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Abstract

We study a repeated information design problem faced by an informed sender who1

tries to influence the behavior of a self-interested receiver. We consider settings2

where the receiver faces a sequential decision making (SDM) problem. At each3

round, the sender observes the realizations of random events in the SDM problem.4

This begets the challenge of how to incrementally disclose such information to5

the receiver to persuade them to follow (desirable) action recommendations. We6

study the case in which the sender does not know random events probabilities, and,7

thus, they have to gradually learn them while persuading the receiver. We start by8

providing a non-trivial polytopal approximation of the set of sender’s persuasive9

information structures. This is crucial to design efficient learning algorithms. Next,10

we prove a negative result: no learning algorithm can be persuasive. Thus, we11

relax persuasiveness requirements by focusing on algorithms that guarantee that12

the receiver’s regret in following recommendations grows sub-linearly. In the13

full-feedback setting—where the sender observes all random events realizations—,14

we provide an algorithm with Õ(
√
T ) regret for both the sender and the receiver.15

Instead, in the bandit-feedback setting—where the sender only observes the realiza-16

tions of random events actually occurring in the SDM problem—, we design an al-17

gorithm that, given an α ∈ [1/2, 1] as input, ensures Õ(Tα) and Õ(Tmax{α,1−α2 })18

regrets, for the sender and the receiver respectively. This result is complemented19

by a lower bound showing that such a regrets trade-off is essentially tight.20

1 Introduction21

Bayesian persuasion [19] (a.k.a. information design) is the problem faced by an informed sender22

who wants to influence the behavior of a self-interested receiver via the provision of payoff-relevant23

information. This captures the problem of “who gets to know what”, which is fundamental in all24

economic interactions. Thus, Bayesian persuasion is ubiquitous in real-world problems, such as, e.g.,25

online advertising [5], voting [1, 7, 8], traffic routing [4, 10], security [23, 26], and marketing [3, 6].26

We study Bayesian persuasion in settings where the receiver plays in a sequential decision making27

(SDM) problem. An SDM problem is characterized by a tree structure made by: decision nodes,28

where the receiver takes actions, and chance nodes, in which partially observable random events occur.29

The sender perfectly observes the realizations of random events, and their goal is to incrementally30

disclose the acquired information to induce the receiver towards desirable outcomes. In order to31

do so, the sender commits to a signaling scheme specifying a probability distribution over action32

recommendations for the receiver at each decision node. Specifically, the sender commits to a33

persuasive signaling scheme, meaning that the receiver is incentivized to follow recommendations.34

We consider the case of a farsighted receiver, meaning that they take into account all the possible35

future events when deciding whether to deviate or not from recommendations at each decision node.36
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With some notable exceptions (see, e.g., [27]), Bayesian persuasion models in the literature make the37

stringent assumption that both the sender and the receiver know the prior, which, in our setting, is38

defined by the probabilities of random events in the SDM problem. We relax such an assumption by39

considering an online learning framework in which the sender, without any knowledge of the prior,40

repeatedly interacts with the receiver to gradually learn the prior while still being persuasive.41

Original contributions. Our goal is to design online learning algorithms that are no-regret for42

the sender, while being persuasive for the receiver. We start by providing a non-trivial polytopal43

approximation of the set of sender’s persuasive signaling schemes. This will be crucial in designing44

efficient (i.e., polynomial-time) learning algorithms, and it also shows how a sender-optimal signaling45

scheme can be found in polynomial time in the offline version of our problem, which may be of46

independent interest. Next, we prove a negative result: without knowing the prior, no algorithm can47

be persuasive at each round with high probability. Thus, we relax persuasiveness requirements by48

focusing on learning algorithms that guarantee that the receiver’s regret in following recommendations49

grows sub-linearly, while guaranteeing the same for sender’s regret. First, we study the full-feedback50

case, where the sender observes the realizations of all the random events that may potentially happen51

in the SDM problem. In such a setting, we provide an algorithm with Õ(
√
T ) regret for both the52

sender and the receiver. Then, we focus on the bandit-feedback setting, where the sender only53

observes the realizations of random events on the path in the tree traversed during the SDM problem.54

In this case, we design an algorithm that achieves Õ(Tα) sender’s regret and Õ(Tmax{α,1−α2 })55

receiver’s regret, for any α ∈ [1/2, 1] given as input. The crucial component of the algorithm is a56

non-trivial exploration phase that uniformly explores the tree defining the SDM problem to build57

suitable estimators of the prior. This is needed since, with bandit feedback, playing a signaling58

scheme may provide insufficient information about its persuasiveness. Finally, we provide a lower59

bound showing that the regrets trade off achieved by our algorithm is tight for α ∈ [1/2, 2/3].60

Related works. Some works addressed Bayesian persuasion in Markov decision processes (MDPs).61

Gan et al. [17] and Wu et al. [25] show how to efficiently find a sender-optimal policy when the62

receiver is myopic (i.e., it only optimizes one-step rewards) in MDPs with infinite and finite horizon,63

respectively. Moreover, the former assume that the environment is known, while the latter do not.64

These works considerably differ from ours, since we assume a farsighted receiver and also model65

partial observability of random events.1 Another work close to ours is [27], which studies a (non-66

sequential) persuasion problem in which the sender and the receiver do not know the prior and interact67

online. Zu et al. [27] provide a persuasive learning algorithm, while, in our model, we show that68

the ignorance of the prior precludes the possibility of committing to persuasive signaling schemes,69

and, thus, we need to resort to new techniques to circumvent the issue. Finally, Celli et al. [12] study70

Bayesian persuasion with multiple receivers interacting in an imperfect-information sequential game.71

Differently from ours, their model adopts a different notion of persuasiveness, known as ex ante72

persuasiveness, and it assumes that the prior is known. Other works study learning problems in which73

the sender does not know the receivers’ payoffs (but knows the prior); see, e.g., [9, 11].74

2 Preliminaries75

2.1 Sequential decision making problems76

An instance of an SDM problem is defined by a tree structure, utilities, and random events probabilities.77

The tree structure has a set of nodesH := Z ∪Hd ∪Hc, where: Z contains all the terminal nodes in78

which the problem ends (corresponding to the leaves of the tree),Hd is the set of decision nodes in79

which the agent acts, while Hc is the set of chance nodes where random events occur. Given any80

non-terminal node h ∈ H \ Z , we let A(h) be the set of arcs outgoing from h. If h ∈ Hd, then81

A(h) is the set of receiver’s actions available at h, while, if h ∈ Hc, then A(h) encodes the possible82

outcomes of the random event occurring at h. Furthermore, the utility function u : Z → [0, 1] defines83

the agent’s payoff u(z) when the problem ends in terminal node z ∈ Z . Finally, each chance node84

h ∈ Hc is characterized by a probability distribution µh ∈ ∆A(h) over the possible outcomes of the85

corresponding random event, with µh(a) denoting the probability of action a ∈ A(h).286

1Gan et al. [17] also study a model with farsighted receiver, where they show that the problem of finding a
sender-optimal policy is NP-hard. Thus, they do not provide any algorithmic result for such a model.

2For a finite set X we denote with ∆X the set of probability distributions over X .
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In an SDM problem, the agent has imperfect information, since they do not perfectly observe the87

outcomes of random events. Thus, the set of decision nodesHd is partitioned into information sets88

(infosets for short), where an infoset I ⊆ Hd is a subset of decision nodes that are indistinguishable89

for the agent. We denote the set of infosets as I. For every infoset I ∈ I and pair of nodes h, h′ ∈ I ,90

it must be the case that A(h) = A(h′) =: A(I), otherwise the agent could distinguish between91

the two nodes. We assume that the agent has perfect recall, which means that they never forget92

information once acquired. Formally, this is equivalent to assume that, for every infoset I ∈ I , all the93

paths from the root of the tree to a node h ∈ I identify the same ordered sequence of agent’s actions.94

2.2 Bayesian persuasion in sequential decision making problems95

We study Bayesian persuasion in SDM (BPSDM) problems. These extend the classical Bayesian96

persuasion framework [19] to SDM problems by introducing an exogenous agent that acts as a sender97

by issuing signals to the decision-making agent (the receiver).3 By following the Bayesian persuasion98

terminology, the probability distributions µh for each chance node h are collectively referred to as99

the prior. Thus, the sender observes the realizations of random events occurring in the SDM problem100

and can partially disclose information to influence the receiver’s behavior. Moreover, the sender has101

their own utility function defined over terminal nodes, denoted as f : Z → [0, 1], and their goal is to102

commit to a publicly known signaling scheme that maximizes their utility in expectation with respect103

to the prior, the selected signaling scheme, and the receiver’s strategy.104

Formally, a signaling scheme for the sender defines a probability distribution φh ∈ ∆S(h) at each105

decision node h ∈ Hd, where S(h) is a finite set of signals available at h. During the SDM problem,106

when the receiver reaches a node h ∈ Hd belonging to an infoset I ∈ I, the sender draws a signal107

s ∼ φh and communicates it to the receiver. Then, based on the history of signals observed from the108

beginning of the SDM problem (s included), the receiver computes a posterior belief over the nodes109

belonging to the infoset I and plays so as to maximize their expected utility in the SDM sub-problem110

that starts from I , taking into account the just acquired information.111

As customary in these settings, a simple revelation-principle-style argument allows us to focus on112

signaling schemes that are direct and persuasive [2, 19]. In particular, a signaling scheme is direct113

if signals correspond to action recommendations, namely S(h) = A(h) for all h ∈ Hd. A direct114

signaling scheme is persuasive if the receiver is incentivized to follow action recommendations issued115

by the sender. Moreover, we assume that, if the receiver does not follow action recommendations at116

some decision node, then the sender stops issuing recommendations at nodes later reached during the117

SDM problem. This is without loss of generality.4118

2.3 The sequence-form representation119

The sequence form is a commonly-used, compact way of representing (mixed) strategies in SDM120

problems [20]. In this work, the sequence-form representation will be employed for receiver’s121

strategies, and to encode the signaling schemes and priors, as we describe in the following.122

Receiver’s strategies. Given any h ∈ H, we let σr(h) be the ordered sequence of receiver’s actions123

on the path from the root of the tree to node h. By the perfect recall assumption, given any infoset124

I ∈ I , it holds that σr(h) = σr(h
′) =: σr(I) for every pair of nodes h, h′ ∈ I . Thus, we can identify125

sequences with infoset-action pairs, with σ = (I, a) encoding the sequence of actions obtained by126

appending action a ∈ A(I) at the end of σr(I), for any infoset I ∈ I. Moreover, ∅ denotes the127

empty sequence. Hence, the receiver’s sequences are Σr := {(I, a) | I ∈ I, a ∈ A(I)}∪ {∅}. In the128

sequence-form representation, mixed strategies are defined by specifying the probability of playing129

each sequence of actions. Thus, a receiver’s strategy is represented by a vector x ∈ [0, 1]|Σr|, where130

x[σ] encodes the realization probability of sequence σ ∈ Σr. Furthermore, a sequence-form strategy131

is well-defined if and only if it satisfies the following linear constraints:132

x[∅] = 1 and x[σr(I)] =
∑
a∈A(I) x[σr(I)a] ∀I ∈ I.

