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Abstract

This work studies operators mapping vector and scalar fields defined over a man-1

ifoldM, and which commute with its group of diffeomorphisms Diff(M). We2

prove that in the case of scalar fields Lpω(M,R), those operators correspond to3

point-wise non-linearities, recovering and extending known results on Rd. In4

the context of Neural Networks defined overM, it indicates that point-wise non-5

linear operators are the only universal family that commutes with any group of6

symmetries, and justifies their systematic use in combination with dedicated lin-7

ear operators commuting with specific symmetries. In the case of vector fields8

Lpω(M, TM), we show that those operators are solely the scalar multiplication. It9

indicates that Diff(M) is too rich and that there is no universal class of non-linear10

operators to motivate the design of Neural Networks over the symmetries ofM.11

1 Introduction12

Given a physical domainM and measurements f :M→ Y observed over it, one is often interested13

in processing intrinsic information from f , i.e. consistent with the symmetries of the domain. In14

words, if two measurements f , f̃ = g.f are related by a symmetry g of the domain, like a rigid15

motion on an observed molecular compound, we would like our processed data M(f) and M(f̃) to16

be related by the same symmetry — thus that M(g.f) = g.M(f) or equivalently that M commutes17

with the symmetry transformation of the domain. The study of operators that satisfy such symmetry18

constraints has played a long and central role in the history of physics and mathematics, motivated19

by the inherent symmetries of physical laws. More recently, such importance has also extended to20

the design of machine learning systems, where symmetries improve the sample complexity [22, 3].21

For instance, Convolutional Neural Networks build translation symmetry, whereas Graph Neural22

Networks build permutation symmetry, amongst other examples coined under the ‘Geometric Deep23

Learning’ umbrella [5, 4].24

Lie groups of transformations are of particular interest, because there exists a precise and systematic25

framework to build such intrinsic operators. Indeed, for a locally compact group G, it is possible to26

define a Haar measure which is invariant to the action of G [2]; then a simple filtering along the orbit27

of G allows to define a class of linear operators that commute with the group action. Examples of28

locally compact groups are given by specific Lie groups acting on Rd, such as the translations or the29

rotations Od(R). Often these Lie groups G only act on a manifoldM, and one tries to average along30

the orbit induced by G. Note that it is possible, beyond invariance, to linearize more complex groups31

of variability like diffeomorphisms Diff(M) [7].32

While the description of such linear intrinsic structures is of central mathematical importance and33

forms the basis of Representation theory [27], in itself is not sufficient to bear fruit in the context34

of Representation learning using Neural Networks [11]. Indeed, linear operators do not have the35
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capacity to extract rich information needed to solve challenging high-dimensional learning problems.36

It is therefore necessary to extend the systematic construction and classification of intrinsic operators37

to the non-linear case.38

With that purpose in mind, our work aims at studying the class of (non-linear) operators M which39

commute with the action of the group Diff(M), the diffeomorphisms overM. This approach will40

lead to a natural class of non-linear intrinsic operators. Indeed, any group G of symmetries is, by41

definition, a subgroup of Diff(M), and thus commutes with such M [21]. Consequently, obtaining a42

non-linear invariant to a symmetry groupG could be done by using a cascade of interlacing non-linear43

operators which commute with Diff(M) and linear operators which commute with G.44

A notable example of linear operators that are covariant to the Lie group of translations is a given by45

the convolutions along the orbit of the group. These can be constructed thanks to the canonical Haar46

measure [28]. However, such an approach fails for infinite dimensional groups, like our object of47

interest: contrary to Lie groups, Diff(M) is not locally compact and it is thus not possible to define a48

Haar measure on this group.49

Our first contribution is to demonstrate that the non-linear operators which act on vector fields50

(elements of Lpω(M, TM)) and which commute with the group of diffeomorphisms, are actually51

just scalar multiplications. This implies that Diff(M) is too rich to obtain non-trivial operators.52

