9 25.2
BiSeNetV2-L[13] GTX 1080Ti - - 42.5 28.7

DDRNet-23 RTX 2080Ti 20.1M 28.1G 146.1 32.1

RTFormer-Base-8 RTX 2080Ti 16.8M 26.6G 146.6 34.6
RTFormer-Base RTX 2080Ti 16.8M 26.6G 143.3 35.3

C.2 More ablation studies on different types of attention43

In this section, we extend the ablation study about different types of attention by adding multi-head44

self-attention. Meanwhile, we supplement experimental details and analysis about different types of45

attention.46

Experimental Details. We introduce a type of multi-head self-attention which is improved by[12]47

for comparison. In contrast to the traditional self-attention, this type of self-attention shrinks the48

spatial size of key and value as 1
σ of the input feature, which can reduce the computation cost caused49

by the large input resolution. Concretely, in this ablation study, multi-head self-attention is also used50

for replacing the attention operations in all RTFormer blocks. And we set σ = 4 for the self-attention51

in high-resolution branch, while σ = 1 for low-resolution branch, following the settings for feature52

maps with stride=8 and stride=32 in[12].53

For both multi-head self-attention and multi-head external attention, which are denoted as SA and54

EA in Table 5, we set the number of heads as 2 and 8 for high-resolution and low-resolution branches55

respectively. Similarly, for the GPU-Friendly attention, we set the number of groups as 2 and 856

separately for high-resolution and low-resolution branches. For the case of GFA+CA, the number of57

groups of the GPU-Friendly attention in low-resolution is still set as 8, while the cross-resolution58

attention has no multi-head calculation.59

Especially, we give three results of multi-head external attention with r=[0.125, 0.25, 1]. And when60

r=0.25, the parameter dimension of multi-head external attention M in low-resolution branch is61

64, which is identical to the setting in[4]. And the other two results are used for showing more62
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Table 5: Comparison among different types of attention on ADE20K. SA, EA, GFA, CA denote
multi-head self-attention, multi-head external attention, GPU-Friendly attention and cross-resolution
attention respectively. For example, GFA+CA means adopting GFA in low-resolution branch and CA
in high-resolution branch. r is a ratio for adjusting the parameter dimension M in multi-head external
attention.

Attention GPU FPS↑ val mIoU(%)↑
SA+SA RTX 2080Ti 97.4 32.7
EA+EA (r=0.125) RTX 2080Ti 196.9 31.9
EA+EA (r=0.25) RTX 2080Ti 189.6 32.0
EA+EA (r=1) RTX 2080Ti 180.8 32.2
GFA+GFA RTX 2080Ti 189.8 32.8
GFA+CA RTX 2080Ti 187.9 33.0

variations of the trade-off between performance and inference speed. For GPU-Friendly attention, we63

set Mg = d constantly.64

Analysis. As illustrated in Table 5, we can find that multi-head self-attention achieves 32.7 mIoU,65

which performs better than multi-head external attentions with different settings of r. But, the66

inference speed of multi-head self-attention is not competitive, which is mainly caused by the67

quadratic complexity and multi-head mechanism. Multi-head external attention can achieve a good68

inference speed, which is benefit from its linear complexity and the design of sharing external69

parameter for multiple heads. Associated with the above two properties, multi-head external attention70

adopts a low parameter dimension M (≪ d), which reduces the total computation cost further.71

However, the performance of multi-head external attention is suboptimal, as the network capacity72

is limited by those designs. Yet, the multi-head mechanism still remains, which is not friendly for73

running on GPU-like devices and leads to a relative worse efficiency than single head situation. As a74

example, when we let M to be equal to d, the performance is still worse than multi-head self-attention,75

and the inference speed drops about 10FPS than M = 0.25d. While, GPU-Friendly attention, which76

is derived from multi-head external attention, can achieve both relative good performance and77

inference speed. It is because that, GPU-Friendly attention discards the multi-head mechanism and78

the grouped double normalization makes the matrix multiplication to be integrated and friendly for79

GPU calculation. Therefore, the external parameters can be enlarged for increasing the network80

capacity without great loss of inference speed. Finally, the combination of GPU-Friendly attention81

and cross-resolution attention improves the performance further, and it outperforms multi-head82

self-attention in both accuracy and efficiency, which validates the effectiveness of our proposed83

attentions.84
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