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Abstract

Convolutional neural networks (CNN) can be manipulated to perform specific1

behaviors when encountering a particular trigger pattern without affecting the2

performance on normal samples, which is referred to as backdoor attack. Backdoor3

attack is usually achieved by injecting a small proportion of poisoned samples4

into the training set, through which the victim trains a model embedded with the5

designated backdoor. In this work, we demonstrate that the backdoor neurons in6

an infected neural network have a mixture of two distributions with significantly7

different moments, formed by benign samples and poisoned samples, respectively.8

This property is shown to be attack-invariant and allows us to efficiently locate9

the backdoor neurons. On this basis, we make several realistic assumptions on10

the neuron activation distributions, and propose two backdoor neuron detection11

strategies based on (1) the differential entropy of the neurons, and (2) the KL12

divergence between the benign sample distribution and a poisoned statistics based13

hypothetical distribution. Experimental results show that our proposed defense14

strategies are both efficient and effective against various backdoor attacks.15

1 Introduction16

Convolutional neural networks (CNNs) have achieved tremendous success during the past few years17

in a wide range of areas. However, training a CNN from scratch involves a large amount of data and18

expensive computational cost, which is sometimes infeasible. A more practical strategy is to obtain19

pretrained models or utilize public datasets from a third party, which brings convenience but also20

raises severe security problems into the deployment of models. For example, a malicious third party21

may provide pretrained models embedded with a designated backdoor, such that the model will have22

a predefined response to some specific pattern, which is also called the trigger. More realistically, the23

attacker can inject only a small proportion of malicious data into the public dataset to mislead the24

trained model, which is referred to as backdoor poisoning attacks [26]. For instance, the malicious25

data can be created by patching a particular pattern into the benign data, and changing the label to26

the desired target. The correlation of the trigger and the specified target label will be learned by the27

models during the training time. In this way, the infected model will misclassify the input to the28

attack target when the pattern is patched, while behave normally otherwise, as shown in Figure 1.29

Due to the limited understanding of CNNs, we are not clear on the formation mechanism of backdoor30

behaviors. However, it was empirically found that a infected model always possesses one or more neu-31

rons that have high correlation with the trigger activation, and pruning these neurons can significantly32

alleviate the backdoor behaviors, while retaining the model performance [40, 28, 6]. Nevertheless,33

how to precisely find out these backdoor neurons in a infected model is still a challenging problem,34

and has attracted a lot of attentions from the community.35
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Figure 1: An overview of an infected learning system. The images with a white square are classified
as class 0. It is an empirical observation that the backdoor behaviors are always triggered by one
or more backdoor neurons. We demonstrate that the distributions of activations on these neurons
are mixtures of two Gaussian-like distributions, formed by benign samples and poisoned samples,
respectively.

In this work, we will take an inspection on the pre-activation distributions of infected models. In36

general, the activations in each neuron follow an unimodal distribution that can be approximated by a37

Gaussian distribution. Based on the maximum entropy property of the Gaussian distribution, these38

benign neurons should have relatively large entropy on their pre-activation distributions. However, in39

the backdoor neurons, the distribution is always bimodal and can be approximated by a mixture of40

two Gaussian distributions, formed by the benign data and poisoned data, respectively; see Figure 1.41

This kind of distribution must have a lower entropy, compared with a Gaussian distribution with42

the same finite variance. Thus, if we standardize the pre-activation distributions in all neurons, the43

backdoor neurons should possess a relatively low entropy compared with the benign neurons. We44

treat the low entropy neurons as outliers and potential backdoor neurons, and prune these neurons45

to recover the model without retraining. However, under another defense setting, in which only46

an infected model and a small set of benign data are provided, we may not be able to observe the47

bimodal distributions on the backdoor neurons since the poisoned data is absent. In this case, we can48

rely on the statistics on Batch Normalization (BN) layers. Specifically, if the infected model is trained49

on poisoned data, the statistics of backdoor neurons recorded in the BN layer will be significantly50

different from the distribution of only benign data. More importantly, the mismatch of statistics will51

not exist in benign neurons. Based on the neuron entropy and the statistics discrepancy, we are able52

to locate and prune the backdoor neurons to recover the model under two defense settings.53

In summary, our contributions include:54

1. We take a deep inspection on the infected model, and summarize the law of pre-activation55

distributions on poisoned dataset. We find that (1) the standardized entropy of backdoor56

neurons can be significantly lower than benign neurons, and (2) the BN statistics in infected57

model are mismatched with the benign sample statistics.58

2. We propose to prune the potential backdoor neurons based on either the sample entropy or59

the statistics discrepancy, depending on the defense settings. Under certain assumptions, we60

claim that both the proposed indices can perfectly separate the benign neurons and backdoor61

neurons by an appropriate threshold.62

3. We conduct extensive experiments to verify our assumptions and evaluate our proposed63

methods, and achieve the state-of-the-art results under two different defense settings.64

2 Related work65

In this section, we detailedly discuss recent works in backdoor attack and defense.66

2.1 Backdoor attacks67

The concept of backdoor attack is first introduced in [14], where the adversary injects a small set68

of targeted label-flipped data stamped with a small and specific trigger into the training set during69

the DNN training, leading to a misclassification when predicting the samples with such trigger. To70

make the trigger pattern even more invisible to human beings, the blending strategy is used in [5]71
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to generate poison images, while the form of natural reflection is utilized in trigger design in [31].72