Our second contribution is to demonstrate that non-linear operators acting on signals in Lpω(M,R)53

are pointwise non-linearities. This fills a gap in the results of [7], and a fortiori justifies the use of54

point-wise non-linearities in geometric Deep Learning [4].55

Our paper is structured as follows: Sec. 2 introduces the necessary formalism, that we use through56

this paper: in particular, we formally define the action of diffeomorphism. Then, we state and discuss57

our theorems in Sec. 3.1 and sketch their proofs in Sec. 3.2. Rigorous proofs of each statement can58

be found in the Appendix.59

2 Problem Setup60

2.1 Related work and motivation61

In this section, we discuss the notion of intrinsic operators, invariant and covariant non-linear operators62

and linear representation over standard symetry groups. Then, we formally state our objective.63

Intrinsic Operators As discussed above, in this work we are interested in intrinsic operators64

M : Lp(M, E) → Lp(M, E), where M is a Riemannian manifold, and E = R or E = TM,65

capturing respectively the setting of scalar signals and vector fields overM. Here the notion of66

‘intrinsic’ means that M is consistent with an equivalence class induced by a symmetry group67

G in Lp(M, E): if f, f̃ ∈ Lp(M, E) are related by a transformation g ∈ G (in which case we68

write f = g.f̃ ), then M(f) = g.M(f̃). Naturally, a stronger equivalence class imposes a stronger69

requirement towards M , and consequently restrains the complexity of M . We now describe the70

plausible techniques used to design such operators M .71

GM-Convolutions The notion ofGM -convolutions [30] is an example of linear covariant operators72

which commute with the reparametrization of a manifold. In practice, this implies that the weights73

of a GM -convolution are shared and the action of GM -convolutions is local – two properties that74

facilitate implementation and point out the similarity with Lie groups. Another example of symmetry75

group corresponds to the isometry group of a Riemaniann manifold, whose pushforward preserves the76

tensor metric. In this case, it is well known that isometries [29] are the only diffeomomorphism which77

commute with a manifold Laplacian. Thus, any linear operators which commute with isometries is78

stabilized by Laplacian’s eigenspaces. However, little is known on the non-linear counterpart of the79

symmetry-covariant operators. In this work, we characterize non-linear operators which commute80

with Diff(M). We will see that such operators are intrinsically defined by Diff(M) and could be81

combined with any linear operators covariant with a symmetry group G.82

Non-linear operators It has been shown that Convolutional Neural Networks are dense in the set83

of non-linear covariant operators [31]. The recipe of the corresponding proof is an extension of84

the proof of the universal approximation theorem [13]. The Scattering Transform [6, 20] is also an85

example of a well-understood non-linear operator which corresponds to a cascade of complex wavelet86
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transforms followed by a point-wise modulus non-linearity. This representation provably linearizes87

small deformations.88

Compact Lie Groups In the context of geometric Machine Learning [5], there are several relevant89

notions of equivalence. For instance, we can consider a compact Lie Group G acting onM, and an90

associated representation in F = {f :M→ R}: Given g ∈ G and f ∈ F , then g.f(x) , f(g−1.x)91

for x ∈ M. We then consider f ∼ f̃ , related by this group action: f̃ = g.f for some g ∈ G. The92

operators M which are compatible with such group action are referred as being G-equivariant (or93

covariant to the action of G) in the ML literature [12, 4]. Such groups are typically of finite and94

small dimension, e.g. the Euclidean transformations ofM = Rd, with d = 2 for computer vision95

applications, or d = 3 for computational biology/chemistry applications. In this case, it is possible to96

characterize all linear intrinsic operators M as group convolutions [18], leading to a rich family of97

non-linear intrinsic operators by composing such group convolutions with element-wise non-linear98

operators, as implemented in modern Neural Networks. We highlight that stability to symetries via99

non-linear operators finds useful application, in particular for flat manifolds [7].100

