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Appendix1

A Appendix to Section 1: Introduction2

A.1 Broader Impact3

To study the vulnerabilities of federated learning, we propose a model-based reinforcement learning4

attack framework. Our work shows that non-myopic attacks can break federated learning systems5

even when they are equipped with sophisticated defense rules. This reveals the urgent need of6

developing more advanced defense mechanisms for federated learning systems. While we have7

focused on adversarial attacks against federated learning in our work, we note that one possible8

solution to defending RL-based attacks would be to dynamically adjust FL parameters such as the9

subsampling rate or the aggregation rule. Future work is needed to identify how best to do so.10

B Appendix to Section 3: RL-based Attacks Against Federated Learning11

B.1 Algorithms12

In this subsection, we present the detailed algorithms for federated learning (Algorithm 1), and13

distribution learning (Algorithm 2). We did not make it clear in the main text that a batch of images14

are reconstructed in each FL epoch during distribution learning. Algorithm 2 gives the full details15

of distribution learning. The algorithm first initializes Dreconstructed with attackers’ local data.16

A synthetic noisy dataset is then built by adding Gaussian noise to Dreconstructed. A denoising17

autoencoder is then learned using paired clean data and noisy data. In each FL epoch, a batch of18

dummay data samples are first generated randomly, which are then updated iteratively by matching19

their average gradient with the aggregated gradient estimated from received model parameters. When20

no attacker is sampled in an FL epoch, the same process is applied by reusing the most recent model21

parameters received from the server. Due to the randomness of the algorithm, new data samples22

are generated and added (after denoising) to Dreconstructed in each FL epoch during distribution23

learning.24

C Proof of Theorem 125

C.1 Preliminaries26

Our theoretic analysis relies on the following definitions and results. First, we formally define the27

Wasserstein distance [22], which will be used to measure the distance between the estimated and true28
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Algorithm 1 Federated Learning
Input: Initial weight θ0, K workers indexed by k, size of subsampling w, local minibatch size B,
step size η, number of global training steps T
Output: θT
Server executes:

for t “ 0 to T ´ 1 do
St Ð randomly select w workers from K workers
for each worker j P St in parallel do

gt`1
j Ð WorkerUpdate(j, θt)

end for
gt`1 Ð Aggrpgt`1

k1
, ..., gt`1

kw
q, ki P St

θt`1 Ð θt ´ ηgt`1

end for
WorkerUpdatepj, θq:

Sample a minibatch b of size B
g Ð 1

B

ř

zPb ∇θℓpθ, zq

return g to server

Algorithm 2 Distribution Learning
Input: number of steps for distribution learning τE , number of iterations for each step max iter,
learning rate for FL η learning rate for inverting gradients η1, number of reconstructed data per
epoch B1, and model parameters tθtpτqu

Output: Dreconstructed

DReconstructed Ð M attackers’ local data
DNoisy Ð Add Gaussian noise to Dreconstructed and clip data to the valid range
Train a denoising autoencoder Adenoise using Dreconstructed and Dnoisy

for τ “ 0 to τE do
Generate Ddummy with B1 random data and label pairs
Compute aggregated gradient ḡτ Ð pθtpτ´1q ´ θtpτqq{pηptpτq ´ tpτ ´ 1qqq

for i “ 0 to max iter ´ 1 do
Fdummypθq Ð 1

B1

ř

pxj ,yjqPDdummy
ℓpθ; pxj , yjqq

L Ð 1 ´
x∇θFdummypθtpτq

q,ḡτ
y

||∇θFdummypθtpτqq||¨||ḡτ ||
`

β
B1

ř

pxj ,yjqPDdummy
TV pxjq

xj Ð xj ´ η1∇xjL, yj Ð yj ´ η1∇yjL, @pxj , yjq P Ddummy

end for
Denoise the dummy batch Ddummy using Adenoise and add it to Dreconstructed

end for

data distributions as well as the distance between the corresponding transition dynamics introduced29

by different data distributions.30

Definition 1. (Wasserstein distance) Let pM, dq be a metric space and PppMq be the set of all prob-31

ability measures on M with pth moment, then the pth Wasserstein distance between two probability32

distributions µ1 and µ2 in PppMq is defined as:33

Wppµ1, µ2q :“

ˆ

inf
jPJ

ż ż

dps1, s2qpjps1, s2qds1ds2

˙1{p

where J is the collection of all joint distributions j on M ˆ M with marginals µ1 and µ2.34

In the following, we focus on 1-Wasserstein distance and denote W pµ1, µ2q :“ W1pµ1, µ2q. Wasser-35

stein distance is also known as “Earth Mover’s distance” that measures the minimum expected36

distance between two pairs of points where the joint distribution is constrained to match their corre-37

sponding marginals . Compared with Kullback-Leibler (KL) divergence and Total Variation (TV)38

distance, Wasserstein distance is more sensitive to how far the points are from each other [2].39

We will also need the following special form of Lipschitz continuity from [2].40
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Definition 2. (Lipschitz Continuity) Given two metric spaces pM1, d1q and pM2, d2q, a function41

f : M1 Ñ M2 is Lipschiz continuous if the Lipschiz constant, defined as42

Kd1,d2pfq :“ sup
s1PM1,s2PM2

d2pfps1q, fps2qq

d1ps1, s2q

is finite. Similarly, a function f : M1 ˆ A Ñ M2 is uniformly Lipschitz continuous in A if:43

KA
d1,d2

pfq :“ sup
aPA

sup
s1,s2

d2pfps1, aq, fps2, aqq

d1ps1, s2q

is finite.44

Let M “ pS,A, T, rq be a generic MDP, where S and A denote the state space and the action space45

respectively, T ps1|s, aq denotes the probability of reaching a state s1 from the current state s and46

action a, and rps, a, s1q denotes the reward given the current state s, action a, and the next state s1.47