We denote by Xr the polytope of all receiver’s sequence-form strategies. We will also need to work133

with the sets of receiver’s strategies in the SDM sub-problem that starts from an infoset I ∈ I,134

formally defined as Xr,I := {x ∈ Xr | x[σr(I)] = 1} .135

3Appendix A shows that BPSDM reduces to classical Bayesian persuasion when there is no sequentiality.
4 For a discussion on a similar problem in the field of correlation in sequential games, we refer to [22, 24].
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Signaling schemes. We represent signaling schemes in sequence form by leveraging the fact that the136

sender can be thought of as a perfect-information agent who plays at the decision nodes of the SDM137

problem, since their actions correspond to recommendations for the receiver. Thus, since sender’s138

infosets correspond to decision nodes, their sequences Σs := {(h, a) | h ∈ Hd, a ∈ A(h)} ∪ {∅}.139

Then, we denote the polytope of (sequence-form) signaling schemes as Φ ⊆ [0, 1]|Σs|, where each140

signaling scheme is represented as a vector φ ∈ [0, 1]|Σs| satisfying:141

φ[∅] = 1 and φ[σs(h)] =
∑
a∈A(h) φ[σs(h)a] ∀h ∈ Hd,

where, similarly to σr(h) for the receiver, σs(h) denotes the sender’s sequence identified by h ∈ H.142

We also define Π := Φ ∩ {0, 1}|Σs| as the set of deterministic signaling schemes, which are those143

that recommend a single action with probability one at each decision node.144

Priors. We also encode prior probability distributions µh by means of the sequence form. Indeed,145

these can be though of as elements of a fixed strategy played by a (fictitious) perfect-information146

agent that acts at chance nodes. Thus, for such a chance agent, we define Σc, Xc, and σc(h) as147

their counterparts previously introduced for the receiver. Moreover, in the following, we denote by148

µ? ∈ Xc the (sequence-form) prior, recursively defined as follows:149

µ?[∅] := 1 and µ?[σc(h)a] := µ?[σc(h)]µh(a) ∀h ∈ Hc,∀a ∈ A(h).

Ordering of sequences. For the sake of presentation, we introduce a partial ordering relation150

among sequences. Given two sequences σ = (I, a) ∈ Σr and σ′ = (J, b) ∈ Σr, we write σ � σ′151

(read as σ precedes σ′), whenever there exists a path in the tree connecting a node in I to a node in J ,152

and such a path includes action a. We adopt analogous definitions for sequences in Σs and Σc.5153

3 Learning to persuade154

In this work, we relax the strong assumption that both the sender and the receiver know the prior µ?155

by casting the BPSDM problem into an online learning framework in which the sender repeatedly156

interacts with the receiver over a time horizon of length T . At each round t ∈ [T ], the interaction157

goes as follows:6 (i) the sender commits to a signaling scheme φt ∈ Φ; (ii) a vector yt ∈ {0, 1}|Σc|158

encoding realizations of random events is drawn according to µ?; (iii) the sender and the receiver play159

an instance of the (one-shot) BPSDM problem (detailed in Section 2.2), in which the sender commits160

to φt, random events at chance nodes are realized as defined by yt, and the receiver sticks to the161

recommendations issued by the sender; and (iv) the sender observes a feedback on the realization of162

random events at chance nodes, which can be of two types: full feedback when the sender observes yt,163

which specifies the realizations of all the random events at chance nodes that are possibly reachable164

during the SDM problem; bandit feedback when the sender observes the terminal node zt ∈ Z165

reached at the end of the SDM problem. The latter is equivalent to observing the realizations of166

random events at the chance nodes that are actually reached during the SDM problem, namely σc(zt).167

By letting Φ�(µ?) be the set of persuasive signaling schemes, i.e., such that the receiver is incentivized168

to following recommendations (a formal definition is provided in Definition 2), the goal of the sender169

is to select a sequence of signaling schemes, namely φ1, . . . ,φT , which maximizes their expected170

utility, while guaranteeing that each signaling scheme φt is persuasive, namely φt ∈ Φ�(µ?).171

We measure the performance of a sequence φ1, . . . ,φT of signaling schemes by comparing it with172

an optimal (fixed) persuasive signaling scheme. Formally, given a signaling scheme φ ∈ Φ, we first173

define U(φ,µ?), respectively F (φ,µ?), as the expected utility achieved by the receiver, respectively174

the sender, whenever the former follows action recommendations. These can be expressed as linear175

functions of φ, which, for any µ ∈ Xc, are defined as follows:176

U(φ,µ) :=
∑
z∈Z

µ[σc(z)]φ[σs(z)]u(z), F (φ,µ) :=
∑
z∈Z

µ[σc(z)]φ[σs(z)]f(z).

Finally, by letting φ? ∈ argmaxφ∈Φ�(µ?) F (φ,µ?) be an optimal (fixed) persuasive signaling177

scheme, the sender’ performance over T rounds is measured by the (cumulative) sender’s regret:178

RT :=
∑
t∈[T ]

(
F (φ?,µ?)− F (φt,µ

?)
)
.

5We refer the reader to Appendix B for an example of SDM problem and its sets of sequences.
6Throughout this work, for n ∈ N, we denote with [n] the set {1, . . . , n}.
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The goal is to design learning algorithms (for the sender) which select sequences of persuasive179

signaling schemes such that RT grows asymptotically sub-linearly in T , namely RT = o(T ).180

4 On the characterization of persuasive signaling schemes181

4.1 A local decomposition of persuasiveness182

In this section, we formally introduce the set of persuasive signaling schemes Φ�(µ?) as the set183

of signaling schemes for which the receiver’s expected utility by following recommendations is184

greater than the one provided by an optimal deviation policy (DP).7 In addition, we show how to185

decompose any DP into components defined locally at each infoset, which will be crucial in the186

following Section 4.2. Intuitively, a DP for the receiver is specified by two elements: (i) a set of187

deviation points in which the DP prescribes to stop following action recommendations; and (ii) the188

continuation strategies to be adopted after deviating from recommendations.189

We represent deviation points by vectors ω ∈ {0, 1}|Σr|, which are defined so that ω[σ] = 1 if and190

only if the DP prescribes to deviate upon observing the sequence of action recommendations σ ∈ Σr.191

Moreover, by leveraging the w.l.o.g. assumption that the sender stops issuing recommendations after192

the receiver deviated from them, we focus on DPs such that each path from the root of the tree to a193

terminal node involves only one deviation point. As a result, the set of all valid vectors ω ∈ {0, 1}|Σr|194

is formally defined as Ω :=
{
ω ∈ {0, 1}|Σr|

∣∣ ∑
σ∈Σr:σ�σr(z) ω[σ] ≤ 1 ∀z ∈ Z

}
.195

We represent the continuation strategies of DPs by introducing the set of continuation strategy profiles,196

denoted as P :=×σ=(I,a)∈Σr
Xr,I . A continuation strategy profile ρ ∈ P , with ρ = (ρσ)σ∈Σr ,197

defines a strategy ρσ ∈ Xr,I for every receiver’s sequence σ = (I, a) ∈ Σr. Intuitively, ρσ is the198

strategy for the SDM sub-problem starting from infoset I that is used by the receiver after deviating199

upon observing sequence σ ∈ Σr. As a result, any pair (ω,ρ) ∈ Ω×P specifies a valid DP; formally:200

201

Definition 1 (Deviation policy). Given a vectorω ∈ Ω and a profile ρ ∈ P , the (ω,ρ)-DP prescribes202

to follow sender’s recommendations until action a is recommended at infoset I for some sequence203

σ = (I, a) such that ω[σ] = 1; from that point on, it prescribes to play according to strategy ρσ .204

We denote by Uω→ρ(φ,µ?) the receiver’s expected utility obtained with a (ω,ρ)-DP, so that we can205

state the following formal definition of persuasive signaling schemes.206

Definition 2 (Persuasiveness). A signaling scheme φ ∈ Φ is ε-persuasive, namely φ ∈ Φ�ε (µ
?), if207

max
(ω,ρ)∈Ω×P

Uω→ρ(φ,µ?)− U(φ,µ?) ≤ ε. (1)

Moreover, a signaling scheme φ ∈ Φ is persuasive, namely φ ∈ Φ�(µ?), if it is 0-persuasive.208

Intuitively, the above definition states that a signaling scheme is ε-persuasive if the receiver’s expected209

utility by following recommendations is at most ε less than the one obtained by an optimal DP, which210

is a DP maximizing receiver’s expected utility.211

Our local decomposition of DPs is based on suitably-defined, simple deviation policies, which212

we call single-point DPs (SPDPs). These are a special case of DPs that stop following sender’s213

action recommendations only when a specific single infoset is reached and a particular action is214

recommended therein. SPDPs are formally defined as follows:215

Definition 3 (Single-point deviation strategy). Given a receiver’s sequence σ = (I, a) ∈ Σr and a216

receiver’s strategy ρσ ∈ Xr,I for the SDM sub-problem starting from infoset I , the (σ,ρσ)-SPDP217

prescribes to follow sender’s recommendations until action a is recommended at infoset I; from that218

point on, the strategy prescribes to play according to ρσ .219

We denote by Uσ→ρσ (φ,µ?) the receiver’s expected utility obtained by following an (σ,ρσ)-SPDP.220

The following theorem provides the key result underlying our decomposition.8 It shows that the dif-221

ference between the utility achieved by a (ω,ρ)-DP and that obtained by following recommendations222

7For ease of exposition, all the definitions and results in this section are provided for the prior µ?. It is
straightforward to generalize them to the case of a generic µ ∈ Xc.