Isometries Riemanian manifolds M come with a default equivalence class, which is given by101

isometries. If mu : TuM× TuM→ R denotes the Riemannian metric tensor at point u ∈ M, a102

diffeomorphism ψ :M→M is an isometry if gu(v, w) = gψ(u)(dψu(v), dψu(w)) for any u ∈M103

and v, w ∈ TuM. In words, isometries are changes of variables that preserve the local distances in the104

domain. The ensemble of all isometries forms a Lie Group which is locally compact [24]. In this case,105

one can also build a rich class of intrinsic operators by following the previously explained ‘blueprint’,106

namely composing linear intrinsic operators with element-wise non-linearities. As a representative107

example, the Laplace-Beltrami operator ofM only depends on intrinsic metric properties [29]: as108

said above, isometries preserve the invariant subspaces of a Laplacian.109

Beyond Isometries While isometries are the ‘natural’ transformations of the geometric domain,110

they cannot express high-dimensional sources of variability; indeed, ifM is a d-dimensional complete111

connected Riemannian manifold, its isometry group has dimension at most d(d + 1)/2 [9]. This112

raises the question whether one can characterize intrinsic operators relative to a broader class of113

transformations. Another class of important symmetries corresponds to the ones which are gauge114

invariant, i.e. which leads to transformations which preserve the change of parametrization and which115

are used in [10, 30] through the notion of G-structure.116

In this work, we consider the class of transformations given by Diff(M), the diffeomorphisms117

over M. As shown in the Appendix, compactly supported deformations ψ : M → M define118

bounded linear operators Lψ acting on Lp(M, E)→ Lp(M, E), and constitute a far broader class119

of transformations than isometries. Our proof is mainly based on the use of compactly supported120

diffeomorphisms.121

Our objective is to characterize the (non-linear) operators M such that

∀φ ∈ Diff(M), LφM = MLφ .

In other words, we aim to understand continuous operators M that commute with deformations. We
will show that such operators are act locally and that they can be descriped explicitly, with simple
formula. The commutation condition is visualized in the following diagram:

f
Lφ //

M

��
	

g

M

��
Mf

Lφ // Mg

2.2 Notations122

We will now formally introduce the mathematical objects of interest in this document. Let (M, g) be123

an orientable, connected, Riemannian manifold, of finite dimension d ∈ N∗, with g ∈ Γ(T ∗M ⊗124

T ∗M) a section of symmetric definite positive bilinear forms on the tangent bundle of M . Fix125

p ∈ [1,+∞[. For any volume form ω ∈ Γ(
∧d

T ∗M) let us define Lpω(M, TM), the space of Lp126
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vector fields, defined as the subspace of measurable functions f :M→ TM such that f(x) ∈ TxM127

almost surely and128

‖f‖pp ,
∫
x∈M

gx(f(x), f(x))
p
2 dω(x) < +∞ . (1)

We will also consider Lpω(M,R) the space of measurable scalar functions f :M→ R that fulfill129

‖f‖pp ,
∫
x∈M

|f(x)|p dω(x) < +∞ . (2)

We may write ‖ · ‖ instead of ‖ · ‖p when there is no ambiguity. For a C∞ diffeomorphism130

φ ∈ Diff(M), we will consider the action of Lφ : Lpω(M, TM)→ Lpω(M, TM) which we define131

for for any f ∈ Lpω(M,R) as132

Lφf(u) , dφ(u)−1.f(φ(u)) .

Note that this action is contravariant:

Lψ◦φf(u) = d(ψ ◦ φ)−1.f(ψ ◦ φ(u)) = LφLψf(u)

For scalar function f ∈ Lpω(M,R), we define the action of φ via133

Lφf(u) , f(φ(u)) .