The input image is perturbed in [38] to keep its content consistent with the target label such that the73

model better memorizes the trigger pattern, and keep it imperceptible to human beings. Moreover,74

the multi-target and multi-trigger attacks are proposed in [42, 32], and make the attack more flexible75

and covert. Recently, some sample specific trigger design strategies [27] are proposed, making the76

defense against such backdoor attack much harder. Generally, the above attacks can be referred as77

the poisoning based backdoor attacks.78

Under some settings, the attackers can control the training process to inject the backdoor without79

modifying the training data, referred as the non-poisoning based backdoor attacks. This is achieved80

in [30, 34, 4] through targeted modification of the neurons’ weight in a network. Such attacks will81

not be evaluated in our work due to its strong attack setting.82

2.2 Backdoor defenses83

Training stage defense. Under such setting, the defender has access to the training process, so that84

they can detect and filter the poisoned data or add some restrictions to suppress the backdoor effect85

in training. Since the poisoned data can be regarded as outliers, different strategies are applied in86

[10, 12, 1, 37, 15], such as the robust statistics in feature space and input perturbation techniques87

to filter them out of training data. Other methods aim at suppressing the backdoor effect during88

training phase [25] with strong data augmentation [2], such as CutMix [43], CutOut and MaxUp [13],89

differential privacy [11, 18].90

Model post-processing defense. Sometimes the defenders are only given a suspicious DNN model91

without access to the training process or the full training set. Therefore, they must eliminate the92

backdoor threat with limited resources, such as a small set of clean data. A straightforward way is93

to reconstruct the trigger by adding adversarial perturbations to the input images, and then detoxify94

the model with the knowledge of reversed trigger [39]. Some try to find the relationship between95

backdoor behaviors and the neurons in a DNN model. Different levels of stimulation to a neuron96

are introduced in [29] to see how to determine the output activation change, if the model is attacked.97

Simple neuron pruning strategies are applied in [6] to repair the model, while adversarial perturbations98

are added to the neurons in [40] and precisely prunes the backdoor neurons with more limited clean99

data requirement and better performance. Simple redundant neuron pruning and fine-tuning are100

combined together in [28] to erase the backdoor effect. There are other fine-tuning based methods101

with the implementation of knowledge distillation [24, 17], while they may suffer from the hyper-102

parameter tuning and clean accuracy dropping problems due to limited prior knowledge of the attack103

and over-fitting on the clean set. Mode connectivity repair technique [44] is also explored to mitigate104

the backdoored model. Recently, the K-Arm optimization [36] is applied in backdoor detection,105

and outperforms other adversarial perturbation based methods [39, 8], helping curtail the threat of106

backdoor attack.107

3 Preliminaries108

3.1 Notations109

Consider a multi-class classification problem with C classes. Let the original training set D =110

{(xi, yi)}Ni=1 contains N i.i.d. sample images xi ∈ Rdc×dh×dw and the corresponding labels111

yi ∈ {1, 2, ..., C} drawn from X × Y . Here, we denote by dc, dh and dw the number of neurons, the112

height and the width of images, respectively. In particular, we have dc = 3 for RGB images.113

As in Section 2.1, the backdoor poisoning attack involves changes to the input images and the114

corresponding labels on a subset Dp ⊆ D. In this work, we define the ratio ρ =
|Dp|
|D| as the poisoning115

rate. We denote the poisoning function to the input images as δ(x).116

Consider a neural network F (x; θ) with L layers. Denote117

F (l) = f (l) ◦ ϕ ◦ f (l−1) ◦ ϕ ◦ · · · ◦ ϕ ◦ f (1),

for 1 ≤ l ≤ L, where f (l) is a linear function (e.g., convolution) in the l-th layer, and ϕ is a nonlinear118

activation function applied element wise. In this work, we may denote F (x; θ) as F (x) or F for119

simplicity.120
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We denote by W (l) ∈ Rdc′×dc×dh×dw the weight tensor of a convolutional layer. To do pruning,121

we apply a mask M (l) ∈ {0, 1}dc′×dc×dh×dw starting with M (l) = 1dc′×dc×dh×dw
in each layer.122

Pruning neurons on the network refers to getting a collection of indices I = {(l, k)i}Ii=1 and setting123

M
(l)
k = 0dc×dh×dw

if (l, k) ∈ I. The pruned network F−I has the same architecture as F but with124

all the weight matrices of convolutional layers set to W (l) ⊙M (l), where ⊙ denotes the Hadamard125

product.126

3.2 Differential entropy127

To measure the uncertainty of a discrete random variable Z, the entropy [35, 7] was defined as128

H(Z) = −
∑

z∈Z p(z) log p(z). At the same time, as an extension of entropy, the differential129

entropy was also introduced for a continuous random variable. More concretely, if Z is a continuous130

random variable, then it was defined as131

h(Z) = −
∫
Z

p(z) log p(z)dz. (1)