We then introduce the concept of Lipschiz model class from [2], which allows us to represent the48

stochastic transition dynamics of an MDP as a distribution over a set of deterministic transitions.49

Definition 3. (Lipschitz model class) Given a metric state space pS, dSq and an action space A, we50

define Fg as a collection of functions: Fg “ tf : S Ñ Su distributed according to gpf |aq where51

a P A. We say that Fg is a Lipschitz model class if52

KF :“ sup
fPFg

KdS ,dS
pfq,

is finite. We say that a transition function T is induced by a Lipschitz model class Fg if T ps1|s, aq “53
ř

f 1pfpsq “ s1qgpf |aq for any s, s1 P S and a P A.54

We will show later that the transition dynamics of our MDP model for attackers is induced by a55

Lipschitz model class.56

Finally we give a formal definition of finite-horizon value functions [21].57

Definition 4. Given an MDP M and a stationary policy π, the value function of π at time l is defined58

as V π
M,lpsq :“ Eπ,T r

řH´1
t“l rpst, atq|sl “ ss, where rps, aq “ Es1„T p¨|s,aqrrps, a, s1qs. V π

M,lp¨q59

satisfies the following backward recursion form:60

V π
M,lpsq “ Ea„πpsqrrps, aq `

ÿ

s1PS

T ps1|s, aqV π
M,l`1ps1qs

where V π
M,H´1psq “ Ea„πpsqrrps, aqs. The optimal value function is defined as V ˚

M,lpsq :“61

maxπ V
π
M,lpsq for any s.62

To analyze the impact of inaccurate transition on the value function, we also make use of the following63

lemmas [2].64

Lemma 1. Given two distributions over states µ1 and µ2, a transition function T induced by a65

Lipschitz model class Fg is uniformly Lipschitz continuous in action space A with a constant:66

KA
W,W pT q :“ sup

aPA
sup
µ1,µ2

W pT p.|µ1, aq, T p.|µ2, aqq

W pµ1, µ2q
ď KF

Lemma 2. Given a Lipschiz function f : S Ñ R with constant KdS ,dRpfq:67

KA
dS ,dR

p

ż

fps1qT ps1|s, aqds1q ď KdS ,dRpfqKA
dS ,W pT q

Below we state the assumptions needed for establishing Theorem 1. The first assumption models the68

inaccuracy of distribution learning as well as the heterogeneity of benign worker’s local data.69

Assumption 1. W1p rP , pPkq ď δ for any benign worker k.70

We further need the following standard assumptions on the loss function.71

Assumption 2. Let Z denote the domain of data samples across all the workers. For any s1, s2 P S72

and z1, z2 P Z, the loss function ℓ : S ˆ Z Ñ R satisfies:73
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1. |ℓps1, z1q ´ ℓps2, z2q| ď L}ps1, z1q ´ ps2, z2q}2 (Lipschitz continuity w.r.t. s and z);74

2. }∇sℓps1, z1q ´ ∇sℓps1, z2q}2 ď Lz}z1 ´ z2}2 (Lipschitz smoothness w.r.t. z);75

3. ℓps2, z1q ě ℓps1, z1q ` x∇sℓps1, z1q, s2 ´ s1y ` α
2 }s2 ´ s1}22 (strongly convex w.r.t. s);76

4. ℓps2, z1q ď ℓps1, z1q ` x∇sℓps1, z1q, s2 ´ s1y `
β
2 }s2 ´ s1}22 (strongly smooth w.r.t. s);77

5. ℓp¨, ¨q is twice continuously differentiable with respect to s.78

where }ps1, z1q ´ ps2, z2q}22 “ }s1 ´ s2}22 ` }z1 ´ z2}22.79

For simplicity, we further make the following assumption on the FL environment, although our80

analysis can be readily applied to more general settings.81

Assumption 3. The server adopts FedAvg without subsampling (w “ K). All workers have same82

amount of data (pk “ 1
K ) and the local minibatch size B “ 1. In each epoch of federated learning,83

each normal worker’s local minibatch is sampled independently from the local empirical data84

distribution pPk.85

C.2 Measuring the Uncertainty: From Data Distributions to Total Returns86

Let M “ pS,A, T, r,Hq denote the true MDP for attacking the federated learning system, and87

ĂM “ pS,A, T 1, r1, Hq the estimated MDP used in the policy learning stage, where T 1 and r1 are88

derived from the estimated joint data distribution t rPku where rPk “ pPk when k is an attacker and89

rPk “ rP otherwise. Our main goal is to compare the optimal attack performance that can be obtained90

from the true MDP M and that derived from the simulated MDP ĂM. We will focus on understanding91

the impact of inaccurate data distributions (obtained from distribution learning) and assume that other92

system parameters are known to the attackers.93

Without loss of generality, we assume the M attackers’ indexes are from K ´ M ` 1 to K. Let94

ϵ “ K´M
M denote the fraction of benign nodes. We consider the idealized setting where the M95

attackers are perfectly coordinated by a single leading attacker. Because of these simplifications, the96

state st in each epoch t is completely defined by the current model parameters θt. In the following,97

we abuse the notation a bit and assume S “ Θ.98

Let JMpπq :“ Eπ,T,µ0
r
řH´1

t“0 rpst, at, st`1qs denote the expected return over H attack steps under99

the MDP M, policy π and initial state distribution µ0. Let π˚ be an optimal policy of M that100

maximizes JMpπq. Define J
ĂMpπq similarly and let rπ˚ be an optimal policy for ĂM, with the same101

initial state distribution µ0.102

Our analysis is built upon the following lemma that compares the performance of π˚ and that of rπ˚103

with respect to the true MDP M. It extends a similar result in [27] to a finite-horizon MDP where the104

reward in each step depends on not only the current state and action but also the next state. Note that105

the lemma relies on the key assumption that both V ˚
M,lp¨q and V ˚

ĂM,l
p¨q are Lv-Lipschitz continuous106

(with respect to the l2 norm of states) for all l. That is, |V ˚
M,lps1q ´ V ˚

M,lps2q| ď Lv}s1 ´ s2}2 for107

any s1, s2 P S where Lv is a constant independent of l. A similar requirement holds for V ˚
ĂM,l

p¨q. Let108

W pT, T 1q :“ sup
aPA

sup
sPS

W pT p¨|s, aq, T 1p¨|s, aqq.109

Lemma 3. Assume Assumptions 2.1 holds and both V ˚
M,lp¨q and V ˚

ĂM,l
p¨q are Lv-Lipschitz continuous110

for all l. Then,111

|JMpπ˚q ´ JMprπ˚q| ď 2HrpL ` LvqW pT, T 1q ` 2Lϵδs

Proof. Let Fl be the expected return when π˚ is applied to ĂM for the first l steps, then changing to112