This latter operator is also contravariant. If there is no ambiguity, we will use the same notation Lφ,134

whether we apply it to Lpω(M,R) or Lpω(M, TM). Throughout the article we restrict ourselves to φ135

such that Lφ is a bounded operator. Write supp(φ) = {x, φ(x) 6= x} for the support of φ and say136

that φ has a compact support if supp(φ) is compact. We denote by Diffc(M) ⊂ Diff(M) the set137

of compactly supported diffeomorphisms. Recall that since aM is second-countable, C∞c (M) is138

dense in Lpω(M,R) and C∞c (M, TM) is dense in Lpω(M, TM). Finally, denote by Od(R) the set139

of unitary operators on Rd. Throughout the article, we might not write explicitly that equalities hold140

almost surely, since this is the default in Lp spaces.141

As mentioned earlier, compactly supported diffeomorphisms lead to continuous operators, which is142

made rigorous by the following lemma whose proof is in the appendix.143

Lemma 1. If supp(φ) is compact, then Lφ is bounded.144

3 Main theorems145

In this section we present our main results. We first show that any (non-linear) deformation-146

equivariant operator acting on scalar fields must be point-wise (Theorem 1), and then establish147

that any deformation-equivariant operator acting on vector fields corresponds to a multiplication by a148

scalar (Theorem 2).149

3.1 Theorem statements150

Now, we are ready to state our two main theorems:151

Theorem 1 (Scalar case). LetM be a connected and orientable manifold of dimension d ≥ 1. We
consider a Lipschitz continuous operator M : Lpω(M,R)→ Lpω(M,R), where 1 ≤ p <∞. Then,

∀φ ∈ Diff(M) : MLφ = LφM

is equivalent to the existence of a Lipschitz continuous function ρ : R→ R that fulfills

M [f ](m) = ρ(f(m)) for almost all m ∈M.

In that case, we have ρ(0) = 0 if ω(M) =∞.152

Theorem 2 (Vector case). LetM be a connected and orientable manifold of dimension d ≥ 1. We
consider a continuous operator M : Lpω(M, TM)→ Lpω(M, TM), where 1 ≤ p <∞. Then,

∀φ ∈ Diff(M) : MLφ = LφM

is equivalent to the existence of a scalar λ ∈ R such that

∀f ∈ Lpω(M, TM) : M [f ](m) = λf(m) for almost all m ∈M.
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We highlight that our theorems are quite generic in the sense that they apply to the manifolds usually153

used in applications or theory, Rd in particular.154

Remark 1. The scalar case allows to recover standard operators which are exploited for Deep155

Neural Networks architectures. However, Theorem 2 indicates that the group of diffeomorphism is156

too rich to obtain non-trivial non-linear operators.157

Remark 2. The case p = ∞ leads to different results. For instance, in the scalar case we may158

consider the operator Mf(x) = supy |f(y)| which fulfills LφMf = MLφf but is not pointwise.159

Remark 3. The condition “ω(M) =∞ =⇒ ρ(0) = 0” in Theorem 1 is necessary, since in the160

caseM = R, the operator Mf(x) , eif(x) is not in Lpω(M,R).161

Remark 4. The Lipschitz condition in Theorem 1 is crucial, otherwise, Mf(x) = ρ(f(x)) might162

not be an operator of Lpω(M,R). For instance, if p = 2,M = [0, 1] and Mf(x) =
√
f(x), we see163

that in this case, let f(x) = x, then f ∈ Lpω(M,R) and Mf 6∈ Lpω(M,R)164

Remark 5. IfM is not Lipschitz, we can find an example which is not even continuous. The following
example holds in both cases, the scalar case and the vector case. In both cases f ∈ Lp(M,R), the
only thing that changes is the action of Lφ on f .M = R, let for all f ∈ Lp(M,R):

Mf(x) = 1{z,limy→z f(y)=f(z)}(x)f(x).