An important fact about the differential entropy is that, among all the real-valued distributions132

supported on (−∞,∞) with a specified finite variance, the Gaussian distribution maximizes the133

differential entropy [7]. In this work, the differential entropy (1) will be utilized to identify the134

distributions that are far different from a Gaussian distribution.135

3.3 Backdoor neurons136

It was found that there exist one or more neurons that contribute the most to the backdoor behaviors137

in a infected model [40, 28]. If some of or all of these neurons are pruned, the attack success rate138

will be reduced greatly [40]. However, to our knowledge, there was no such quantity defined in the139

literature to measure how important a neuron is to the backdoor behaviors.140

In this work, to make up for this lack, we would like to introduce the sensitivity of neurons to the141

backdoor by the backdoor loss calculated before and after pruning the neuron:142

α(F, l, k) = Lbd(F )− Lbd(F−{(l,k)}), (2)
where F−{(l,k)} is the network after pruning the k-th neuron of the l-th layer. The backdoor loss is143

defined as:144

Lbd(f) = E(x,y)∼D[DCE(y, f(δ(x))],

where DCE denotes the cross entropy loss. The backdoor loss is high when the model is infected, and145

will be reduced when the backdoor effect is alleviated.146

Using the quantity define in (2), we are now able to find the neurons that are mostly correlated with147

the backdoor behaviors. More concretely, we first set a threshold τ > 0, and then go through all148

the neurons to find the ones with the quantity (2) above τ . We call them the backdoor neurons, and149

denote150

BF,τ = {(l, k) : α(F, l, k) > τ}. (3)

3.4 Pre-activation distribution151

During the forward propagation of an input x, we denote x(l) = F (l)(x) ∈ Rd(l)
c ×d

(l)
h ×d(l)

w as the152

output of the l-th layer. For the k-th neuron of the l-th layer, the pre-activation ϕ
(l)
k = ϕ(x

(l)
k ) is153

defined as the maximum value of the k-th slice matrix of dimension d
(l)
h × d

(l)
w in x(l).154

It is a common assumption that, for every neuron, the pre-activations before the non-linear function155

follow a Gaussian distribution, if the network is randomly initialized and the number of neurons is156

large enough [21, 3]. In a trained network, although this assumption may not strictly hold, the pre-157

activation of every neuron can be still regarded as approximately following a Gaussian distribution.158

However, in this work, for the first time, we observe a bimodal distribution in the backdoor neurons,159

two components of which are formed by the benign data and poisoned data, respectively. This160

phenomenon is shown in Figure 2, where a typical backdoor neuron is compared with the benign161

neurons. It can be seen that, after the model is infected, the pre-activation distributions of benign162

neurons hardly change when the data is poisoned, while the pre-activation distributions of backdoor163

neurons become significantly different.164
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(c) Benign neuron
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(d) Backdoor neuron

Figure 2: In (a) and (b), we compare the pre-activation distributions in backdoor neurons and benign
neurons. In benign neurons, the pre-activation distributions on benign data and poisoned data are
nearly the same, while in backdoor neurons, they show great difference. In (c) and (d), we plot the
empirical distributions with benign samples (in blue) and the BN statistics induced Gaussians (in
green). In backdoor neurons, the discrepancy between the empirical and BN induced distribution
is large (all the neurons are selected from infected ResNet-18 trained on CIFAR-10, and use 1,000
images with (poisoned data) or without trigger (benign data) as the inputs).

4 Methodology165

4.1 Assumptions166

A primary assumption is that |BF,τ | > 0 for a poisoned model F and a pre-defined threshold τ > 0,167

where BF,τ is defined as in (3). As in Section 3.4, we also assume that the pre-activations of all168

neurons follow a Gaussian mixture distribution, that is:169

ϕ
(l)
k ∼ (1− ρ)N (µ

(l)
k , σ

(l)2
k ) + ρN (µ̂

(l)
k , σ̂

(l)2
k ), (4)

where ρ is the poisoning rate of the dataset, µ(l)
k and σ

(l)2
k , µ̂(l)

k and σ̂
(l)2
k are the mean and variance170

of {ϕ(F (l)(x)k) : x ∼ X}, {ϕ(F (l)(δ(x))k) : x ∼ X}, respectively.171

We further assume that:172

|µ(l)
k − µ̂

(l)
k |

{
< ϵ, if (l, k) /∈ BF,τ ,

>> ϵ, if (l, k) ∈ BF,τ ,

and173

|σ(l)2
k − σ̂

(l)2
k |

{
< ϵ2, if (l, k) /∈ BF,τ ,

>> ϵ2, if (l, k) ∈ BF,τ ,

where ϵ > 0 is a small enough value. Note that, if |µ(l)
k −µ̂

(l)
k | = |σ(l)2

k −σ̂
(l)2
k | = 0, the pre-activation174

follows a Gaussian distribution N (µ
(l)
k , σ

(l)2
k ).175

4.2 Discrepancy of differential entropy (DDE)176

If the pre-activation distributions are standardized (subtracting the mean and dividing the standard177

deviation), the differential entropy will be maximized on the benign neuron approximately following178

a standard Gaussian distribution N (0, 1). In backdoor neurons, because of the difference of the mo-179

ments on Gaussian components, the resulting mixture distributions can not be Gaussian distributions,180

hence the differential entropy must be smaller than h(Z), where Z ∼ N (0, 1) is the standardized181

Gaussian distribution. Specifically, let ϕ̇(l)
k =

ϕ
(l)
k −µ

(l)
k

σ
(l)
k

be the standardized pre-activations, then182

h(ϕ̇
(l)
k ) < h(ϕ̇

(l)
k′ ) ≤ h(Z), ∀k ∈ BF,τ , k

′ /∈ BF,τ .