M for l to H ´ 1. That is,113

Fl “ E
at

„π˚
pstq

tăl:st`1
„T 1

pst,at
q,rt“r1

těl:st`1
„T pst,at

q,rt“r

«

H´1
ÿ

t“0

rtpst, at, st`1q

ff

By the definition of Fl, we have JM pπ˚q “ F0 and J
ĂM “ FH , which implies that JMpπ˚q ´114

J
ĂMpπ˚q “

řH´1
l“0 pFl ´ Fl`1q. Note that115

Fl “ Rl´1 ` Esl`1„T psl,alqrrpsl, al, sl`1qs ` Esl,al„T 1,π˚ rEsl`1„T psl,alqrV ˚
M,l`1psl`1qss
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Fl`1 “ Rl´1 ` Esl`1„T 1psl,alqrr1psl, al, sl`1qs ` Esl,al„T 1,π˚ rEsl`1„T 1psl,alqrV ˚
M,l`1psl`1qss

where Rl´1 is the expected return of the first l ´ 1 steps, which are taken with respect to M. Thus,116

Fl ´ Fl`1 “ Esl`1„T psl,alqrrpsl, al, sl`1qs ´ Esl`1„T 1psl,alqrr1psl, al, sl`1qs

` Esl,al„T 1,π˚ rEsl`1„T psl,alqrV ˚
M,l`1psl`1qs ´ Esl`1„T 1psl,alqrV ˚

M,l`1psl`1qss

Define G˚
ĂM,l

psl, alq :“ Esl`1„T psl,alqrV ˚
M,lps

l`1qs ´ Esl`1„T 1psl,alqrV ˚
M,lps

l`1qs. We have117

JMpπ˚q ´ J
ĂMpπ˚q “

H´1
ÿ

l“0

pFl ´ Fl`1q

“

H´1
ÿ

l“0

´

Esl`1„T psl,alqrrpsl, al, sl`1qs ´ Esl`1„T 1psl,alqrr1psl, al, sl`1qs

¯

`

H´2
ÿ

l“0

Esl,al„T 1,π˚ rG˚
ĂM,l

psl, alqs

“

H´1
ÿ

l“0

˜

Esl`1„T psl,alqr
1

K

K
ÿ

k“1

pℓkpsl`1q ´ ℓkpslqqs ´ Esl`1„T 1psl,alqr
1

K

K
ÿ

k“1

ℓ1
kpsl`1q ´ ℓ1

kpslqqs

¸

`

H´2
ÿ

l“0

Esl,al„T 1,π˚ rG˚
ĂM,l

psl, alqs

“

H´1
ÿ

l“0

˜

Esl`1„T psl,alqr
1

K

K
ÿ

k“1

ℓkpsl`1qs ´ Esl`1„T 1psl,alqr
1

K

K
ÿ

k“1

ℓ1
kpsl`1qs

¸

`

H´1
ÿ

l“0

˜

1

K

K
ÿ

k“1

ℓ1
kpslq ´

1

K

K
ÿ

k“1

ℓkpslq

¸

`

H´2
ÿ

l“0

Esl,al„T 1,π˚ rG˚
ĂM,l

psl, alqs

where ℓkpsq :“ Ezk„ pPk
rℓps, zkqs, ℓ1

kpsq :“ Ezk„ rPk
rℓps, zkqs and the last equality follows from118

the definition of reward function rps, a, s1q “ 1
K

řK
k“1 ℓkps1q ´ 1

K

řK
k“1 ℓkpsq, and r1ps, a, s1q “119

1
K

řK
k“1 ℓ

1
kps1q ´ 1

K

řK
k“1 ℓ

1
kpsq.120

Since V ˚
M,l is Lv-Lipschitz, we have |G˚

ĂM,l
ps, aq| ď LvW pT ps, aq, T 1ps, aqq from the definition of121

1-Wasserstein distance. We further have122

ˇ

ˇ

ˇ

ˇ

ˇ

1

K

K
ÿ

k“1

ℓ1
kpslq ´

1

K

K
ÿ

k“1

ℓkpslq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

K

K
ÿ

k“1

|ℓ1
kpslq ´ ℓkpslq|

ď
1

K

K
ÿ

k“1

LW p rPk, pPkq

ď Lϵδ,

where the second inequality follows from the definition of 1-Wasserstein distance and Assumption123

3.1, and the last inequality follows from Assumption 1 and the fact that rPk “ pPk for any attacker k.124

Similarly, We have125

ˇ

ˇ

ˇ

ˇ

ˇ

Es1„T ps,aqr
1

K

K
ÿ

k“1

ℓkps1qs ´ Es1„T 1ps,aqr
1

K

K
ÿ

k“1

ℓ1
kps1qs

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

K

K
ÿ

k“1

ˇ

ˇEs1„T ps,aqrℓkps1qs ´ Es1„T 1ps,aqrℓ1
kps1qs

ˇ

ˇ
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“
1

K

K
ÿ

k“1

ˇ

ˇ

ˇ
Es1„T ps,aq,zk„ pPk

rℓkps1, zkqs ´ Es1„T 1ps,aq,zk„ rPk
rℓ1

kps1, zkqs

ˇ

ˇ

ˇ

ďLpW pT, T 1q ` ϵδq,

where the last inequality follows Assumption 1, Assumption 3.1, and the property of 1-Wasserstein126

distance with respect to product measures. Thus,127

JMpπ˚q ´ J
ĂMpπ˚q ď HpLv ` LqW pT, T 1q ` 2HLϵδ.