It is a measurable function. Let us show that this M is a counterexample to the vector case: for any165

φ ∈ Diff(M) and x ∈ R, one has166

MLφf(x) = 1{z,limy→z f(φ(y))=f(φ(z))}(x) dφ(x)−1f(φ(x)) (3)

= 1{z,limy→φ(z) f(y)=f(φ(z))}(x) dφ(x)−1f(φ(x)) (4)

= 1{z,limy→z f(y)=f(z)}(φ(x)) dφ(x)−1f(φ(x)) (5)

= LφMf(x) . (6)

However, M is not continuous as changing any function to 0 on Q does not change its norm but167

changes the set where the limits exists. More precisely let c > 0 be a strictly positive scalar,M [c] = c;168

let f = c1[x /∈ Q], M [f ] = 0 as {z,∃ limy→z f(φ(y))} = ∅. However c = f almost surely but169

M [c] 6= M [f ] therefore M is not continuous.170

3.2 Proof Sketch171

We now describe the main ideas for proving the Theorems 1 and 2. The appendix contains complete172

formal arguments and technical lemmata which we omit here due to lack of space. The two proofs173

share quite some similarities despite substantially different final results. Three ideas guide our proofs:174

First, we prove that it is possible to localize M on a certain class of open sets which behaves nicely175

with the manifold structure, the strongly convex sets which we denote as O1. This is closely related176

to the notion of pre-sheaves [14]. Secondly, we characterize M on small open-sets. In the scalar case,177

we will study the representation of locally constant functions. In the vector case, we will show that178

locally, the image M(1Uc) of a vector field c is co-linear to c provided that U is small enough. We179

will also show that those local properties are independent of the position on the manifoldM via a180

connectedness argument. Thirdly and finally, we combine a compacity and a density argument to181

extend this characterization toM, which is developed in Sec. 3.3. Throughout the presentation, we182

will use the following definitions and theorems obtained from other works:183

Definition 1 (Strong convexity, from [17]). Let O1 be the collection of open sets which are bounded184

and strongly convex, meaning that any points p, q in such a set can be joined by a geodesic contained185

in the set. Furthermore let Ȯ1 = {A ∈ O1 : ∃B ∈ O1, Ā ⊂ B and ω(Ā\A) = 0}.186

The intuition behind the definition of Ȯ1 is that all of its elements are contained in a ‘security’ open187

set,which avoids degenerated effects on the manifold. In particular, this allows to control the boundary188

of a given open set.189

Theorem 3 (theorem adapted from [16, 17]). (1) Ȯ1 is a system of neighborhoods. (2) Any element190

of O1 is diffeomorph to Rd. (3) Both O1 and Ȯ1 are stable by intersection.191

Theorem 4 (Flowbox theorem, as stated in [8]). Let f, g ∈ C∞c (M, TM). For any m ∈ M with192

f(m) 6= 0 and g(m) 6= 0, there exists an open set U ⊂M and φ ∈ Diff(M) such that φ(m) = m193

and Lφ(1Uf) = 1φ(U)g.194
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We will now present some lemmata that are necessary the proofs of theorems 1 and 2. As a first step,195

we argue that one may assume M(0) = 0 where 0 denotes the constant 0-function. This is because196

in the appendix we show that M(0) is a constant function C, with C = 0 if ω(M) =∞. Therefore,197

we may substract C from ρ and λ, leaving us with having to show the theorems only for M(0) = 0.198

Next, a key idea of the proof is to exploit the flexibility of the deformation equivariance to localise199

the input, i.e. to show that the image of compactly supported functions is also compactly supported.200

To do so, the following lemma provides a way of collapsing an open ball into a singleton while201

maintaining a good control on the support of the diffeomorphism.202

Lemma 2 (Key lemma). Let ε > 0. There exists a sequence of diffeomorphisms φn : Rd → Rd,
compactly supported in B(0, 1 + ε) such that:

φn(B(0, 1)) = B(0,
1

n
) ,

and
sup

u∈B(0,1)

‖dφn(u)‖ ≤ 1

n
.

Proof. Set φn(u) = fn(‖u‖)u, where

fn(r) =

{
1
n , if |r| ≤ 1

1 , if |r| ≥ 1 + ε ,

and fn is smoothly interpolated for |r| ∈ [1, 1 + ε] in a way that it remains nondecreasing. It is then203

clear that φn fulfills the desired properties.204

We will often use that if the support of φ ∈ Diff(M) is such that supp(φ) ∩ U = ∅, then for any205

f ∈ Lpω(M,R) one has 1Uf = Lφ(1Uf). This implies the following important lemma, for which a206

rigorous proof can be found in the appendix:207

Lemma 3. Let U ∈ Ȯ1 and M as in Theorem 1 or Theorem 2. Then, for any f ∈ E, where
E = Lpω(M,R) or E = Lpω(M, TM) respectively, we have:

M [f1U ] = 1UM [f ] .