8All the proofs are provided in the Appendices D, E, F, and G.
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can be decomposed into the sum over all the sequences σ ∈ Σr of analogous differences defined for223

the (σ,ρσ)-SPDPs, where each difference is weighted by ω[σ].224

Theorem 1. Given a signaling scheme φ ∈ Φ and a (ω,ρ)-DP, it holds:225

Uω→ρ(φ,µ?)− U(φ,µ?) =
∑
σ∈Σr

ω[σ]
(
Uσ→ρσ (φ,µ?)− U(φ,µ?)

)
.

4.2 A polytopal approximation of the set of persuasive signaling schemes226

In the following, we show how to exploit Theorem 1 to provide an approximate characterization227

of the set Φ�ε (µ
?) using a polynomially-sized polytope. First, we state a corollary of Theorem 1228

showing that persuasiveness can be bounded by suitably defined SPDPs. Formally:9229

Corollary 1. Given a signaling scheme φ ∈ Φ, the following holds:230

max
(ω,ρ)∈Ω×P

Uω→ρ(φ,µ?)− U(φ,µ?) ≤
∑

σ=(I,a)∈Σr

[
max
ρσ∈Xr,I

Uσ→ρσ (φ,µ?)− U(φ,µ?)

]+

.

By exploiting Corollary 1, we introduce the following definition of ε-persuasive polytope (Lemma 1231

justifies the term polytope), as the set of signaling schemes for which there is no (σ,ρσ)-SPDP that232

achieves a receiver’s utility that exceeds by more than ε/|Σr| that of following recommendations.233

Definition 4 (Persuasive polytope). The ε-persuasive polytope is defined as:234

Λε(µ
?) :=

{
φ ∈ Φ

∣∣∣ max
ρσ∈Xr,I

Uσ→ρσ (φ,µ?)− U(φ,µ?) ≤ ε/|Σr| ∀σ ∈ Σr

}
.

Moreover, we denote by Λ(µ?) the 0-persuasive polytope.235

As we show in the following lemma, Λε(µ
?) is an efficiently-representable polytope.236

Lemma 1. The set Λε(µ
?) can be described by means of a polynomial number of linear constraints.237

The following lemma shows that the ε-persuasive polytope is contained in Φ�ε (µ
?), and that the set of238

persuasive signaling schemes is contained in the former. Formally:239

Lemma 2. It is always the case that Φ�(µ?) ≡ Λ(µ?) ⊆ Λε(µ
?) ⊆ Φ�ε (µ

?).240

Lemma 2 also implies that the polytope Λ(µ?) exactly characterizes the set of persuasive signaling241

schemes Φ�(µ?). Thus, by adding the maximization of the sender’s expected utility F (φ,µ?) on top242

of the linear constraints describing Λ(µ?), we obtain a polynomially-sized linear program for finding243

an optimal sender’s signaling scheme in any instance of the BPSDM problem in which µ? is known.244

Theorem 2. The BPSDM problem can be solved in polynomial time when the prior µ? is known.245

5 Always being persuasive is impossible: a relaxation is needed246

In this section, we prove that it is impossible to design an algorithm that returns a sequence of247

persuasive signaling schemes for a generic BPSDM problem. Motivated by this result, we introduce248

a new online learning problem that relaxes persuasiveness requirements.249

First, we provide the following impossibility result:250

Theorem 3 (Impossibility of persuasiveness). There exists a constant γ ∈ (0, 1) such that no251

algorithm can guarantee to output a sequence φ1, . . . ,φT of signaling schemes such that, with252

probability al least γ, all the signaling schemes φt are persuasive.253

Notice that this result is in contrast with what happens in the basic case of non-sequential Bayesian254

persuasion (see the work by Zu et al. [27]), where it is possible to design no-regret algorithms that255

output sequences of signaling schemes that are guaranteed to be persuasive with high probability.256

Theorem 3 motivates the introduction of a less restrictive requirement on the signaling schemes output257

by a learning algorithm. In particular, we look for algorithms that output sequences φ1, . . . ,φT of258

9Given any x ∈ R, we let [x]+ := max(x, 0).
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signaling schemes such that the expected utility loss incurred by the receiver by following sender’s259

recommendations rather than playing an optimal DP is small. To capture such a requirement, we260

introduce the following definition of (cumulative) receiver’s regret:261

VT :=
∑
t∈[T ]

max
(ω,ρ)∈Ω×P

Uω→ρ(φt,µ
?)−

∑
t∈[T ]

U(φt,µ
?).

Therefore our goal becomes that of designing algorithms guaranteeing that the cumulative receiver’s262

regret grows sub-linearly in T , namely VT = o(T ), while continuing to ensure that RT = o(T ).263

In Sections 6 and 7, we design algorithms achieving sub-linear VT and RT for the learning problem264

described in Section 3. The algorithms implement two functions: (i) SELECTSTRATEGY(), which, at265

each t ∈ [T ], draws a signaling scheme φt ∈ Φ on the basis of the internal state of the algorithm;266

and (ii) UPDATE(ot), which modifies the internal state on the basis of the observation ot received as267

feedback. Each algorithm alternates these two functions as the interaction between the sender and the268

receiver unfolds as described in Section 3. Specifically, under full feedback the sender observes yt269

and calls UPDATE(yt), while in the bandit feedback it observes zt and calls UPDATE(zt).270

6 Learning with full feedback271

Algorithm 1 Full-feedback algorithm
function SELECTSTRATEGY():
φt ← arg max

φ∈Λβt (µ̂t)
F (φ, µ̂t)

return φt

function UPDATE(yt):

µ̂t+1[σ]← 1
t

t∑
τ=1

yτ [σ] ∀σ ∈ Σc

εt+1 ←
√

log(2T |Σc|/δ)
2t

βt+1 ← 2|Z||Σr|εt+1

We start by providing a learning algorithm (Algorithm 1)272

working with full feedback, i.e., when the sender observes273

the realizations of all the possible random events.274

The main idea of the algorithm is to choose signaling275

schemes φt that belong to suitable sets Λβt(µ̂t) which are276

designed to be “close” to the set Φ�(µ?) of persuasive sig-277

naling schemes. At each round t ∈ [T ], Algorithm 1 defines278

the desired set as follows. First, it maintains an estimate279

µ̂t of µ?; formally, it defines a radius εt such that the event280

E := {‖µ̂t − µ?‖∞ ≤ εt ∀t ∈ [T ]} holds with probability281

at least 1 − δ. Second, it defines a parameter βt such that,282

conditionally to the realization of the event E , the following283

two conditions hold: (i) the decision space Λβt(µ̂t) contains284

the optimal signaling scheme φ?; (ii) Λ2βt(µ
?) contains the signaling scheme φt. Intuitively, the285

first condition is needed to have low sender’s regret, while the second one yields signaling schemes286

that are approximately persuasive.10287

The polytopal approximation that we provide in Section 4.2 plays a crucial role in the complexity of288

Algorithm 1. Specifically, it allows it to select the desired φt in polynomial time by optimizing over289

the set Λβt(µ̂t), which can be done efficiently. The use of the set Λβt(µ̂t) over Φ�βt(µ̂t) is necessary290

due to the fact that the latter is not known to admit an efficient representation. Formally:291

Theorem 4. Given any δ ∈ (0, 1), with probability at least 1− δ, Algorithm 1 guarantees:292

RT = O
(
|Z|
√
T log(T |Σc|/δ)

)
, VT = O

(
|Σr||Z|

√
T log(T |Σc|/δ)

)
.

Moreover, the algorithm runs in polynomial time.293

7 Learning with bandit feedback294

In this section, we build on Algorithm 1 to deal with bandit feedback, i.e., when at each round t ∈ [T ]295

the sender only observes the terminal node zt reached at the end of the SDM problem. The main296

difficulties of such a setting can be summarized by the following observations. First, the feedback zt297

only reveals partial information about the prior, and such information also depends on the selected298

signaling scheme φt. Second, even if the sender plays a signaling scheme φ ∈ Φ for an arbitrarily299

large number of rounds, there is no guarantee that they collect enough information to tell whether300

φ ∈ Φ�ε (µ
?) or not for some ε > 0. Indeed, the persuasiveness of a signaling scheme depends on301

all receiver’s utilities in the SDM problem, and some parts of the tree may not be reached during a302

10See Lemma 9 and 10 in Appendix F for the formal statements of these properties.
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sufficiently large number of rounds by committing to φ. Thus, any algorithm for the bandit-feedback303

setting must guarantee a suitable level of exploration over the entire tree, so as to keep track of the304

entity of the violation of persuasiveness constraints.305

Algorithm 2 Bandit-feedback algorithm
function SELECTSTRATEGY():

if t ≤ N then . First Phase
σ = (h, a)← arg minσ∈Σc Ct[σ]
Σs 3 σ′ ← σs(h)
Choose φt ∈ Φ : φt[σ

′] = 1
else . Second Phase
φt ← arg max

φ∈ΛβN
(µ̂N )

max
µ∈Ct(δ)

F (φ,µ)

return φt

function UPDATE(zt):
Build path pt ∈ {0, 1}|Σc| from σc(zt)
Sample πt ∼ φt s.t. pt[σ] = 1⇒ σ ∈ Σ↓(πt)
for σ ∈ Σ↓(πt) do

Ct+1[σ]← Ct[σ] + 1

µ̂t+1[σ]← 1
Ct+1[σ]

∑Ct+1[σ]
τ=1 pτ [σ]

εt+1[σ]←
√

log(4T |Σc|/δ)
2Ct+1[σ]

Ct+1(δ)←
{
µ
∣∣∣ |µ[σ]− µ̂t+1[σ]| ≤ εt+1[σ] ∀σ ∈ Σc

}
βt+1 ← 2|Z||Σc|

√
|Σc| log(4T |Σc|/δ)

2(t+1)