A similar argument shows that128

J
ĂMprπ˚q ´ JMprπ˚q ď HpLv ` LqW pT, T 1q ` 2HLϵδ.

Let U “ HpLv ` LqW pT, T 1q ` 2HLϵδ. Thus,129

JMpπ˚q ď J
ĂMpπ˚q ` U ď J

ĂMprπ˚q ` U ď JMprπ˚q ` 2U.

130

As indicated in [27], an important obstacle to applying Lemma 3 to real reinforcement learning131

problems is to bound the Lipschitz constant Lv for optimal value functions. Further, we need to132

bound W pT, T 1q, the 1-Wasserstein distance between two transition functions. We study these two133

problems in the following two subsections, respectively.134

C.3 Lipschitz Constant of Value Functions135

In this section, we show that the Lipschitz constant Lv can be upper bounded for any optimal value136

function in our setting. We first rewrite the update of model parameters in each epoch of FedAvg as137

follows:138

fzps, tg̃iuiPrMsq :“ s ´ η
1

K

«

K´M
ÿ

k“1

∇sℓps, zkq `

K
ÿ

k“M`1

g̃k

ff

(1)

where z “ tzku denotes the set of data points sampled by each worker. That is, the above equation139

gives the one-step deterministic transition when the data samples are fixed. An important observation140

is that the transition function T is induced by a Lipschitz model class Fg “ tfz : z P ZKuwith141

gpfz|aq equal to the probability that z is sampled according to the joint distribution
ś

kPrKs
pPk.142

Similarly, T 1 is induced by Fg1 “ tfz : z P ZKu with g1pfz|aq equal to the probability that z is143

sampled according to the joint distribution
ś

kPrMs
pPk

rPK´M . This observation allows us to apply144

the techniques in [2] to bound the Lipschitz constant Lv of an optimal value function once we bound145

the Lipschitz continuity of individual fz .146

We first show that for any joint action a “ tg̃iuiPrMs, the deterministic transition fzp¨, aq is Lipschitz147

continuous with a Lipschitz constant KdS ,dS
pfzp¨, aqq that can be upper bounded independent of z.148

Lemma 4. Assume Assumptions 2.3, 2.4, and 2.5 hold. For any Lipschitz model class Fg “ tfz :149

z P ZKu, we have KF ď maxtϵ|1 ´ ηα|, ϵ|1 ´ ηβ|u.150

Proof. It suffices to show that for any action a, KdS ,dS
pfzp¨, aqq ď maxtϵ|1 ´ ηα|, ϵ|1 ´ ηβ|u. By151

(1), we have for any s1, s2 P S,152

}fzps1, aq ´ fzps2, aq}2 “

›

›

›

›

›

s1 ´ η
1

K

K´M
ÿ

k“1

∇sℓps1, zkq ´ ps2 ´ η
1

K

K´M
ÿ

k“1

∇sℓps2, zkqq

›

›

›

›

›

2

paq

ď
1

K

K´M
ÿ

k“1

}s1 ´ η∇sℓps1, zkq ´ ps2 ´ η∇sℓps2, zkqq}2

pbq
“

1

K

K´M
ÿ

k“1

›

›

›

›

pI ´ η
B2ℓps̄, zkq

Bs2
qps1 ´ s2q

›

›

›

›

2
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pcq

ď
1

K

K´M
ÿ

k“1

›

›

›

›

I ´ η
B2ℓps̄, zkq

Bs2

›

›

›

›

2

}s1 ´ s2}2

where (a) follows from the triangle inequality, (b) follows from the fact that ℓps, zq is twice contin-153

uously differentiable with respect to s and the mean value theorem, where s̄ is a point on the line154

segment connecting s1 and s2, and I is the identity matrix with its dimension equal to the dimension155

of the model parameters, and (c) is due to the Cauchy–Schwarz inequality.156

By the strong convexity and smoothness of ℓps, zq with respect to s, the eigenvalues of B
2ℓps̄,zkq

Bs2 are157

between α and β [15]. It follows that158

›

›

›

›

I ´ η
B2ℓps̄, zkq

Bs2

›

›

›

›

2

ď maxt|1 ´ ηα|, |1 ´ ηβ|u, @k

Therefore, for any s1, s2,159

}fzps1, aq ´ fzps2, aq}2

}s1 ´ s2}2
ď maxtϵ|1 ´ ηα|, ϵ|1 ´ ηβ|u

By Definition 2, we then have160

KdS ,dS
pfzp¨, aqq :“ sup

s1,s2

}fzps1, aq ´ fzps2, aq}2

}s1 ´ s2}2

ď maxtϵ|1 ´ ηα|, ϵ|1 ´ ηβ|u

161

Note that by using a small enough learning rate η, KF can be made less than 1 so that the one-step162

deterministic transition becomes a contraction. We next show that the optimal value function V ˚
M,lp¨q163

has a bounded Lipschitz constant. Note that the bound is independent of M; hence it also applies to164

V ˚
ĂM,l

p¨q165

Lemma 5. Assume Assumptions 2.1, 2.3, 2.4, and 2.5 hold. The optimal value function V ˚
M,lp¨q is166

Lipschitz continuous with a Lipschitz constant bounded by
řH´l´1

t“0 pKF qtpL ` LKF q.167

Proof. The proof is adapted from the proof of Theorem 3 in [2]. Let Qπ
M,lps, aq “168

rps, aq `
ř

s1PS T ps1|s, aqVM,l`1ps1q denote the state-action value function, where rps, aq “169