This inequality gives a guarantee that with an appropriately chosen threshold, the backdoor neurons183

can be well separated with the benign neurons.184

4.3 Mismatched BN statistics (MBNS)185

BN layer involves using the statistics of a mini-batch to normalize the data in each layer for each186

neuron. It is known to be able to smooth the optimization landscape, and has gradually become a187
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default setting of neural networks [19]. When inference, BN uses the fixed statistics obtained by188

averaging the sample statistics of mini-batches during training time, including the mean and the189

variance. If the model is trained on a poisoned dataset, BN will record the mean and the variance190

of the poison-benign mixed data. Note that the mean and variance here are not defined on the191

pre-activations ϕ(l)
k , but on x

(l)
k . Based on the above discussions, we know that the poisoned samples192

(especially the pre-activations) on the backdoor neurons follow a different distribution from the193

benign samples. The recorded statistics during training are actually that of the mixture distribution.194

Hence, we can expect that the BN statistics of a trained backdoor neural network are biased. If we195

are able to access a small set of benign data, we can calculate an approximation of the true statistics196

on benign data. Then we calculate the Kullback-Leibler (KL) divergence [9] between the sample197

distribution and the BN induced distribution as the measurement of the bias. By assuming both of the198

distributions follow Gaussian distributions, we have a closed form solution:199

DKL(N (l)
sample,N

(l)
BN)k = log

σ̃
(l)
k

σ̄
(l)
k

+
σ̄
(l)2
k + (µ̄

(l)
k − µ̃

(l)
k )2

2σ̃
(l)2
k

− 1

2
,

where µ̄
(l)
k and σ̄

(l)2
k are the statistics obtained from benign samples, µ̃(l)2

k and σ̃
(l)
k are the BN200

statistics. The backdoor neurons should have abnormally large KL divergences, as illustrated in201

Figure 2(c).202

4.4 Overview of the two pruning strategies203

In Section 3.4, we reveal the discrepancy between the pre-activation distributions in the backdoor204

neurons and that in the benign neurons. This enables fast detecting the neurons that are more related205

to the backdoor behaviours. The index we choose to detect the abnormal neurons depends on what206

kind of data we are able to access.207

Mixture training data In this case, the victim is given a poisoned training dataset with a specified208

poisoning rate ρ. Our goal is to obtain a benign model based on the poisoned dataset. To achieve this,209

we first train an infected model F on the poisoned dataset. The resulting model should have a certain210

number of backdoor neurons based on empirical observation and the assumption. Since ρ > 0 for the211

dataset, all the neurons follow Gaussian mixture distributions, and we have h(ẋ
(l)
k ) < h(ẋ

(l)
k′ ) for all212

k ∈ BF,τ , k
′ /∈ BF,τ . This implies that with an appropriate threshold τ∗h , we can perfectly separate213

the benign neurons and backdoor neurons, which can be formulated as:214

∃τ∗h , h(ẋ
(l)
k ) < τ∗h , ∀k ∈ BF,τ ,

h(ẋ
(l)
k′ ) > τ∗h , ∀k′ /∈ BF,τ .

Setting the threshold τ∗h is crucial to the solution, and it is a trade-off between the accuracy on215

benign samples and that on the backdoored samples. Note that |B(l)
F,τ | << d

(l)
c . We can treat216

the low entropy neurons as outliers in each layer, and set different thresholds for different layers.217

Specifically, let h(l) = [h(x
(l)
1 ), h(x

(l)
2 ), . . . , h(x

(l)

d
(l)
c

)]T ∈ Rd(l)
c be a vector of sample entropy of218

the l-th layer calculated from the poisoned dataset. Then we set τ (l)h = h̄(l) − uh · s(l)h , where219

h̄(l) = 1

d
(l)
c

∑d(l)
c

k=1 h
(l)
k and s

(l)
h =

√
1

d
(l)
c

∑d
(l)
c

k=1(h
(l)
k − h̄(l))2 are the mean and standard deviation of220

h(l), uh is a hyperparameter controlling how low the threshold is. Then we have a set of indices of221

potential backdoor neurons Ih = {(l, k) : h(l)
k < τ

(l)
h }. Finally, we prune the infected model F using222

Ih, which result in a final model F−Ih
.223

Benign training data This is the case that the victim is given a trained poisoned model F with a224

small set of benign data. Our goal is to utilize the benign data to clean up the poisoned model and225

eliminate the backdoor threat. Similar to the pruning process based on differential entropy, we first226

construct a vector of KL divergences of all neurons for each layer K(l) = [K
(l)
1 ,K

(l)
2 , . . . ,K

(l)

d
(l)
c

]T ∈227

Rd(l)
c according to equation (5). We set τ (l)K = K̄(l) − uK · s(l)K , where K̄(l) = 1

d
(l)
c

∑d(l)
c

k=1 K
(l)
k228

and s
(l)
K =

√
1

d
(l)
c

∑d
(l)
c

k=1(K
(l)
k − K̄(l))2 are the mean and standard deviation of K(l), uK is a229
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hyperparameter. The set of selected neurons is IK = {(l, k) : K(l)
k < τ