Furthermore, if U is any closed set, the same conclusion applies.208

Equipped with this result, our proof will characterize the image of functions of the type 1Uc where209

either c ∈ R, or c is a vector field which can be straightened, via the following Lemma. In the Vector210

case:211

Lemma 4 (Image of localized vector field). For M as in Theorem 2 there is U ∈ Ȯ1, such that for212

any f ∈ Lpω(M,TM) there is λ(U) such that:213

M [f1U ] = 1Uλ(U)f . (7)

Here is the scalar case:214

Lemma 5 (Image of constant functions, scalar case). Let M as in Theorem 1. For any U ∈ Ȯ1 and215

c ∈ R, then: M(c1U ) = h(c, U)1U . Furthermore, c→ h(c, U) is Lipschitz for any U ∈ Ȯ1.216

At this stage, we note that both representations are point-wise, and the next steps of the proofs will be217

identical both for the scalar and vector cases. The extension to Lpω(M,R) or Lpω(M, TM) will be218

done thanks to:219

Lemma 6 (Image of a disjoint union of opensets). Let U1, ..., Un ∈ O1 and M as in Theorem 2 or220

Theorem 1, s.t. ∀i 6= j, Ui ∩ Uj = ∅. Then for any f ∈ Lpω(M, TM):221

M [

n∑
i=1

1Uif ] =

n∑
i=1

M [1Uif ] .

This lemma states that we can completely characterize M on disjoint union of simple sets. We222

will then need a Vitali-covering-type argument in order to "glue" those open sets together, which223

shows that simple functions with disjoint support can approximate any elements of Lpω(M,R) or224

Lpω(M, TM) (we only state the lemma for Lpω(M,R) as our proof on Lpω(M, TM) does not225

necessarily need this result):226
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Lemma 7 (Local Vitali). For f ∈ C∞c (M) and m ∈M, there exists U ∈ Ȯ1 with m ∈ U , such that
for any ε > 0, there exist subsets U1, ..., Un ∈ Ȯ1 with Ui ⊂ U and numbers c1, ..., cn ∈ R fulfilling

‖
∑
n

1Uncn − 1Uf‖ < ε .

Note that this type of covering is not possible on any open set without further assumptions on the227

manifold, such as bounds on its Ricci curvature [19]. Fortunately, we will only need a local version228

which is true because charts are locally bi-Lipschitz. Both Lemma 6 and Lemma 7 imply that:229

Proposition 1. Consider M from either Theorem 1 or 2. Assume that there exists U ∈ Ȯ1 such
that M(c1V ) = h(c, V )1V for any V ⊂ U , with V ∈ Ȯ1, where c is either a vector field in the
case E = Lpω(M, TM) or a constant scalar in the case E = Lpω(M,R). If we further assume that
c→ h(c, U) is L-Lipschitz, then

∀f ∈ E,∀m ∈M,M [1Uf ](m) = 1Uh(f(m), U) .

Furthermore, it does not depend on U , meaning that for any other such Ũ , we have:

∀f ∈ E,∀m ∈ U ∩ Ũ ,M [1Ũf ](m) = 1Uh(f(m), U) .