Es1„T ps1|s,aqrrps, a, s1qs. We have for the optimal state-action value function170

Q˚
M,lps, aq “ rps, aq `

ÿ

s1PS

T ps1|s, aqmax
a1PA

Q˚
M,l`1ps1, a1q

with Q˚
M,H´1ps, aq “ rps, aq. The Lipschitz constant of Q˚

M,l is bounded by:171

KA
dS ,dR

pQ˚
M,lq ď KA

dS ,dR
prq ` KA

dS ,dR

˜

ÿ

s1PS

T ps1|s, aqmax
a1PA

Q˚
M,l`1ps1, a1q

¸

paq

ď KA
dS ,dR

prq ` KA
W,W pT qKA

dS ,dR
pmax
a1PA

Q˚
M,l`1q

pbq

ď KA
dS ,dR

prq ` KA
W,W pT qKA

dS ,dR
pQ˚

M,l`1q

ď KA
dS ,dR

prq ` KA
W,W pT qrKA

dS ,dR
prq ` KA

W,W pT qKA
dS ,dR

pQ˚
M,l`2qs

ď KA
dS ,dR

prq `

H´l´2
ÿ

t“1

pKA
W,W pT qqtKA

dS ,dR
prq ` KA

W,W pT qH´l´1KA
dS ,dR

pQ˚
M,H´1q

“

H´l´1
ÿ

t“0

pKA
W,W pT qqtKA

dS ,dR
prq
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where (a) follows Lemma 2 and (b) is due to the fact that the max operator is 1-Lipschitz, that is,172

K}}8,dRpmaxpxqq “ 1 [1]. From the definition of rps, aq, we further have173

|rps1, aq ´ rps2, aq| ď
1

K

K
ÿ

k“1

|ℓkps1q ´ ℓkps2q| `
1

K

K
ÿ

k“1

|Es1
1„T ps1,aqrℓkps1

1qs ´ Es1
2„T ps2,aqrℓkps1

2qs|

ď pL ` LKA
W,W pT qq}s1 ´ s2}2

where ℓkpsq :“ Ezk„ pPk
rℓps, zkqs. The first term of the second inequality comes from the Lipschitz174

continuity of the loss function ℓ, which gives |ℓkps1q ´ ℓkps2q| ď L}s1 ´ s2}2 for any k, and the175

second term follows from Lemma 2 by letting fpsq “ ℓkpsq, which gives KA
dS ,dR

pEs1„T rℓkps1qsq ď176

LKA
W,W pT q for all k.177

Since the above inequality holds for any a P A, rps, aq is uniformly Lipschitz continu-178

ous in action space A with a Lipschitz constant KA
dS ,dR

prq “ L ` LKA
W,W pT q. Thus,179

KA
dS ,dR

pQ˚
M,lq ď

řH´l
t“0 pKA

W,W pT qqtpL ` LKA
W,W pT qq. Since the optimal value function180

V ˚
M,lpsq “ maxaPA Q˚

M,lps, aq and the max operator is 1-Lipschitz [1], we have KdS ,dRpV ˚
M,lq ď181

KA
dS ,dR

pQ˚
M,lq ď

řH´l´1
t“0 pKA

W,W pT qqtpL ` LKA
W,W pT qq.182

By Lemma 1, we have KA
W,W pT q ď KF . The desired result then follows by applying Lemma 4.183

184

The lemma immediately implies that V ˚
M,lp¨q is Lv-Lipschitz for any l where Lv ď

řH´1
t“0 pKF qtpL`185

LKF q.186

C.4 Wasserstein Distance between Transitions187

In this section, we bound the 1-Wasserstein distance of transition functions. Recall that the true188

transition dynamics T p¨|s, aq depends on the joint distribution
śK´M

k“1
pPk, while T 1p¨|s, aq depends189

on rPK´M . We have the following lemma.190

Lemma 6. Assume Assumptions 1-3 hold. For any state-action pair ps, aq, the 1-Wasserstein distance191

between transition dynamics T p¨|s, aq and T 1p¨|s, aq generated from the real FL environment and the192

estimated environment, respectively, is bounded by ηLzϵδ, that is,193

W pT p¨|s, aq, T 1p¨|s, aqq ď ηLzϵδ

Proof. Let z1 “ tz1kuk“1,...,K´M and z2 “ tz2kuk“1,...,K´M denote two data sets of normal194

workers sampled from
śK´M

k“1
pPk and rPK´M respectively. Let j “

śK´M
k“1 jk denote an arbitrary195

coupling between the two joint distributions that is independent across workers, and J the set of all196

such couplings. Let Js denote the collection of couplings between T p¨|s, aq and T 1p¨|s, aq generated197

from the couplings of joint distributions in J . To simplify the notation, let spzq :“ fzps, aq denote198

the successive state given the current state-action pair ps, aq and the sampled data z of normal workers.199