We design a two-phase algorithm, whose306

pseudo-code is provided in Algorithm 2. The307

algorithm takes as input the number N ∈ [T ]308

of rounds devoted to the first phase guarantee-309

ing the necessary amount of exploration, as310

detailed in Section 7.1. During this phase, the311

SELECTSTRATEGY() procedure implements312

an efficient deterministic uniform exploration313

policy, which builds an unbiased estimator314

µ̂N of µ?. This allows to restrict the space of315

feasible signaling schemes used in the subse-316

quent phase to those that are approximately317

persuasive, i.e., those in the set ΛβN (µ̂N ). In318

Section 7.2, we discuss the second phase of319

the the algorithm, composed by the rounds320

t > N , during which the algorithm focuses on321

the minimization of sender’s regret by exploit-322

ing the optimism in face of uncertainty princi-323

ple. Finally, in Section 7.3, we provide a lower324

bound on the trade-off between sender’s and325

receiver’s regrets, matching the upper bounds326

achieved by Algorithm 2 for a large portion327

of the trade-off frontier. This result formally328

motivates the necessity of the uniform explo-329

ration which is performed in the first phase of the algorithm.330

7.1 Minimizing the receiver’s regret331

At each round t ∈ [T ], the sender observes a terminal node zt ∈ Z that uniquely determines a path332

in the tree defining the SDM problem. We encode such a path by means of a vector pt ∈ {0, 1}|Σc|333

such that pt[σ] = 1 if and only if the chance sequence σ ∈ Σc lies on the path from the root of334

the tree to zt, namely σ � σc(zt). If the sender commits to a signaling scheme φt ∈ Φ, then it335

is easy to see that, for every σ = (h, a) ∈ Σc, the element pt[σ] is distributed as a Bernoulli of336

parameter φt[σs(h)]µ?[σ]. The crucial observation behind the design of our estimator is that, if the337

sender commits to a deterministic signaling schemes πt ∈ Π at some round t ∈ [T ], then for all the338

chance sequences σ ∈ Σc that are compatible with πt, i.e., that can be observed when πt is played,339

we have that pt[σ] is distributed as a Bernoulli of parameter µ?[σ]. Formally, a sequence σ ∈ Σc340

is compatible with πt if there exists a chance node h ∈ Hc and an outcome a ∈ A(h) satisfying341

σ = (h, a) and πt[σs(h)] = 1. This observation leads to the following result:342

Lemma 3. For every deterministic signaling scheme π ∈ Π, let343

Σ↓(π) := {σ = (h, a) ∈ Σc | a ∈ A(h) ∧ π[σs(h)] = 1} .
Then, during each round t ≤ N of Algorithm 2, it holds E [pt[σ]] = µ?[σ] for every σ ∈ Σ↓(πt).344

Thus, during the first phase, Algorithm 2 builds the desired estimator µ̂N of µ? as follows. At345

each round t ≤ N , after observing the feedback zt, the algorithm samples a deterministic signaling346

scheme πt ∈ Π according to φt (the one actually selected at t), so that all the sequences σ ∈ Σc347

such that pt[σ] = 1 (or, equivalently, σ � σc(zt)) belong to Σ↓(πt).11 Then, for every σ ∈ Σ↓(πt),348

the algorithm updates the estimator component µ̂t[σ] according to pt[σ]. Since the probability of349

visiting a sequence σ ∈ Σc depends on φt (and, thus, can be arbitrarily small), the first N rounds350

must be carefully used to ensure that each sequence is explored at least N/|Σc| times. To explore351

a specific sequence σ ∈ Σc, we choose a signaling scheme φt such that σ ∈ Σ↓(πt) for every352

deterministic πt ∼ φt. The procedure described above is needed for minimizing the receiver’s regret,353

since, in the second phase, the algorithm selects signaling schemes φt from ΛβN (µ̂N ). In particular,354

11The sampling can be done efficiently by a straightforward modification of the recursive procedure in [15, 16].
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as shown by the following lemma, Algorithm 2 guarantees that the receiver’s regret is upper bounded355

by 2βN at each round t > N , since it defines εt[σ] for each sequence σ ∈ Σc so that the event356

Ẽ := {|µ?[σ]− µ̂t[σ]| ≤ εt[σ] ∀(t, σ) ∈ [T ]× Σc} holds with probability at least 1− δ/2.357

Lemma 4. Under the event Ẽ , Algorithm 2 guarantees that φt ∈ Λ2βN (µ?) at each round t > N .358

7.2 Minimizing the sender’s regret359

Algorithm 2 also needs to guarantee small sender’s regret. To do so, we would like that φ? is a valid360

pick for the algorithm, i.e., it belongs to ΛβN (µ̂t). However, differently from the full-feedback setting,361

stopping exploration after the first N round does not guarantee optimal rates. In order to fix this issue,362

in the second phase, the algorithm selects φt optimistically by maximizing the sender’s expected363

utility F (φ,µ) over both φ ∈ ΛβN (µ̂N ) and µ ∈ Ct(δ), where Ct(δ) is a suitably-defined confidence364

set centered around µ̂t such that {µ? ∈ Ct(δ)} ≡ Ẽ , and, thus, it holds with high probability. This365

guarantees that maxµ∈Ct(δ) F (φ?,µ) ≥ F (φ?,µ?). Formally:366

Lemma 5. If the event Ẽ holds, then, for every round t > N , it holds that φ? ∈ ΛβN (µ̂t) and367

maxµ∈Ct(δ) F (φ?,µ) ≥ F (φ?,µ?).368

Thus, F (φt,µ
?) ≈ F (φt, µ̂t) ≥ maxµ∈Ct(δ) F (φ?, µ̂) ≥ F (φ?,µ?) holds in the limit, implying369

that F (φt,µ
?) converges to F (φ?,µ?) after sufficiently many rounds. Formally:370

Theorem 5. Given any δ ∈ (0, 1) and N ∈ [T ], Algorithm 2 guarantees:371

RT = O
(
N +

√
log(T |Σc|/δ)|Σc|T

)
and VT = O

(
N + T |Z|

√
|Σc| log(T |Σc|/δ)/N

)
,

with probability at least 1− δ. Moreover, the algorithm runs in polynomial time.372

In contrast to the case with full feedback, the optimization problem solved by Algorithm 2 belongs to373

the class of bilinear problems, which are NP-hard in general [18]. However, in Theorem 5 we prove374

that our specific problem can be solved in polynomial time. Furthermore, notice that Theorem 5375

takes as input the number N of rounds devoted to the first phase. Given an α ≥ 1/2, by choosing any376

N = bTαc we get bounds of RT = Õ(Tα) and VT = Õ(Tmax{α,1−α2 }).377

7.3 The lower bound frontier378

1
2

2
3

1

1
2

2
3

3
4

1

Order of T in RT

O
rd
er

of
T

in
V
T

Lower Bound
Algorithm 2

Figure 1: Trade-off between RT
and VT in the bandit feedback.

We conclude by showing that the trade offs between VT and RT379

achieved by Algorithm 2 are essentially tight. Previously, we380

provided an intuition as to why the algorithm needs to uniformly381

explore the entire tree of the SDM problem. Here, we provide a382

lower bound that corroborates such a statement. In particular, the383

following theorem shows that, for any α ∈ [1/2, 1], in order to384

guarantee a sender’s regret of the order ofO(Tα), it is necessary385

to suffer a receiver’s regret of the order of Ω(T 1−α/2).12386

Theorem 6. For any α ∈ [1/2, 1], there exists a constant γ ∈387

(0, 1) such that no algorithm guarantees both RT = o(Tα) and388

VT = o(T 1−α/2) with probability greater than γ.389

Figure 1 shows on the horizontal axis the order of the T term in RT , while, on the vertical axis,390

it shows the order of the T in VT . The shaded area over the blue line shows the achievable trade391

offs, while the marked red line shows the performances proved in Theorem 5. Thus, we show392

that Algorithm 2 matches the lower bound for α ∈ [1/2, 2/3]. However, when α ∈ [2/3, 1], the393

guarantees proved in Theorem 5 diverge from the ones proved in the lower bound. This is due to the394

N = bTαc component in the receiver’s regret that becomes dominant when α ≥ 2/3. We conjecture395

that it is possible to reduce this term to
√
N , hence matching the lower bound of Theorem 6. The396

reason for such a gap between the lower and upper bounds is that, during the first phase, Algorithm 2397

utilizes signaling schemes without taking into account their persuasiveness, thus incurring in large398

receiver’s regret during the first steps. We leave as future work addressing the question of whether it is399

possible to design exploration strategies by only using approximately-persuasive signaling schemes.400

12 For α ≤ 1/2, a simple reduction from a standard multi-armed bandit problem provides a lower bound of
Ω(
√
T ) on both sender’s regret RT and receiver’s regret VT .
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A Relation with the classical Bayesian persuasion framework499

θ1 θi θd

I

a1 aj ak a1 aj ak a1 aj ak

z1,1 z1,j z1,k zi,1 zi,j zi,k zd,1 zd,j zd,k

h0

h1 hi hd
. . . . . .

. . . . . . . . . . . . . . . . . .

Figure 2: Instance of BPSDM problem corresponding
to a given instance of Bayesian persuasion problem.

In this section, we clarify the relationship be-500

tween the BPSDM problems that we study501

in this paper and the classical Bayesian per-502

suasion framework introduced by Kamenica503

and Gentzkow [19]. In particular, we show504

that any instance of the classical Bayesian505

persuasion problem can be mapped to an506

instance of the BPSDM problem.507

A Bayesian persuasion problem instance is508

defined by a set A of k := |A| actions for509

the receiver, a set S of signals for the sender,510

and a set Θ of d := |Θ| possible outcomes511

of a (single) random event (called states of nature in the classical Bayesian persuasion terminology).512

The receiver’s payoff function is uR : Θ×A → [0, 1], while the sender’s one is uS : Θ×A → [0, 1].513

The sender observes the realized state of nature, which is drawn according to a commonly-known514

prior distribution µ ∈ ∆Θ. Then, they partially disclose information about the state by committing to515

a signaling scheme ϕ : Θ→ ∆S , which is a randomized mapping from states of nature to signals for516

the receiver. Thus, the interaction between the sender and the receiver is as follows:517

(i) The sender commits to a publicly known signaling scheme ϕ.518

(ii) The sender observes the state of nature θ ∼ µ.519

(iii) The sender samples a signal s ∼ ϕ(θ, ·) and sends it to the receiver.520

(iv) The receiver computes their posterior belief over the states Θ.521

(v) The receiver plays an action a ∈ A that maximizes their expected payoff.522

The posterior beliefs that the receiver computes in step (iv) after observing a signal s ∈ S are defined523

by a probability distribution ξs ∈ ∆Θ such that:524

ξs(θ) :=
µ(θ)ϕ(θ, s)∑

θ′∈Θ µ(θ′)ϕ(θ′, s)
,

and, thus, after observing signal s the receiver plays an action525

a ∈ arg max
a′∈A

∑
θ∈Θ

ξs(θ)u
R(θ, a′).