(l)
K } and the pruned model230

can be represented as F−IK
. Note that uK is the only hyperparameter of our methods, and is usually231

set to 3.232

5 Experiments233

5.1 Implementation details234

Datasets In this section, the experiments are conducted on two influential benchmarks, CIFAR-10235

[22] and Tiny-ImageNet [23]. We use 90% of the data set for training, 5% for validating, and the rest236

5% as the benign data for recovering the poisoned model in the later backdoor defense scenario.237

Models We use ResNet-18 [16] as the baseline model to evaluate our proposed method, and238

compare it with other methods. We train the network for 150 epochs on CIFAR-10 and 100 epochs239

on Tiny-ImageNet with SGD optimizer. The initial learning rate is set to 0.1 and the momentum is240

set to 0.9. We adopt the cosine learning rate scheduler to adjust the learning rate. The batch size is set241

to 128 by default.242

Attacks Our experiments are based on both the classical and the most advanced attack strategies,243

including the BadNet [14], Clean Label Attack (CLA) [38], Reflection Backdoor (Refool) [31],244

Warping-based poisoned Networks [33], Blended backdoor attack (Blended) [5], Input-aware back-245

door attack (IAB) [32] and Sample Specific Backdoor Attack (SSBA) [27]. For BadNets, we test246

both the All-to-All (A2A) attack and All-to-One (A2O) attack, i.e., the attack target labels are set to247

yt = (y + 1) mod C, or one particular label yt = Ct, respectively. The target for A2O attacks of all248

the attack strategies is set to class 0. The triggers for BadNets and CLA are set to randomly generated249

patterns with size 3×3 for CIFAR-10 and 5×5 for Tiny-ImageNet. The poisoning rate is set to 10%250

by default. Note that, due to the image size restraint, SSBA is only performed on Tiny-Imagenet.251

Defenses We conduct experiments under two defense settings, one of which allows the defender to252

access the poisoned training set, while the other only has a small clean data set. Both the defense253

goals are to obtain a clean model without backdoor behaviours. We compare our approaches with the254

l∞ pruning [6], fine-tuning (FT), fine-pruning (FP) [28] and neural attentional distillation (NAD)255

[24]. The number of benign samples allowed to access is set to 500 (1%) for CIFAR-10 and 5000256

(5%) for Tiny-ImageNet by default.257

Evaluation metrics In this work, we use the attack clean accuracy (ACC) and attack success rate258

(ASR) to evaluate the effectiveness of different methods. The ACC for a given model F is defined as:259

260

ACC(F,Dtest) =
∑

(x,y)∈Dtest

I{argmax(F (x)) = y},

where I is the indicator function. The ASR is defined as:261

ASR(F,Dtest) =
∑

(x,y)∈Dtest,y ̸=yt

I{argmax(F (δ(x))) = yt},

where yt is the attack target label. The ACC measures the model performance on benign samples,262

while the ASR reflects the degree of backdoor behavior retainment in the model. Given an infected263

model, our goal is to reduce the ASR, while keeping the ACC from dropping too much.264

5.2 Experimental results265

CIFAR-10 We show the results on CIFAR-10 in Table 1. The recently proposed NAD and ANP266

performs significantly better than other defense methods, reducing the ASR to a very low level with a267

slight drop on ACC. However, they also have a significant drop (3 ∼ 4%) on ACC when defending268

CLA, which is the most robust backdoor attack in our experiments, and ANP even failed when269

defending BadNets(A2A). Nevertheless, both of our methods successfully eliminate the backdoor270

(ASR < 1%) with negligible loss on ACC. We even observe a little rise on ACC when defending271

BadNets by DDE. This phenomenon demonstrates that backdoor neurons may hurt the ACC in some272

way, and thus the ACC will rise when the backdoor neurons are precisely pruned. Overall, our273

methods achieve the most advanced defense results.274
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Table 1: Experimental results of the proposed approaches against different attacks compared with
other defense methods in CIFAR-10[22].

BadNets (A2O) BadNets (A2A) CLA WaNet Blended Refool IAB
Attacks ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR
Origin 93.86 100.00 94.60 93.89 94.99 98.83 94.11 99.67 94.17 99.62 94.24 98.40 93.87 97.91

FT 92.22 2.16 92.03 60.76 92.88 95.73 92.93 9.37 93.9 90.27 91.68 17.78 91.78 9.52
FP 92.18 2.97 91.75 66.82 92.60 99.36 92.07 1.03 70.92 90.92 92.36 75.98 87.04 16.13
l∞ 92.12 100.00 93.67 6.67 92.75 98.76 93.48 99.74 86.99 99.77 91.19 98.47 88.37 88.48

NAD 93.36 2.43 92.18 2.06 91.36 15.31 93.08 3.05 92.72 1.61 91.64 6.74 92.11 19.45
ANP 93.47 3.53 90.29 86.22 91.13 11.76 94.12 0.51 93.66 5.03 91.71 26.96 93.52 10.61

DDE (Ours) 93.88 0.86 94.49 0.61 94.42 0.91 93.79 2.80 93.67 2.24 93.35 8.90 93.17 0.94
MBNS (Ours) 93.60 1.60 94.25 0.72 94.14 7.03 94.05 3.39 94.17 2.71 93.69 6.48 93.15 0.64

Table 2: Experimental results of the proposed approaches against different attacks compared with
other defense methods in Tiny-ImageNet[23].