From the definition of 1-Wasserstein distance, we have200

W pT p¨|s, aq, T 1p¨|s, aqq
paq

ď inf
jsPJs

ÿ

ps1
1,s

1
2q

}s1
1 ´ s1

2}2jsps1
1, s

1
2q

pbq

ď inf
jPJ

ÿ

pz1,z2q

}spz1q ´ spz2q}2jpz1, z2q

“ inf
jPJ

ÿ

pz1,z2q

›

›

›
s ´

1

K
p

K´M
ÿ

k“1

∇sℓps, z1kq ` aq

´ rs ´
1

K
p

K´M
ÿ

k“1

∇sℓps, z2kq ` aqs

›

›

›

2

K´M
ź

k“1

jkpz1k, z2kq
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“ inf
jPJ

ÿ

pz1,z2q

›

›

›

›

›

1

K

K´M
ÿ

k“1

∇sℓps, z1kq ´
1

K

K´M
ÿ

k“1

∇sℓps, z2kq

›

›

›

›

›

2

K´M
ź

k“1

jkpz1k, z2kq

pcq

ď
ηLz

K
inf
jPJ

ÿ

pz1,z2q

K´M
ÿ

k“1

}z1k ´ z2k}2

K´M
ź

k“1

jkpz1k, z2kq

pdq

ď
ηLz

K
inf
jPJ

ÿ

pz1,z2q

K´M
ÿ

k“1

}z1k ´ z2k}2jkpz1k, z2kq

ď
ηLz

K

K´M
ÿ

k“1

inf
jk

ÿ

pz1k,z2kq

}z1k ´ z2k}2jkpz1k, z2kq

“
ηLz

K

K´M
ÿ

k“1

W p pPk, rP q
peq

ď
ηLz

K
pK ´ Mqδ

where (a) is due to the fact that we consider a restrictive collection of couplings, (b) is due to the fact201

that Js is generated from J , (c) follows from the smoothness of ℓps, zq with respect to z, (d) is due202

to jkpz1k, z2kq ď 1,@k, and (e) follows from Assumption 1.203

C.5 Difference between Expected Returns204

Combining the results from the previous three sections, we have the following main result.205

Theorem 1. Assume Assumptions 1-3 hold. Let JMpπq :“ Eπ,T,µ0r
řH´1

t“0 rpst, at, st`1qs denote206

the expected return over H attack steps under MDP M, policy π and initial state distribution µ0.207

Let π˚ and rπ˚ be optimal policies for M and ĂM respectively, with the same initial state distribution208

µ0. Then,209

|JMpπ˚q ´ JMprπ˚q| ď 2HϵδrpL ` LvqηLz ` 2Ls

where Lv ď
řH´1

t“0 pKF qtpL ` LKF q and KF ď ϵmaxt|1 ´ ηα|, |1 ´ ηβ|u.210

Proof. By Lemma 3, |JMpπ˚q ´ JMprπ˚q| ď 2pHpL ` LvqW pT p¨|s, aq, T 1p¨|s, aqq ` 2HLϵδq.211

From Lemma 6, we have W pT p¨|s, aq, T 1p¨|s, aqq ď ηLzϵδ. Thus, |JMpπ˚q´JMprπ˚q| ď 2HrpL`212

LvqηLzϵδ ` 2Lϵδs. By Lemma 5 and the comment below it, Lv ď
řH´1

t“0 pKF qtpL ` LKF q where213

KF ď ϵmaxt|1 ´ ηα|, |1 ´ ηβ|u.214

D Appendix to Section 5: Experiments215

D.1 Experiment Setup216

Datasets. We consider three real world datasets: MNIST [13], Fashion-MNIST [23] and Balanced217

EMNIST [9]. Both MNIST and Fashion-MNIST include 60, 000 training examples and 10, 000218

testing examples, where each example is a 28ˆ28 grayscale image, associated with a label from 10219

classes. Balanced EMNIST includes 112, 800 training examples and 18, 800 testing examples, where220

each example is a 28ˆ28 grayscale image, associated with a label from 47 classes. For the i.i.d.221

setting, we randomly split the dataset into K groups, each of which consists of the same number of222

training samples. For the non-i.i.d. setting, we follow the method of [10] to quantify the heterogeneity223

of local data distribution across clients. Suppose there are C classes in the dataset, e.g., C “ 10224

for the MNIST and Fashion-MNIST datasets. We evenly split the worker devices into C groups,225

where each group is assigned 1{C of training samples as follows. A training instance with label c226

is assigned to the c-th group with probability q ě 1{C and to every other group with probability227

p1 ´ qq{pC ´ 1q. Within each group, instances are evenly distributed. A higher q indicates a higher228

degree of non-i.i.d.. We set q “ 0.5 as the default non-i.i.d. degree. To demonstrate the power of229

distribution learning, we assume that the set of attackers share m true data points sampled from the230

training instances assigned to them. We set m “ 200 for MNIST and Fashion-MNIST, and m “ 500231

for EMNIST.232
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Federated learning setting. We adopt the following parameters for the federated learning models:233

learning rate η “ 0.01 (0.05 for EMNIST and the synthetic data), total number of workers “ 100,234

number of attackers “ 20 (0 for NA), subsampling rate “ 10%, and number of total epochs “ 1, 000.235

For the three real datasets, we train a neural network classifier consisting of 8×8, 6×6, and 5×5236

convolutional filter layers with ReLU activations followed by a fully connected layer and softmax237

output. The cross-entropy loss is used to optimize the model. We set the local batch size B “ 128.238

We implement the FL model with PyTorch [14] and run all the experiments on the same 2.30GHz239

Linux machine with 16GB NVIDIA Tesla P100 GPU. We simulate subsampling and local data240

sampling with different random seeds in each test run. Error bars are reported in Figure 4(c) in the241

main paper. We set cross-entropy as our default loss function, and stochastic gradient descent (SGD)242

as our default optimizer.243

Baselines. We compare our RL-based attack (RL) with no attack (NA), and the state-of-the-244

art model poisoning FL attack methods: explicit boosting (EB) [3], inner product manipulation245

(IPM) [24], and local model poisoning attack (LMP) [10]. The EB attack [3] is originally proposed246

for the targeted setting. We adapt it to the untargeted setting by using empirical loss as the objective,247

which is optimized through multi-step gradient ascent using attackers’ local data, where the number248

of steps is 5 and the step size equals to the FL learning rate η. The model update is then boosted249

by a factor of K
M . We compare our RL-based attack with the full knowledge LMP [10], where the250

attackers require not only the knowledge of the aggregation rule but also the information of all normal251

workers’ updates. We use the LMP attack tailored to Krum when the Krum defense is used, and the252