A revelation-principle-style argument [19] allow the sender to focus on direct and persuasive signaling526

schemes, where the latter property means that S ≡ A, with signals corresponding to actions527

recommendations for the receiver. A persuasive signaling scheme ϕ : Θ → ∆S is such that the528

receiver is always incentivized to follow action recommendations; formally:529 ∑
θ∈Θ

µ(θ)ϕ(θ, a)uR(θ, a) ≥
∑
θ∈Θ

µ(θ)ϕ(θ, a)uR(θ, a′) ∀a, a′ ∈ A. (2)

Instance mapping. Given an instance of the classical Bayesian persuasion problem [19], a corre-530

sponding (equivalent) instance of our BPSDM problem can be constructed as follows:531

(1) There is a unique chance node h0 which is the root of the tree defining the SDM problem.532

(2) At the chance node, there are d possible outcomes (namelyA(h0) ≡ Θ), each corresponding533

to a state of nature θ ∈ Θ and having probability µ(θ) of occurring, so that with a slight534

abuse of notation we can write µ?[∅] = 1 and µ?[θ] = µ(θ) for all θ ∈ Θ.535

(3) The receiver has a unique infoset I , which contains one decision node for each possible536

outcome at the chance node.537

(4) At infoset I , the receiver has a set A(I) ≡ A of available actions.538

(5) Terminal nodes Z are determined by state of nature, receiver’s action pairs, so that each539

θi ∈ Θ and aj ∈ A define a corresponding terminal node zi,j in the SDM problem.540
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The following theorem formally states that our definition of persuasiveness (Definition 2) instantiated541

to the BPSDM problem instances described above is equivalent to the definition of persuasiveness542

for classical Bayesian persuasion problems (Equation (2)). This establishes that our framework543

encompasses classical Bayesian persuasion problems as a special case.544

Theorem 7. Given any Bayesian persuasion instance, a signaling scheme is persuasive (Equation (2))545

if and only if it is persuasive (Definition 2) in the corresponding instance of BPSDM problem.546

Proof. It is sufficient to prove the equivalence between Equation (1) for ε = 0 and Equation (2)547

applied to the BPSDM problem instance representing the given Bayesian persuasion instance. To548

do that, we employ Theorem 1 and Lemma 6 in such a BPSDM problem instance, so that, using the549

notation introduced in this section, it is straightforward to see that Equation (1) reads as follows:550

max
a′∈A

∑
θ∈Θ

ϕ(θ, a)µ(θ)uR(θ, a′)−
∑
θ∈Θ

ϕ(θ, a)µ(θ)uR(θ, a) ≤ 0 ∀a ∈ A.

By rearranging the terms, we get Equation (2), which concludes the proof.551

B Example of SDM problem and its sets of sequences552

Figure 3 shows a simple instance of a SDM problem. This is defined by a tree whose set of chance553

nodes isHc = {h0}, while the set of decision nodes isHd = {h1, h2, h3}. The set of terminal nodes554

is Z = {z1, . . . , z6}. Moreover, the set of decision nodes Hd is partitioned into the set partition555

I = {I, J}, which is made by two infosets I = {h1} and J = {h2, h3}.556

a b c

J

d e f g f g

z1 z2

h0

h1

I

z3 z4 z5 z6

h2 h3

Figure 3: Example of SDM problem and its sets of sequences Σr, Σs, and Σc.

The sets of sequences are constructed as follows. For the chance agent, we have that Σc =557

{(h0, a), (h0, b), (h0, c)}, while for the receiver we have that Σr = {(I, d), (I, e), (J, f), (J, g)}.558

Let us remark that, since the receiver cannot distinguish between nodes h2 and h3, it only has 2559

sequences originating from such nodes; namely (J, f) and (J, g). Finally, the sender can be thought560

of as a perfect-information agent selecting action recommendations for the receiver at decision nodes,561

so that their set of sequences is Σs = {(h1, d), (h1, e), (h2, f), (h2, g), (h3, f), (h3, g)}.562

C Additional notation needed in the proofs563

In this section, we introduce some additional notation that will be useful in the proofs.564

We denote by Πr := Xr ∩ {0, 1}|Σr| the set of deterministic sequence-form strategies (a.k.a. pure565

strategies) of the receiver, which are the strategies specifying to play a single action with probability566

one at each infoset. The set of receiver’s deterministic strategies in the SDM sub-problem that starts567

from an infoset I ∈ I is denoted as Πr,I := Xr,I ∩ {0, 1}|Σr|. Moreover, we let Σr,I ⊆ Σr be the568

set of receiver’s sequences in the SDM sub-problem that starts from an infoset I ∈ I; formally,569

Σr,I := {σ ∈ Σr | σr(I) � σ ∧ ∃z ∈ Z(I) : σ � σr(z)}570

Given any infoset I ∈ I, we let Z(I) ⊂ Z be the set of terminal nodes z ∈ Z such that the path571

from the root of the tree to z passes through a node in I . Moreover, given σ = (I, a) with a ∈ A(I),572

we define Z(σ) = Z(I, a) ⊂ Z(I) as the set of terminal nodes whose corresponding paths include573

playing action a at a node in I . For every infoset I ∈ I, we also introduce a function hI : Z(I)→ I574

such that hI(z) defines the unique node h ∈ I on the path from the root of the tree to z.575
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Given an infoset I ∈ I and an action a ∈ A(I), we define C(I, a) ⊆ I as the set of all the576

infosets which immediately follow infoset I through action a, i.e., those infosets J ∈ I such that577

σr(J) = (I, a). Moreover, we let C(I) ⊆ I be the set of all infosets that follow I , i.e., those infosets578

J ∈ I such that there exits a ∈ A(I) with σ = (I, a) such that σ � σr(J).579

D Proofs omitted from Section 4580

Let us remark that all the results in Section 4 can be straightforwardly generalized to the case of a581

generic µ ∈ Xc, as needed for the proofs of the results in Sections 6 and 7. For ease of exposition,582

we state and prove the results of Section 4 for the prior µ?.583

First, we prove a preliminary lemma that allows us to express the receiver’s expected utility difference584

between using a (σ,ρσ)-SPDP and following action recommendations by only considering the585

terminal nodes under the infoset in which the SPDP prescribed to deviate. A similar result for the586

case of correlated strategies can be found in [13, Appendix A].587

Lemma 6. Given φ ∈ Φ, for every (σ,ρσ)-SPDP with σ = (I, a) ∈ Σr and ρσ ∈ Xr,I , it holds:588

Uσ→ρσ (φ,µ?)− U(φ,µ?) =
∑

z∈Z(I)

φ[(hI(z), a)]ρσ[σr(z)]µ
?[σc(z)]u(z)+

−
∑

z∈Z(σ)

φ[σs(z)]µ
?[σc(z)]u(z).

Proof. We define the following three disjoint events for any (σ,ρσ)-SPDP, where σ = (I, a).589

(C1): A terminal node z ∈ Z(σ) is reached.590

(C2): A terminal node z ∈ Z(I, a′) for some a′ 6= a ∈ A(I) is reached.591

(C3): A terminal node z ∈ Z/Z(I) is reached.592

Next, under each event, we define the probability pσ→ρσ (z) of reaching a terminal node z:593

(C1): Since z ∈ Z(σ), the node z is reached by means of the continuation strategy ρσ . Thus:594

p(1)
σ→ρσ (z) := φ[(hI(z), a)]µ?[σc(z)]ρσ[σr(z)].

(C2): Since z ∈ Z(I, a′) for a′ 6= a ∈ A(I), the node z can be reached either by deviating595

and then committing to the continuation strategy ρσ or by following recommendations.596

Moreover, these two cases are exclusive, and, thus, we can write:597

p(2)
σ→ρσ (z) := φ[(hI(z), a)]µ?[σc(z)]ρσ[σr(z)] + φ[σs(z)]µ

?[σc(z)].

(C3): Since z ∈ Z/Z(I), the node z is reached by following recommendations:598

p(3)
σ→ρσ (z) := φ[σs(z)]µ

?[σc(z)].

We observe that p(2)
σ→ρσ (z) = p

(1)
σ→ρσ (z) + p

(3)
σ→ρσ (z), and, thus, we can write Uσ→ρσ (φ,µ?) as:599

Uσ→ρσ (φ,µ?) :=
∑

z∈Z(σ)

p(1)
σ→ρσ (z)u(z) +

∑
z∈Z(I,a′):
a′ 6=a∈A(I)

p(2)
σ→ρσ (z)u(z) +

∑
z∈Z/Z(I)

p(3)
σ→ρσ (z)u(z)

≤
∑

z∈Z(I)

p(1)
σ→ρσ (z)u(z) +

∑
z∈Z/Z(σ)

p(3)
σ→ρσ (z)u(z).

Furthermore, by using the definition of p(3)
σ→ρσ (z), we can write U(φ,µ) :=

∑
z∈Z u(z)p

(3)
σ→ρσ (z).600

Thus:601

Uσ→ρσ (φ,µ?)− U(φ,µ?) =
∑

z∈Z(I)

p(1)
σ→ρσ (z)u(z)−

∑
z∈Z(σ)

p(3)
σ→ρσ (z)u(z),

which is the statement of the lemma by substituting the definitions of p(1)
σ→ρσ (z) and p(3)

σ→ρσ (z).602
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Now, we exploit Lemma 6 to prove the following local decomposition of a DP into SPDPs.603

Theorem 1. Given a signaling scheme φ ∈ Φ and a (ω,ρ)-DP, it holds:604

Uω→ρ(φ,µ?)− U(φ,µ?) =
∑
σ∈Σr

ω[σ]
(
Uσ→ρσ (φ,µ?)− U(φ,µ?)

)
.

Proof. For any terminal node z ∈ Z , let pω→ρ(z;φ,µ?) be the probability of reaching node z when605

the receiver employs the (ω,ρ)-DP under the signaling scheme φ and the prior µ?. It holds:606

pω→ρ(z;φ,µ?) :=
∑

σ=(I,a)∈Σr:σ�σr(z)

ω[σ]φ[(hI(z), a)]ρσ[σr(z)]µ
?[σc(z)]+

+ φ[σs(z)]µ
?[σc(z)]

1−
∑

σ∈Σr:σ�σr(z)

ω[σ]

 .