BadNets (A2O) CLA WaNet Refool Blended IAB SSBA
Attacks ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR
Origin 61.36 97.38 65.61 56.58 61.47 99.98 53.26 80.61 62.85 99.83 61.4 98.28 66.51 99.78

FT 46.93 99.84 61.19 63.20 54.28 99.96 47.09 91.77 56.83 29.12 52.39 99.1 52.39 33.19
FP 35.41 99.48 62.30 39.05 53.65 100.00 42.10 86.62 59.59 99.76 52.67 98.47 53.36 31.96
l∞ 53.13 90.39 59.15 23.12 42.01 99.84 46.84 81.19 56.33 99.85 54.81 86.97 49.35 99.98

NAD 44.20 90.13 62.80 17.35 53.40 99.98 51.06 70.63 57.35 55.6 53.32 98.85 52.52 25.08
ANP 53.85 4.02 59.69 3.64 54.82 86.98 50.67 0.21 62.49 0.61 61.39 4.67 60.98 1.01

DDE (Ours) 60.68 0.86 64.47 0.1 60.53 0.02 51.29 17.07 60.67 0.69 61.26 0.60 64.2 0.11
MBNS (Ours) 61.60 1.60 64.86 0.05 61.58 0.01 52.41 23.79 60.77 0.85 61.30 0.60 64.64 0.01

Tiny-ImageNet Tiny-ImageNet is a larger scale dataset with higher resolution images, and it is275

harder to defend against the attacks performed on it. Note that the A2A attack is absent, since276

we cannot successfully perform the attack due to the large number of its classes (up to 200). Our277

experimental results show that all of the defense methods suffer from the performance degradation278

compared with the results in CIFAR-10, and they fail to defend against WaNet with a large ACC279

drop but even unchanged ASR, especially the ANP and l∞ defense. This phenomenon shows that the280

principles for finding backdoor neurons of both ANP and l∞ don’t work in such case. Nevertheless,281

our methods totally remove the backdoor and the ACC are not even affected, which indicates that our282

methods can precisely locate the backdoor neurons even on such large scale dataset.283

5.3 Ablation study284

To be fair, we compare MBNS with other re-training based methods using 500 benign samples in285

Section 5.2. However, MBNS doesn’t require re-training the model, since the samples are just used286

for detecting the distribution discrepancy. Therefore, the required samples can be much less than 500.287

We now discuss the limit of MBNS and study how the number of samples affects the effectiveness of288

MBNS. We train BadNets, CLA, Refool and Blended on CIFAR-10 with ρ = 10%, and use 10 to289

500 benign samples to recover the model using MBNS. We record the changes of ACC and ASR290

with respect to the number of benign samples. The results are shown in Section 5.3. The influence291

of number of samples to our methods comes from the randomness on estimating moments. As the292

number of samples grows, the randomness is reduced and MBNS has more stable performance, but293

the average performances are not improved, except for Refool. Compared with other attacks, Refool294

clearly needs more samples to reduce the ASR. The reason may be that the mixture distribution in295

Refool has closer moments and is harder to distinguish. Besides, we surprisingly find that MBNS can296

recover BadNets, CLA and Blended using only 10 benign samples. The additional results on DDE297

are shown in ??.298

We also conduct experiments to show the high correlation between the backdoor neurons and our299

proposed evaluation metrics, the results are shown in ??300

6 Discussion301

The proposed methods are superior to other existing defense methods in the following three aspects:302

Better performance As demonstrated in Section 5, both of the proposed methods achieve state-303

of-the-art results. Moreover, according to the ablation study, the proposed MBNS can successfully304
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defend most of the attacks within 10 benign samples, which shows the amazing effectiveness of our305

proposed methods.306

Higher efficiency The proposed methods are also highly efficient. We record the running time of307

several defense methods on 500 CIFAR-10 images with ResNet-18, and show the results in Table 3.308

It can be seen that both of the proposed methods require less time than the baseline defense methods.309

Since both methods require scanning on each neuron once, the computational complexity scale310

linearly with the number of the neurons in the neural network. Therefore, the efficiency of our311

methods is promised.312

Table 3: The overall running time of different defense methods on 500 CIFAR-10 images with
ResNet-18.

Defense Method FT FP NAD ANP DDE (ours) MBNS (ours)
Runing Time (sec.) 12.35s 14.59s 22.08s 25.68s 10.69s 0.39s

More robust to hyperparameter choosing One of the most general problems in backdoor defense313

is the choice of hyperparameters. Under realistic settings, the defenders can only perform defenses314

without any prior knowledge about poison data, including poisoning rate and examples of poisoned315

data. So the defenders should carefully tune the hyperparameters, or the ACC and ASR can change316

suddenly even under small fluctuations of those hyperparameters. In comparison, both of the317

proposed pruning strategies only require one universal hyperparameter u. Moreover, they show318

reliable consistency against different attacks in the same dataset, only vary from different datasets,319

which is inevitable. Besides, we leave a wide range of parameters to choose, so that the ACC remains320

high while the ASR is controlled to a very small number, as shown in Section 5.3.321