LMP attack tailored to coordinate-wise Median when the Clipping Median defense is used. Further,253

we implement the adaptive version of LMP introduced in [7], which requires the attackers to know254

the server’s updates derived from its root data, as a baseline against the FLTrust defense [7]. In our255

implementation of IPM [24], we set the default boosting factor (i.e., ϵ in [24]) as 5.256

We consider three representative robust aggregation rules of different types [18]: Krum [4], which257

applies a vector-wise filtering to model updates, coordinate-wise median [26], which adopts a258

dimension-wise filtering, and FLTrust [7], which requires the server to collect a small training259

dataset D0 (called root dataset). In the experiments, we actually consider an extension of the vanilla260

coordinate-wise median where a norm-bound clipping [20] is first applied before aggregation. This261

gives a more powerful defense as we observed in experiments. We set the default clipping threshold262

to 2. In FLTrust, the root data is used to calculate a server model update g0 “ 1
|D0|

ř

zPD0
r∇θℓpθ; zqs263

in each epoch. The aggregation weight of each received client’ update is then determined through its264

ReLU-clipped cosine similarity with g0. Given that the server has no access to the true training data265

distribution, the root dataset is often biased in practice. We adopt the approach in [7] to model such266

bias. Among the |D0| root data samples, a fraction q0 of them are sampled from a certain class c in267

the training data, and the rest are sampled from other classes with equal probabilities. For a dataset268

with C classes, D0 is unbiased only when q0 “ 1{C. We set the size of root dataset |D0| “ 100269

following [7].270

Distribution learning setting. In distribution learning, we set the step size for inverting gradients271

η1 “ 0.05, the total variation parameter β “ 0.02, optimizer as Adam, the number of iterations for272

inverting gradients max iter “ 10, 000, and learn the data distribution from scratch. The number of273

steps for distribution learning is set to τE “ 100. 32 images are reconstructed (i.e., B1 “ 32) and274

denoised in each FL epoch. If no attacker is selected in the current epoch, the aggregate gradient275

estimated from previous model updates is reused for reconstructing data. To build the denoising276

autoencoder, a Gaussian noise sampled from 0.3N p0, 1q is added to each dimension of images in277

Dreconstructed, which are then clipped to the range of [0,1].278

Policy learning setting. In policy learning, we implement our simulated environment with OpenAI279

Gym [6] and adopt OpenAI Stable Baseline3 [16] to implement Twin Delayed DDPG (TD3) [11] and280

Proximal Policy Optimization (PPO) [17] algorithms. The default parameters are described as follows281

: the length of simulating environment = 1, 000 epochs, policy learning rate = 1e ´ 7, the policy282

model is MultiInputPolicy, batch size = 256 and gamma = 1 for updating the target networks.283

Note that the length of each simulating epoch is typically much shorter than the length of each real FL284

training epoch. In practice, the server usually needs to wait for some time (typically a few minutes) to285

receive the gradients from the clients before conducting model aggregation [25] [5] [12]. In addition,286
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Figure 1: A comparison of global model accuracy on Fashion-MNIST under Krum and Clipping Median for
both i.i.d. data and non-i.i.d. data. All parameters are set as default.

if the leader agent has access to GPUs or other parallel computing facilities, it can run multiple287

training episodes in parallel [8].288

As described in Section 3.2, we compress the MDP state to include the the parameters of the last289

hidden layer of θtpτq and the number of attackers sampled, mtpτq. We set the bound of each last290

hidden layer parameter to r´8,`8s and the bound of mtpτq to t0, . . . , 10u. In our experiment, we291

restrict all attackers to take the same action in each epoch.292

For the Krum defense and the Clipping Median defense, the local search objective is F pθq “293

Ez„ rP rℓpθ; zqs (i.e., λ “ 0). In this case, the action space becomes pγ,Eq, where γ P r0, 10s and294

E P t0, . . . , 20u for the Krum defense, and γ P r0, 10s and E P t0, . . . , 50u for the Clipping Median295

defense.296

For FLTrust, we consider two cases, when the attackers have access to the server’s root data D0 or297

equivalently, the model updates g0 in each epoch, and when they only know how D0 is sampled from298

the true training data distribution. Note that even the former setting is more realistic than the adaptive299

LMP setting, which also requires access to normal workers’ updates. In the former case, we fix300

γpθtpτqq “ }g0pθtpτqq}2 and set the local search objective as Lpθq :“ p1 ´ λqF pθq ` λ cospθtpτq ´301

θ, g0pθtpτqqq with the constraint that }θtpτq ´ θ}2 ď }g0pθtpτqq}2. In the latter case, we use the same302

objective but approximate g0pθtpτqq with E
z
q0
„ rP

r∇θℓpθ
tpτq; zqs, where q0 models the bias of root303

data, which is assumed to be known to the attackers. In both cases, the action space is then pE, λq304

with E P t0, . . . , 20u and λ P r0, 1s. We further find that when the root data D0 is known (or can be305

well approximated), the RL-based attack can be made more efficient by considering an alternate local306

search objective Lpθq :“ p1 ´ λqF pθq ´ λF0pθq, where F0 “ 1
|D0|

ř

zPD0
rℓpθ; zqs is the empirical307

loss associated with the root data. Intuitively, the attackers aim to push the model parameters towards308

the region that can overfit the root data.309

In our experiments, the initial model for all training episodes is set as the first model the attackers310

received from the actual FL environment. We assume that the server waits for 72 seconds to receive311

the updates from the workers before performing a model aggregation, which allows 80, 000 total time312

steps (i.e., 80 episodes) of policy learning for Krum, 40, 000 total time steps (i.e., 40 episodes) of313

policy learning for Clipping Median, and 40, 000 total time steps (i.e., 40 episodes) of policy learning314

for FLTrust within 400 FL epochs. It is more time consuming to train an RL policy for Clipping315

Median and FLTrust because large attack bounds need to be considered.316

Attack execution setting. We observe that both EB and RL can occasionally produce NaNs in317

model updates, which when incorporated by the server, can lead to bad models in all future steps.318