The sum in the first term in the definition of pω→ρ(z;φ,µ?) accounts for the probabilities of reaching607

z when the receiver reaches infoset I , is recommended to play action a, and deviates by following the608

continuation strategy ρσ thereafter, for all the sequences σ = (I, a) that precede the sequence σr(z)609

reaching z. Instead, the second term in the definition of pω→ρ(z;φ,µ?) accounts for the probability610

of reaching z by following recommendations. Thus, Uω→ρ(φ,µ?) =
∑
z∈Z p

ω→ρ(z;φ,µ?)u(z).611

By rearranging the terms in Uω→ρ(φ,µ?), we get to the following result:612

Uω→ρ(φ,µ?) = U(φ,µ?) +
∑
z∈Z

[ ∑
σ=(I,a):σ�σr(z)

ω[σ]φ[(hI(z), a)]ρσ[σr(z)]µ
?[σc(z)]u(z)+

−
∑

σ∈Σr:σ�σr(z)

ω[σ]φ[σs(z)]µ
?[σc(z)]u(z)

]

= U(φ,µ?)−
∑
σ∈Σr

ω[σ]
∑

z∈Z(σ)

φ[σs(z)]µ
?[σc(z)]u(z)+

+
∑
σ∈Σr

ω[σ]
∑

z∈Z(I)

φ[(hI(z), a)]ρσ[σr(z)]µ
?[σc(z)]u(z). (3)

Thus, by combining Lemma 6 with Equation (3) we get that:613

Uω→ρ(φ,µ?)− U(φ,µ?) =
∑
σ∈Σr

ω[σ]
[
Uσ→ρσ (φ,µ?)− U(φ,µ?)

]
,

which concludes the proof.614

Corollary 1. Given a signaling scheme φ ∈ Φ, the following holds:615

max
(ω,ρ)∈Ω×P

Uω→ρ(φ,µ?)− U(φ,µ?) ≤
∑

σ=(I,a)∈Σr

[
max
ρσ∈Xr,I

Uσ→ρσ (φ,µ?)− U(φ,µ?)

]+

.

Proof. By using Theorem 1, we derive the following:616

max
(ω,ρ)∈Ω×P

Uω→ρ(φ,µ?)− U(φ,µ?) = max
(ω,ρ)∈Ω×P

∑
σ∈Σr

ω[σ]
(
Uσ→ρσ (φ,µ?)− U(φ,µ?)

)
≤ max

(ω,ρ)∈Ω×P

∑
σ∈Σr

ω[σ]
[
Uσ→ρσ (φ,µ?)− U(φ,µ?)

]+
≤ max
ρ∈P

∑
σ∈Σr

[
Uσ→ρσ (φ,µ?)− U(φ,µ?)

]+
=
∑
σ∈Σr

[
max
ρσ∈Xr,I

Uσ→ρσ (φ,µ?)− U(φ,µ?)

]+

.

This concludes the proof.617
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Lemma 1. The set Λε(µ
?) can be described by means of a polynomial number of linear constraints.618

Proof. In order to prove that the set Λε(µ
?) can be described by means of linear constraints, we619

employ duality arguments related to the max problem in the definition of Λε(µ
?) (Definition 4).620

By Lemma 6, for every sequence σ = (I, a) ∈ Σr, we can rewrite the expression in the left-hand621

side of the inequality characterizing Λε(µ
?) in Definition 4 as follows:622

max
ρσ∈Xr,I

 ∑
z∈Z(I)

φ[(hI(z), a)]ρσ[σr(z)]µ
?[σc(z)]u(z)

− ∑
z∈Z(σ)

φ[σs(z)]µ
?[σc(z)]u(z),

so that Λε(µ
?) can be expressed as the set of all φ ∈ Φ such that the above expression has value less623

than or equal to ε/|Σr| for every σ ∈ Σr. Observe that the expression in the max operator is a linear624

function of ρσ , and that the set Xr,I is a polytope by definition. Thus, for every σ = (I, a) ∈ Σr, the625

maximization above can be equivalently rewritten as the following linear program:626

max
xI,a≥0

(
xI,a

)>
c(φ,µ?) s.t. (4a)

F Ix
I,a = f I (4b)

where xI,a is a vector of variables indexed over sequences Σr,I ∪ {σr(I)}. Notice that c(φ,µ?) ∈627

R|Σr,I | is a vector of coefficients such that the component corresponding to each σ′ ∈ Σr,I is628

c(φ,µ?)[σ′] :=
∑

z∈Z(I):σr(z)=σ′

φ[(hI(z), a)]µ?[σc(z)]u(z),

while c(φ,µ?)[σr(I)] := 0. Moreover, F I ∈ {−1, 0, 1}(1+|C(I)|)×|Σr,I | is a matrix of coefficients629

whose components are defined as follows: [F I ]I∅,σr(I) := 1 and [F I ]I∅,σ′ := 0 for all sequences630

σ′ ∈ Σr,I , where I∅ is a fictitious infoset indexing the first row, while, for every infoset J ∈ C(I)631

following I (this included) and sequence σ′ ∈ Σr,I ∪ {σr(I)}:632

[F I ]J,σ′ :=


−1 if σ′ = σr(J)

1 if σ′ = (J, a′) for some a′ ∈ A(J)

0 otherwise
.

Finally, f I ∈ {0, 1}1+|C(I)| is a vector whose components are all zero apart from that one corre-633

sponding to the sequence σr(I), which is one (see also [20]).634

The dual linear program of Problem (4) reads as:635

min
yI,a

yI,a[I∅] s.t. (5a)

F>I y
I,a ≥ c(φ,µ?), (5b)

where yI,a is a vector of dual variables indexed over C(I) ∪ {I∅}. For ease of notation, we let636

OPTI,a be the optimal value of Problem (5) instantiated for the sequence σ = (I, a).637

By strong duality, we have that the optimal value of the primal (Problem (4)) is equal to the optimal638

value of the dual (Problem (5)), and this allows us to readily rewrite the set Λε(µ
?) as follows:639

Λε(µ
?) =

{
φ ∈ Φ

∣∣∣ OPTI,a − ∑
z∈Z(σ)

φ[σs(z)]µ
?[σc(z)]u(z) ≤ ε

|Σr|
∀σ = (I, a) ∈ Σr

}
. (6)

Moreover, we can remove OPTI,a in Equation (6) since it appears in in the right-hand side of a ≤640

inequality and Problem (5) is a min problem. Thus, the set Λε(µ
?) can be written as follows:641

Λε(µ
?) =

{
φ ∈ Φ

∣∣∣∃yI,a ∈ R1+|C(I)| : yI,a[I∅]−
∑

z∈Z(σ)

φ[σs(z)]µ
?[σc(z)]u(z) ≤ ε

|Σr|

∧ F>I yI,a ≥ c(φ,µ?) ∀σ = (I, a) ∈ Σr

}
, (7)
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which is comprised of a polynomial number of inequalities and variables, concluding the proof.642

Let us also notice that, by expanding the constraints of Problem (5), one can easily check that643

they can be equivalently rewritten recursively, as follows. For every sequence σ′ = (J, a′) ∈ Σr,I ,644

Constraints (5b) can be rewritten as:645

yI,a[J ] ≥
∑

z∈Z(I):σr(z)=(J,a′)

φ[(hI(z), a)]µ?[σc(z)]u(z) +
∑

K∈C(J,a′)

yI,a[K], (8)

while, for sequence σr(I), Constraint (5b) can be written as yI,a[I∅] ≥ yI,a[I]. Intuitively, at any646

optimal solution to Problem (5), we can interpret the value of the dual variable yI,a[I∅] as the647

receiver’s expected utility obtained by playing the best possible continuation strategy after being648

recommended action a at infoset I . Indeed, the first term in the right-hand-side of Equation (8) is649

the utility immediately obtainable after playing a′ at infoset J , while the second term recursively650

encodes the utilities obtained (non-immediately) following a′ at J .651

Lemma 2. It is always the case that Φ�(µ?) ≡ Λ(µ?) ⊆ Λε(µ
?) ⊆ Φ�ε (µ

?).652

Proof. First, we prove that Φ�(µ?) ≡ Λ(µ?). Suppose that φ ∈ Φ�(µ?). Then, Definition 2 implies653

Uω→ρ(φ,µ?)− U(φ,µ?) ≤ 0,

for every ω ∈ Ω and ρ ∈ P . Thus, by Theorem 1 we have that:654 ∑
σ∈Σr

ω[σ]
(
Uσ→ρσ (φ,µ?)− U(φ,µ?)

)
≤ 0,

for every ω ∈ Ω and ρ ∈ P , which implies that:655

max
ρσ∈Xr,I

Uσ→ρσ (φ,µ?)− U(φ,µ?) ≤ 0 ∀σ ∈ Σr,

and φ ∈ Λ(µ?), proving the first part of the statement.656

On the other hand, Λ(µ?) ⊆ Φ�(µ?) is directly implied by Corollary 1. Thus, Λ(µ?) ≡ Φ�(µ?).657

Moreover, from Definition 4 it trivially follows that Λ(µ?) ⊆ Λε(µ
?).658

Finally, we prove that Λε(µ
?) ⊆ Φ�ε (µ

?). Given ε > 0, let φ ∈ Λε(µ
?). By Corollary 1, it holds:659

max
(ω,ρ)∈Ω×P

Uω→ρ(φ,µ?)− U(φ,µ?) ≤
∑

σ=(I,a)∈Σr

[
max
ρσ∈Xr,I

Uσ→ρσ (φ,µ?)− U(φ,µ?)

]+

≤
∑

σ=(I,a)∈Σr

ε

|Σr|
= ε,

which implies that φ ∈ Φ�ε (µ
?). This concludes the proof.660

Theorem 2. The BPSDM problem can be solved in polynomial time when the prior µ? is known.661

Proof. It easy to check that the problem can be written as the following linear program:662

max
φ∈Λ(µ?)

F (φ,µ?),

where the objective function is linear and Λ(µ?) is a polytope that can be represented by a polynomial663

number of linear inequalities, by Lemma 1.664

E Proofs omitted from Section 5665

Theorem 3 (Impossibility of persuasiveness). There exists a constant γ ∈ (0, 1) such that no666

algorithm can guarantee to output a sequence φ1, . . . ,φT of signaling schemes such that, with667

probability al least γ, all the signaling schemes φt are persuasive.668
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Figure 4: Tree structure used in the proof of Theorem 3. Black round nodes are decision nodesHd.
White round nodes are the chance nodesHc, while grey square nodes are the terminal nodes Z .

Proof. We define two instances i and j of BPSDM problem based on the tree structure presented in669

Figure 4. In instance i, respectively j, the prior is defined as follows:670

i :=


µ?[(h1, c)] = 1

2 + ε

µ?[(h1, d)] = 1
2 − ε

µ?[(h2, e)] = 1
2 − ε

µ?[(h2, f)] = 1
2 + ε

,

671

j :=


µ?[(h1, c)] = 1

2 − ε
µ?[(h1, d)] = 1

2 + ε

µ?[(h2, e)] = 1
2 + ε

µ?[(h2, f)] = 1
2 − ε

.