7 Conclusion322

In this work, we take a deep inspection on the pre-activation distributions of each layer, and study323

their characteristics in a poisoned model. We find that the distributions of benign data and poisoned324

data on these neurons are both Gaussian but extraordinarily different in their moments. The mixture325

distributions have low entropy compared with that of the benign neurons. This property makes it326

possible for the defender to efficiently detect the abnormal neurons based on the sample entropy, when327

the poisoned dataset can be accessed. Moreover, when the defender has only a small set of benign328

data, we propose to detect the abnormal neurons based on the inconsistency of the BN statistics on329

poisoned dataset and the sample statistics on the given benign dataset. We then do pruning on these330

potential backdoor neurons using the proposed two detection methods to recover the model. The331

experiments show that the proposed defending strategies can efficiently locate the backdoor neurons,332

and greatly reduce the backdoor threat with negligible loss on clean accuracy. Our approach based on333

the pre-activation distributions achieves superior results compared with all other defense methods334

under various attacks on both datasets, empirically showing that the distribution property may be335

both dataset-invariant and attack-invariant. The results shed lights on the field of backdoor defense,336

and can be a guidance for designing more robust backdoor attacks.337
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A Implementation Details of Performed Backdoor Attacks and Defenses504

In this part, we provide more detailed information about the state-of-art attacks and defenses applied505

in our work. The examples of poisoned images are shown in Appendix A.506

(a) Original image (b) BadNets (c) Blended

(d) Refool (e) CLA (f) IAB

Figure 5: Examples of the poisoned data on CIFAR-10.

(a) Original image (b) SSBA

Figure 6: Examples of the poisoned data on Tiny-ImageNet

The hyperparameter we used in our DDE and MBNS is 3 in CIFAR-10 and 4 in Tiny-ImageNet. The507

parameters in other defenses is set as default.508

B Additional Experimental Results of Different Poisoning Rate509

Poisoning rate is considered important in the proposed methods, since smaller poisoning rate will510

make the mixture distributions less distinguishable from unimodal distributions. In DDE, decreasing511

poisoning rate will increase the entropy of the backdoor neurons, and it will be harder to precisely512
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detect them. In MBNS, the smaller poisoning rate makes the BN statistics closer to the true benign513

statistics. Hence, it is important to study the influence of poisoning rate on the performance of the514

proposed methods. We set the poisoning rate to 1%, 5% and 10% for all attacks and show the results515

in Table 4. Note that CLA fails to attack the model when the poisoning rate is set to 1%. In most516

cases, their performances retain a high level. Nevertheless, there are severe degradation against CLA517

and Refool. Specifically, the ASR of CLA and Refool remain over 10% after pruning using DDE518

and MBNS. However, we use default hyperparameter, i.e., uh = 3 and uK = 3 here. By further519

decreasing the pruning threshold, we can reduce both ASR to less than 5%. Overall, MBNS is more520

robust against attacks of small poisoning rate.

Table 4: Experimental results of the proposed approaches against different attacks compared with
other defense methods in CIFAR-10[22].

BadNets (A2O) BadNets (A2A) CLA WaNet Blended Refool IAB
ρ Stage ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

1%
Origin 95.03 99.94 94.75 88.57 88.96 4.73 94.76 46.82 94.17 99.62 93.08 99.59 93.22 64.00
DDE 94.82 0.91 94.17 0.73 87.96 0.65 93.67 14.17 94.46 2.29 91.77 24.08 92.73 5.21

MBNS 92.22 2.16 93.16 7.99 88.03 0.84 94.64 1.24 92.89 2.44 90.99 21.22 93.17 4.19

5%
Origin 94.29 99.99 94.26 92.78 95.53 92.23 94.00 94.55 94.53 81.33 94.35 97.98 92.70 65.50
DDE 93.83 0.83 93.67 0.70 94.43 15.91 92.73 10.13 94.44 5.49 92.75 4.51 92.29 1.83

MBNS 93.61 0.67 93.99 5.64 94.65 12.06 94.17 1.78 93.37 9.21 92.30 2.08 92.74 2.14

10%
Origin 93.89 100.00 94.60 93.89 94.99 98.83 94.11 99.67 94.17 99.63 94.24 98.40 93.87 97.91
DDE 93.88 0.86 94.49 0.61 94.42 0.91 93.79 2.80 93.67 2.24 93.35 8.90 93.17 0.94

MBNS 93.60 1.60 94.25 0.72 94.14 7.03 94.05 3.39 94.17 2.71 93.69 6.48 93.15 0.64

521

C Additional Experimental Results on Wide-ResNet522

To study the generalization of the proposed defense methods over different architectures, we conduct523

experiments on WideResNet-28-1, which is also a commonly used model in backdoor community.524

The results are shown in Appendix C.

Backdoored DDE MBNS
Attacks ACC ASR ACC ASR ACC ASR

BadNets (A2O) 91.62 99.99 90.30 1.71 91.37 1.61
BadNets (A2A) 92.53 92.03 91.50 0.90 91.43 1.56

CLA 92.81 80.14 91.55 10.24 91.91 4.30
Refool 91.53 97.28 91.11 0.74 90.29 2.87
WaNet 91.78 91.92 92.28 0.67 91.84 0.56

Blended 91.65 99.78 91.59 6.40 91.59 1.52
IAB 90.32 88.08 90.97 1.87 90.74 1.86

525

D Analysis of Correlation Between Backdoor Neurons and Pruned Neurons526

In section Section 3.3, we have demonstrated the definition of sensitivity of neurons to backdoor in527