This produces unrealistic attack scenarios as NaNs can be easily detected by the server. To have a319

fair comparison with other attacks, we use the built-in VecCheckNan Wrapper in OpenAI Stable320

Baseline3 [16] to detect abnormal values. We assume that attackers take less ambitious actions (i.e.,321

p0.5γ,E ´ 1q) in that epoch once they detect an NaN value. When E “ 0 or γ “ 0, the attackers322

will send rgtpτq “ 0 to the server. For our RL-based attack, both the distribution learning and policy323

learning phase start at the first FL epoch. The former ends at the 100th FL epoch when RL-based324

attack starts (all other attacks start at epoch 0). For fair comparisons, we fix all the random seeds for325

generating the initial model and the root data (for FLTrust), subsampling, and local data sampling326

when evaluating different attacks.327
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Figure 2: A comparison of global model accuracy on EMNIST under Krum and Clipping Median for both i.i.d.
data and non-i.i.d. data. All parameters are set as default.

Figure 3: A comparison of global model accuracy on EMNIST under FLTrust defense with unbiased and biased
root data. All parameters are set as default.

D.2 More Experiment Results328

Attack performance under Fashion-MNIST and EMNIST. Figures 1 and 2 compare the test329

accuracy under different attacks when the server uses Krum or Clipping Median as the defense for330

both i.i.d. data and non-i.i.d. data (q “ 0.5), on the Fashion-MNIST dataset and the EMNIST dataset,331

respectively. Our RL-based attack constantly outperforms other baselines by a large margin in all332

the settings. We observe that in most cases, all attacks are more effective in the non-i.i.d. setting.333

This is mainly because a higher degree of local data heterogeneity increases the variance across334

normal workers’ updates, making it more difficult to filter out adversarial updates. Further, Clipping335

Median, which adopts both dimension-wise filtering and vector-wise norm clipping to model updates,336

provides a stronger level of defense than Krum, which only applies vector-wise filtering to model337

updates. In particular, our attack can reduce the model accuracy to an extremely low level („10%338

for Fashion-MNIST and „2% for EMNIST) under the Krum defense, depending on the number of339

classes of the datasets.340

Attack performance under FLTrust. We compare the attack performance of our RL-based attacks341

(details are given in D.1 policy learning setting) with and without access to server’s root data and342

other baselines (i.e., NA, IPM, and adaptive LMP) against the FLTrust defense on the EMNIST343

dataset. For RL-based attacks, the attackers use all their local data to simulate the environment and344

skip the distribution learning phase. Thus, all attacks start from the beginning of FL. We consider345

both the cases when the root data are unbiased (q0 “ 1{47) and when they are biased against a single346

class (q0 “ 0.3). In the former case, our attack with access to root data leads to a significantly low347

test accuracy („50%) as shown in Figure 3(left), while other attacks, including RL-based attack348

without access to root data, have limited effect against FLTrust. This is due to the fact that when the349

root data are unbiased and representative of the true training dataset, the server’s update g0 provides a350

good estimate of the right direction for model updates, making it difficult to reverse the trend. On the351

other hand, when the root data is biased, which is likely to happen in practice, the server’s update g0352

is less representative or even misleading. Consequently, all attacks become more effective as shown353

in Figure 3(right). Further, both variants of our RL-based attack outperform other baselines.354

Results for the synthetic data. In addition to the three real datasets discussed above, we also355

consider a two-dimensional synthetic dataset and a small network with 28 model parameters to356

demonstrate the full potential of our RL-based attack framework (i.e., without state and action357

compression). We generate the synthetic data based on the method described in [19]. In particular,358

we generate 55, 000 data instances (including 50, 000 training instances and 5, 000 testing instances),359

where for each instance z “ px, yq, the data x P R2„N p0, Iq and its label y “ signp}x}2q ´ 2. Each360

worker has 500 data instances. We train a multilayer perceptron (MLP) with two hidden layers of361

size four and two, respectively, and use ReLU as the activation function. For our RL-based attack,362

12



Figure 4: Classification boundaries of the final model on the synthetic data under various attacks and the
Clipping Median defense. The classification accuracy of the final model: 100% (NA), 96.70% (IPM), 89.04%
(LMP), 88.04% (RL with 2d actions), and 68.90% (RL with 28-dimensional actions). All parameters are set as
default.

Figure 5: Classification boundaries of the final model on the synthetic data under various attacks and the
FLTrust defense. The classification accuracy of the final model: 100% (NA), 100% (IPM), 100% (LMP), 100%
(RL with 2d actions), and 68.90% (RL with 28-dimensional actions). All parameters are set as default.

we consider both the 2-dimensional action space pγ,Eq discussed above as well as the general 28363

dimensional action space where the attackers directly decide rgiptpτqq to be sent to the server in364

each epoch. In both cases, the state space includes the full 28 model parameters and the number of365

attackers in each epoch. Policy learning takes 8, 000 total time steps (i.e., 8 episodes) to learn the366

policy, within 10 FL epoch. The attackers use their local data (10, 000 samples) to build simulated367

environment and no distribution learning is applied. Thus, the attack will immediately start once an368

attacker is selected. We fix all random seeds for fair comparisons across different attacks.369

Figure 4 and Figure 5 illustrate the classification boundaries at the end of a federated learning episode370

for all the attacks when the Clipping Median defense and the FLTrust defense are applied respectively.371

The root dataset D0 for FLTrust is assumed to be known for RL-based attacks. We observe that all372

baseline methods and our RL attack with 2d actions have a slight effect under Clipping Median or373

completely fail to compromise the system under FLTrust. On the other hand, the RL attack with the374

full 28-dimensional action space reduces the classification accuracy to 68.90% (worst-case accuracy375

for the given environment) under both defenses. These results indicate the potential of considering376

large state and action spaces in our RL-based attack when equipped with more computational power377

and longer training time.378
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