Moreover, for both instances u(z1) = u(z3) = 1 and u(z2) = u(z4) = 0. A direct computation672

shows that, in instance i, it holds V i
T = 2ε

∑T
t=1 φt[(h0, b)], while one can similarly compute that673

V j
T = 2ε

∑T
t=1 φt[(h0, a)]. Let Pi and Pj be the probability measures of instance i and j, respectively.674

Assume that Pj[V j
T ≤ 0] ≥ 1− δ. Then, we know from the Pinsker inequality that:675

Pi

[
T∑
t=1

φt[(h0, a)] ≤ 0

]
≥ 1−

√
1

2
K(i, j)− δ,

where K(i, j) is the Kullback-Leibler divergence between instance i and j. By using the Kullback-676

Leibler decomposition (see, e.g., [21] for more details), we can state that:677

K(i, j) = 2TK(B1/2+ε, B1/2−ε),

where K(B1/2+ε, B1/2−ε) ≤ 16ε2 is the Kullback-Leibler divergence between a Bernoulli of param-678

eter 1/2 + ε and one of parameter 1/2− ε. Thus:679

Pi

[
T∑
t=1

φt[(h0, a)] ≤ 0

]
≥ 1− 4ε

√
T − δ.

Moreover, in instance i, we have that V i
T = 2ε

∑T
t=1 φt[(h0, b)], which implies:680

Pi
[
V i
T ≥ 2εT

]
≥ 1− 4ε

√
T − δ.

By setting ε = 1
16
√
T

, we have that:681

Pi

[
V i
T ≥

1

8

√
T

]
≥ 0.75− δ.

Thus, any algorithm that guarantees with high probability RrT ≤ 0 in instance j fails with high682

probability in instance i. This proves the claim.683
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F Proofs omitted from Section 6684

Before presenting the proofs of the results in Section 6 ,we introduce some preliminary lemmas.685

Lemma 7. Given any φ ∈ Φ and µ,µ′ ∈ Xc, if it is the case that φ ∈ Λε(µ) and ‖µ− µ′‖∞ ≤ γ,686

then it holds that φ ∈ Λε′(µ
′) with ε′ = 2|Z||Σr|γ + ε.687

Proof. For every (σ,ρσ)-SPDP with σ = (I, a), the following inequalities hold:688

Uσ→ρσ (φ,µ′)−U(φ,µ′)

=
∑
Z(I)

φ[(hI(z), a)]ρσ[σr(z)]µ
′[σc(z)]u(z)−

∑
z∈Z(σ)

φ[σs(z)]µ
′[σc(z)]u(z)

≤
∑
Z(I)

φ[(hI(z), a)]ρσ[σr(z)] (µ′[σc(z)]− µ[σc(z)])u(z)

−
∑

z∈Z(σ)

φ[σs(z)] (µ′[σc(z)]− µ[σc(z)])u(z) +
ε

|Σr|

≤2|Z|‖µ− µ′‖∞ +
ε

|Σr|
≤ 2|Z|γ +

ε

|Σr|
,

where in the first inequality we added and subtracted the difference Uσ→ρσ (φ,µ)− U(φ,µ) and689

used the fact that φ ∈ Λε(µ), while the second-to-last inequality follows from Hölder’s inequality.690

Since Uσ→ρσ (φ,µ′) − U(φ,µ′) ≤ 2|Z|γ + ε
|Σr|

:= ε′

|Σr| holds for every (σ,ρσ)-SPDP, we have691

that φ ∈ Λε′(µ
′) with ε′ = |Z||Σr|γ + ε, concluding the proof.692

Lemma 8. Given any δ ∈ (0, 1), Algorithm 1 guarantees that P[E ] ≥ 1− δ, where:693

E := {‖µ̂t − µ?‖∞ ≤ εt ∀t ∈ [T ]} ,
and εt is chosen according to Algorithm 1.694

Proof. Let Bt(δ) be defined as follows:695

Bt(δ) :=

{
µ
∣∣∣ |µ[σ]− µ̂t[σ]| ≤

√
log(2T |Σc|/δ)

2t
∀σ ∈ Σc

}
.

Clearly, P[E ] = P[µ? ∈ Bt(δ)∀t ∈ [T ]]. By Hoeffding’s inequality, we have that:696

P

(
|µ?[σ]− µ̂t[σ]| ≤

√
log(2T |Σc|/δ)

2t

)
≥ 1− δ

T |Σc|
.

By a union bound over σ ∈ Σc and t ∈ [T ], we get that:697

P

(
|µ?[σ]− µ̂t[σ]| ≤

√
log(2T |Σc|/δ)

2t
∀σ ∈ Σc ∀t ∈ [T ]

)
≥ 1− δ.

This concludes the proof of the lemma.698

Lemma 9. If the event E holds, Algorithm 1 guarantees that φ? ∈ Λβt(µ̂t) for all t ∈ [T ].699

Proof. By definition, we have that φ? ∈ Λ(µ?). Moreover, since we conditioned on E , we have that:700

‖µ? − µ̂t‖∞ ≤ εt ∀t ∈ [T ].

Thus, we can exploit Lemma 7, which, by letting βt := 2|Z||Σr|εt, gives that φ? ∈ Λβt(µ̂t).701

Lemma 10. If the event E holds, Algorithm 1 guarantees that φt ∈ Λ2βt(µ
?) for all t ∈ [T ].702

Proof. Given how Algorithm 1 works, we have that φt ∈ Λβt(µ̂t). On the other hand, since we703

conditioned on the event E , it must be the case that ‖µ?− µ̂t‖ ≤ εt for all t ∈ [T ]. Thus, by Lemma 7704

we obtain that φt ∈ Λ2βt(µ
?), where βt is defined as in the proof of Lemma 9.705
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Theorem 4. Given any δ ∈ (0, 1), with probability at least 1− δ, Algorithm 1 guarantees:706

RT = O
(
|Z|
√
T log(T |Σc|/δ)

)
, VT = O

(
|Σr||Z|

√
T log(T |Σc|/δ)

)
.

Moreover, the algorithm runs in polynomial time.707

Proof. First, we bound the computational complexity of the algorithm, then we separately analyze708

the sender’s regret RT and the receiver’s regret VT .709

Complexity. With an argument analogous to the one used for the proof of Theorem 2, we have that710

the optimization problem solved by SELECTSTRATEGY() in Algorithm 1 is a polynomially-sized711

linear problem (Lemma 1). Hence, it can be solved in polynomial time.712

Sender’s regret. If the event E holds, which happens with probability at least 1− δ, then:713

µ?[σ]− εt ≤ µ̂t[σ] ≤ µ?[σ] + εt,

for every sequence σ ∈ Σc and round t ∈ [T ]. This implies that, for every φ ∈ Φ, we have:714

F (φ,µ?)− |Z|εt ≤ F (φ, µ̂t) ≤ F (φ,µ?) + |Z|εt.

Moreover, under the event E , we have that φ? ∈ Λβt(µ̂t) and, thus, F (φ?, µ̂t) ≤ F (φt, µ̂t) as φt is715

computed by optimizing F (·, µ̂t) over Λβt(µ̂t). By putting all the above results together, we get that,716

under event E , the following holds:717

F (φ?,µ?) ≤ F (φ?, µ̂t) + |Z|εt ≤ F (φt, µ̂t) + |Z|εt ≤ F (φt,µ
?) + 2|Z|εt.

By rearranging the terms, taking the sum over t ∈ [T ], and using
∑T
t=1

1√
t
≤ 2
√
T , we get:718

RT :=

T∑
t=1

(
F (φ?,µ?)− F (φt,µ

?)
)
≤ 2|Z|

T∑
t=1

εt ≤ 2|Z|
√

2 log(2T |Σc|/δ)T ,

which holds under the event E , and, thus, with probability at least 1− δ.719

Receiver’s regret. If the event E holds, thanks to Lemma 10 we have that φt ∈ Λ2βt(µ
?). Thus,720

by using Lemma 2, we can conclude that φt ∈ Φ�2βt(µ
?). This implies that, with probability at least721

1− δ, the following holds:722

VT ≤ 2

T∑
t=1

βt ≤ 4|Σr||Z|
√

2 log(2T |Σc|/δ)T ,

which concludes the proof.723

G Proofs omitted from Section 7724

Lemma 3. For every deterministic signaling scheme π ∈ Π, let725

Σ↓(π) := {σ = (h, a) ∈ Σc | a ∈ A(h) ∧ π[σs(h)] = 1} .

Then, during each round t ≤ N of Algorithm 2, it holds E [pt[σ]] = µ?[σ] for every σ ∈ Σ↓(πt).726

Proof. For any signaling scheme φ ∈ Φ, we have that the probability of reaching any node h ∈ Hc727

during a round t < N (or, equivalently, that pt[σ] = 1 for some chance sequence σ = (h, a)) is a728

Bernoulli with parameter µ?[σ]φ[σs(h)]. Thus:729

E[pt[σ]] = φt[σs(h)]µ?[σ].