Equation (2), which is the difference of backdoor loss before and after being pruned. It is important528

to ensure that our methods precisely detect those backdoor neurons with high sensitivity. Here, we529

make scatter plots of the backdoor sensitivity of the neurons and their differential entropy and KL530

divergence in some typical layers. The detailed scatter figures are shown in Figure 7. The results531

indicate that both DDE and MBNS choose the neurons with high sensitivity. Especially for BadNets,532

the highest sensitivity of one single neuron is extremely large and its differential entropy and KL533

divergence stay away from average. The overall results demonstrate a strong correlation between the534

neuron sensitivity to backdoor and the proposed indices.535

E Performance on Low-quality Data536

Our methods require extra data and rely on its distribution to detoxify the backdoor model, so it’s537

natural to consider a worse case that we can only get low-quality dataset with some distortion in it. To538

further show the effectiveness of our proposed methods, we utilize multiple data augmentation tricks539
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Figure 7: Scatter plots of backdoor sensitivity of mid-layer neurons to backdoor and the corresponding
differential entropy and KL divergence indices.
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Figure 8: Examples of the perturbed data.

to create out-of-distribution data on CIFAR-10 while performing defenses against BadNets (A2O)540

attack, including color jitter with 90 degree rotation (CJ) from torchvision, CoarseSaltandPepper541

(SAP), PolarWarping (PW), Snowflakes (Snow) from [20]. To be specific, the parameters of CJ are542

set to be [0.5, 0.5, 0.5, 0.5]; 30% of the pixels in SAP are replaced replaced by salt/pepper noise mask543

which has 1% to 10% the size of the input image; the translate percent in PW is set to be ±0.2; the544

snow size of Snow is (0.2, 0.5) and its speed is (0.01, 0.05). Samples of those perturbed images are545

shown in Appendix E. Now we replace 10% of the DDE and MBNS used data into those perturbed546

out-of-distribution data, and see the performance of our methods. The experimental results are shown547

in Table 5, which illustrates that even if some low-quality data are mixed into the data they use, our548

methods can still successfully locate the backdoor neurons and delete them while maintaining high549

clean accuracy.550

Table 5: Experimental Results of the proposed methods using low-quality datasets.

Origin CJ SAP PW Snow
Attacks ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR
DDE 93.88 0.86 93.62 0.88 93.19 0.86 93.65 0.82 93.23 0.93

MBNS 93.60 1.60 93.56 1.52 91.17 1.58 92.62 0.96 90.99 0.95

E.1 Exploration of Potential Adaptive Attacks551

In this section, we explore some potential adaptive attacks against the proposed methods.552

E.1.1 BN Re-parameterization against MBNS553

The MBNS pruning strategy rely on the correct information from the BN statistics. However,554

this information can be changed by a defense-aware attacker using re-parameterization techniques.555
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Specifically, consider a BN operation performed on each neuron by:556

B̃N
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The attacker can calculate the sample statistics denoting µ
(l)
k and σ

(l)
k from benign data, and assign557

new weights and bias by:558
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In this way, the whole linear transformation remains unchanged, but the BN statistics become559

consistent with that of the benign data, which makes the backdoor neurons unable to be detected by560

the proposed MBNS.561

λ = 1 λ = 0.1 λ = 0.01 λ = 0.001
Attacks ACC ASR ACC ASR ACC ASR ACC ASR
Origin NaN NaN NaN NaN 95.11 100.00 93.41 75.30
DDE — — — — 93.63 9.23 93.35 0.63

MBNS — — — — 94.15 0.32 93.82 0.24
Table 6: Experimental results on regularization-based adaptive attack.

E.1.2 Regularization-based Adaptive Attacks562

Both of the two methods rely on the discrepancy of the benign distribution and poisoned distribution.563

Hence, we wonder whether DDE and MBNS still work if the attacker try to regularize the distribution564

to minimize the discrepancy. Hence, we use BadNets as an example to perform the adaptive attack565

with an additional objective:566

Ladaptive = E(x,y)∼D[DCE(y, f(δ(x))] + λ
∑

1≤k≤K

∑
1≤l≤L

Ex∼X [(ϕ
(l)
k − ϕ̂

(l)
k )2], (5)

where ϕ
(l)
k and ϕ̂

(l)
k denote the pre-activations of benign and poisoned samples in the kth neuron567

of the lth layer. The goal of the second term is to minimize the discrepancy between the benign568

distribution and the poisoned distribution with a trade-off hyperparameter λ. We select λ from [1.000,569

0.100, 0.010, 0.001] and train four models and do pruning using DDE and MBNS, the results are570

shown in Table 6. We find that too large λ makes the objective not trainable, hence collapse the571

training process. This may because it is not realistic to distinguish benign and poisoned samples572

while making their distribution indistinguishable. After down weighting λ, the model is able to be573

trained normally. However, we find DDE and MBNS are still able to remove the backdoor without574

influence too much on the clean accuracy.575

A recently proposed method[41] also regularizes the distribution discrepancy between benign samples576

and poisoned samples by maximum mean discrepancy (MMD), which is directly against our defense.577

We test our method on it and find it still works. Specifically, the original ACC and ASR are 87.51%,578

98.48%, respectively. The ACC and ASR after pruning by DDE is 86.34%, 3.26% and ACC and579

ASR for MBNS is 86.93%, 6.15%, respectively.580
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