If we consider any deterministic signaling schemeπ ∈ Π and a chance sequence σ = (h, a) ∈ Σ↓(π),730

we have that φt[σs(h)] = 1, and, thus, the above equation simplifies to:731

E[pt[σ]] = µ?[σ],

which concludes the proof.732
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Lemma 11. Given any δ ∈ (0, 1), Algorithm 2 guarantees that with probability at least 1− δ/2:733

T∑
t=N+1

∑
z∈Z

εt[σc(z)]φt[σs(z)] ≤
√

log(4T |Σc|/δ)|Σc|T + |Z|
√

log(2/δ)T ,

where the terms εt[σ] for σ ∈ Σc and t ∈ [T ] are defined according to Algorithm 2.734

Proof. First, let us consider the deterministic signaling scheme πt ∈ Π sampled by the algorithm735

according to φt at round t ∈ [T ]. For convenience, in the following we report the definition of εt[σ]736

(according to Algorithm 2) for each σ ∈ Σc and t ∈ [T ]:737

εt[σ] :=

√
log(4T |Σc|/δ)

2Ct[σ]
,

where Ct[σ] represents the number of rounds t′ ≤ t in which it is the case that σ ∈ Σ↓(πt′). Then,738

the following chain of inequalities holds:739

T∑
t=N+1

∑
z∈Z

εt[σc(z)]πt[σs(z)] (9a)

=

T∑
t=N+1

∑
σ∈Σc:

∃z∈Z:σ=σc(z)

εt[σ]
∑
σ′∈Σs:

∃z∈Z:σ=σc(z)∧σ′=σs(z)

πt[σ
′]

 (9b)

≤
T∑

t=N+1

∑
σ=(h,a)∈Σc

εt[σ]πt[σs(h)] (9c)

=
∑

σ=(h,a)∈Σc

∑
t∈[T ]:

t≥N+1∧πt[σs(h)]=1

εt[σ] (9d)

=
∑
σ∈Σc

CT [σ]∑
t=CN+1[σ]

√
log(4T |Σc|/δ)

2t
(9e)

≤
∑
σ∈Σc

√
log(4T |Σc|/δ)CT [σ] (9f)

≤
√

log(4T |Σc|/δ)|Σc|T , (9g)

where Equation (9c) follows by the definition of sequence-form signaling scheme of the sender,740

Equation (9d) follows by exchanging the sums over σ ∈ Σc and t ∈ [T ] and recalling that πt is a741

deterministic signaling scheme, Equation (9e) holds by definition of ε, while Equation (9f) comes742

from
∑T
t=1

1√
t
≤ 2
√
T . Finally, Equation (9g) follows from the Cauchy-Schwarz inequality.743

Next, we provide a similar bound on
∑T
t=N+1

∑
z∈Z εt[σc(z)]φt[σs(z)]. We do this by exploiting744

the Azuma-Hoeffding inequality [14]. Indeed, we have that E[πt[σ]|Ft−1] = φt[σ], where Ft−1 is745

the filtration generated up to time t− 1 from the interaction between the algorithm and the BPSDM746

problem. Thus, with probability at least 1− δ/2 the following holds:747

T∑
t=N+1

∑
z∈Z

εt[σc(z)]φt[σs(z)] ≤
T∑

t=N+1

∑
z∈Z

εt[σc(z)]πt[σc(z)] + |Z|
√

log(2/δ)T .

By combining the equation above with Equation (9f), we obtain:748

T∑
t=N+1

∑
z∈Z

εt[σc(z)]φt[σs(z)] ≤
√

log(4T |Σc|/δ)|Σc|T + |Z|
√

log(2/δ)T .

This concludes the proof.749
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Lemma 4. Under the event Ẽ , Algorithm 2 guarantees that φt ∈ Λ2βN (µ?) at each round t > N .750

Proof. The proof is similar to the one of Lemma 10. If the event Ẽ holds, then we have that:751

‖µ? − µ̂N‖∞ ≤ max
σ∈Σc

εt[σ] := εN .

Moreover, φt ∈ ΛβN (µ̂N ) and we can use Lemma 7 to conclude that φt ∈ ΛβN+2εN |Σr||Z|(µ
?) for752

all t > N . The proof follows from βN ≥ 2εN |Z||Σr|, since εN ≤
√

log(4T |Σc|/δ)|Σc|
2N .753

Lemma 5. If the event Ẽ holds, then, for every round t > N , it holds that φ? ∈ ΛβN (µ̂t) and754

maxµ∈Ct(δ) F (φ?,µ) ≥ F (φ?,µ?).755

Proof. Since φ? ∈ Λ(µ?) and, under the event Ẽ , it holds that:756

‖µ? − µ̂N‖∞ ≤ max
σ∈Σc

εt[σ] := εN ,

we can use Lemma 7 to conclude that φ? ∈ Λ2|Σc||Z|εN (µ̂N ). The proof of the first statement757

is concluded by observing that βN ≥ 2|Σr||Z|εN , since εN ≤
√

log(4T |Σc|/δ)|Σc|
2N . The second758

statement directly follows from the observation that, under the event Ẽ , it holds µ? ∈ Ct(δ).759

Theorem 5. Given any δ ∈ (0, 1) and N ∈ [T ], Algorithm 2 guarantees:760

RT = O
(
N +

√
log(T |Σc|/δ)|Σc|T

)
and VT = O

(
N + T |Z|

√
|Σc| log(T |Σc|/δ)/N

)
,

with probability at least 1− δ. Moreover, the algorithm runs in polynomial time.761

Proof. First, we bound the computational complexity of the algorithm, then we separately analyze762

the sender’s regret RT and the receiver’s regret VT .763

Complexity. First, observe that F (φ,µ) is a linear function in µ and it only has positive terms.764

Thus, for every φ ∈ Φ, the maximum over Ct(δ) in the optimization problem solved during the765

second phase of the SELECTSTRATEGY() procedure is reached on the boundary of Ct(δ), so that766

larger entries of µ provide larger objective values. Formally, we define:767

µt ∈ arg max
µ∈Ct(δ)

F (φ,µ),

which is independent of φ. Then, for every σ ∈ Σc, we have that µt[σ] = µ̂t[σ] + εt[σ]. Thus, we768

can compute the signaling scheme φt with a linear program as follows:769

φt ← max
φ∈Λβt (µ̂t)

F (φ,µt), (10)

and, similarly to the proof of Theorem 4, we have that the optimization problem in Equation (10) is a770

polynomially-sized linear program by Lemma 1. Hence, it can be solved in polynomial time.771

Sender’s regret. Under the event Ẽ , which happens with probability at least 1− δ/2, we have that772

|µ?[σ]− µ̂t[σ]| ≤ εt[σ] for all t > N . Thus,773

‖µ? − µ̂t‖∞ ≤ max
σ∈Σc

εt[σ] := εN . (11)

Then, we can conclude that, under event Ẽ , it holds µ?[σ] + 2εt[σ] ≥ µt[σ]. This in turn implies:774

F (φt,µt) ≤ F (φt,µ
?) + 2

∑
z∈Z

εt[σc(z)]φt[σs(z)].

By Lemma 5, we have that, under event Ẽ , it holds φ? ∈ ΛβN (µ̂N ). Hence, F (φ?,µt) ≤ F (φt,µt)775

as φt is computed as the optimum over ΛβN (µt). Moreover, by Lemma 5 we also have that776

F (φ?,µ?) ≤ F (φ?,µt), which implies:777

F (φ?,µ?) ≤ F (φ?,µt) ≤ F (φt,µt) ≤ F (φt,µ
?) + 2

∑
z∈Z

εt[σc(z)]φt[σs(z)].
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Then, we can decompose the sender’s regret as:778

RT =

N∑
t=1

(
F (φ?,µ?)− F (φt,µ

?)
)

+

T∑
t=N+1

(
F (φ?,µ?)− F (φt,µ

?)
)

≤ N + 2

T∑
t=N+1

∑
z∈Z

εt[σc(z)]φt[σs(z)].

By using Lemma 11 and a union bound, we can conclude that with probability at least 1− δ:779

RT ≤ N + 2
(√

log(4T |Σc|/δ)|Σc|T + |Z|
√

log(2/δ)T
)
.

Receiver’s regret. By Lemma 4, under the event Ẽ , we have that φt ∈ Λ2βN (µ?) for all t ≥ N .780

Moreover, by Lemma 2, it holds that Λ2βN (µ?) ⊆ Φ�2βN (µ?). Hence, with probability at least 1− δ:781

VT ≤ N + 2TβN = N + 4T |Z||Σr|
√
|Σc| log(4T |Σc|/δ)

2N
.

This concludes the proof.782

Theorem 6. For any α ∈ [1/2, 1], there exists a constant γ ∈ (0, 1) such that no algorithm783

guarantees both RT = o(Tα) and VT = o(T 1−α/2) with probability greater than γ.784

Proof. We define two instances i and j of a BPSDM problem whose tree structures are as in Figure 4.785

In both instances, we have that f(z1) = f(z2) = 0 and f(z3) = f(z4) = 1 for the sender, while786

u(z1) = u(z3) = 1 and u(z2) = u(z4) = 0 for the receiver. Moreover, in both instances we have787

that for the chance node h1 it holds µ?[(h1, c)] = µ?[(h1, d)] = 1/2. Instead, the two instances788

differ in the probabilities of chance node h2, which are defined as follows:789

i :=

{
µ?[(h2, e)] = 1

2 − ε
µ?[(h2, f)] = 1

2 + ε
,

790

j :=

{
µ?[(h2, e)] = 1

2 + ε

µ?[(h2, f)] = 1
2 − ε

.

Simple calculations show that, in instance j, we have that the regret of the sender is:791

Rj
T =

T∑
t=1

φt[(h0, a)]

Hence, if we require that (in high probability with respect to the measure Pj of instance j) the sender’s792

regret is smaller than a threshold K, then:793

Pj

[
T∑
t=1

φt[(h1, a)] ≤ K

]
≥ 1− δ.

The Pinsker’s inequality states that:794

Pi

[
T∑
t=1

φt[(h1, a)] ≤ K

]
≥ 1− δ −

√
1

2
K(j, i),

whereK(j, i) is the Kullback-Leibler divergence between instance j and instance i. By the well-known795

decomposition theorem of the divergence, we know that:796

K(j, i) = Ej

[
T∑
t=1

φt[(h1, a)]

]
K(B1/2+ε, B1/2−ε) ≤ 16ε2Ej

[
T∑
t=1

φt[(h1, a)]

]
,
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whereK(B1/2+ε, B1/2−ε) is the Kullback-Leibler divergence between two Bernoulli random variable797

with parameter 1/2 + ε and 1/2− ε. Now, we can upper bound Ej
[∑T

t=1 φt[(h1, a)]
]

in terms of798

the probability Pj with the reverse Markov inequality, as follows:799

Ej

[
T∑
t=1

φt[(h1, a)]

]
≤ Pj

[
T∑
t=1

φt[(h1, a)] ≥ K

]
(T −K) +K

≤ δ(T −K) +K.

Thus, we can conclude that:800

Pi

[
T∑
t=1

φt[(h1, a)] ≤ K

]
≥ 1− δ − 2ε

√
2(δ(T −K) +K). (12)

Now, we consider the receiver’s regret in instance i, which can be computed as:801

V i
T = ε

T∑
t=1

φt[(h0, b)].

This, together with Equation (12), allows us to conclude that:802

Pi
[
V i
T ≥ ε(T −K)

]
≥ 1− δ − 2ε

√
2(δ(T −K) +K).

By setting K = Tα

8 and ε = T−α/2

8 , we can conclude that if803

Pj

[
T∑
t=1

φt[(h0, a)] ≤ Tα

8

]
≥ 1− δ,

then804

Pi

[
V i
T ≥

T 1−α/2

16

]
≥ 1−

√
2

16
− δ ≥ 0.91− δ,

where we used that T
1−α/2

8 − Tα/2

64 ≥
T 1−α/2

16 for T ≥ 1 and that we can assume δ ≤ Tα−1

4 .805
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