We briefly discuss the intuition behind Theorem 2. It is linked to the idea that the operators M at230

hand have to commute with local rotations, and this even for locally constant vector fields. We reduce231

the characterisation of deformation-equivariant vector operators using an invariance to symmetry232

argument: functions which are invariant to rotations are multiples of a scalar. The reason is contained233

in the following lemma, which is commonly used in physics:234

Lemma 8 (Invariance to rotation). Let f : Rd → Rd such that for any W ∈ Od(R) and x ∈ Rd, one235

has f(Wx) = Wf(x). Then, there is λ : Rd → R, f(x) = λ(‖x‖)x.236

Proof. We write f(x) = λ(x)x+x⊥, with x⊥(m) 6= 0 and x⊥ ⊥ x. Then, we introduceW ∈ Od(R)237

such that Wx⊥(m) = −x⊥(m) and Wx(m) = x(m). From f(x) = f(Wx) = Wf(x) we deduce238

that x⊥ = 0. Next, λ(Wx) = λ(x) thus λ(x) = λ(x′) for any ‖x‖ = ‖x′‖.239

Distinction between scalar and vector case The scalar case is simpler to handle than the vector240

case: there several more steps for the proof of Theorem 2. We also highlight that the non-linearity is241

fully defined by its image on locally constant functions.242

Finally, we conclude the proof of the theorem by appealing to a common density argument of the243

functions smooth with compact support, combing all the lemmata we have just presented in Sec. 3.3.244

3.3 Proofs conclusions (common to the scalar and vector case)245

In this section, we prove that the local properties of M can be extended globally onM. The main
idea is to exploit the well-known Poincaré’s formula, which states that:

1∪iUi =

n∑
k=1

(−1)k
∑

i1<...<ik

1Ui1∩Ui2∩...∩Uik ,

and to localize the action of M on each Ui1 ∩ Ui2 ∩ ... ∩ Uik ∈ Ȯ1 thanks to Lemma 3.246

Proof of Theorem 1 and Theorem 2. Let f be a smooth and compactly supported function. Further247

consider ∪i≤nUi a finite covering of its support with Ui ∈ Ȯ1. Using an inclusion-exclusion formula248

together with Lemma 3, we obtain249

1∪iUiM [f ] =

n∑
k=1

(−1)k
∑

i1<...<ik

1Ui1∩Ui2∩...∩UikM [f ]

=

n∑
k=1

(−1)k
∑

i1<...<ik

M [f1Ui1∩Ui2∩...∩Uik ] ,
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where we used that Ui1 ∩Ui2 ∩ ...∩Uik ∈ Ȯ1. Now, the support of f is closed and included in ∪iUi.
Thus using Lemma 3:

M [f ] =

n∑
k=1

(−1)k
∑

i1<...<ik

M [f1Ui1∩Ui2∩...∩Uik ],

Note that if ρ is a pointwise operator with ρ(0) = 0, then ρ(1Uf) = 1Uρ(f) and250

n∑
k=1

(−1)k
∑

i1<...<ik

ρ(f1Ui1∩Ui2∩...∩Uik ) =

n∑
k=1

(−1)k
∑

i1<...<ik

1Ui1∩Ui2∩...∩Uik ρ(f) (8)

= 1∪iUiρ(f) = ρ(f) . (9)

Thus, Mf = ρ(f) where ρ is obtained from Lemma 4 or 5 combined with Prop 1. We conclude by251

density in Lpω(M,R) or Lpω(M, TM) respectively. This finishes the proof.252

4 Remarks and conclusion253

In this work, we have fully characterized non-linear operators which commute under the action of254

smooth deformations. In some sense, it settles the intuitive fact that commutation with the whole255

diffeomorphism group is too strong a property, leading to a small, nearly trivial family of non-linear256

intrinsic operators. While on their own they have limited interest for geometric deep representation257

learning, they can ‘upgrade’ any family of linear operators associated with any group G ⊂ Diff(M)258

into a powerful non-linear class — the so-called GDL Blueprint in [4]. Also, this result is a first step259

towards characterizing the non-linear operators which commute with Gauge transformations and260

could give useful insights for specifying novel Gauge invariant architectures. We now state a couple261

of unsolved questions and future work.262

On the commutativity assumption: ForM = Rd, it is unclear which type of non-linear operators263

commute with smaller groups of symmetry such as the Euclidean group. In fact, a generic question264

holds for manifolds: for a given symmetry group G, what is elementary non-linear building block265

of a Neural Network? This could be, for instance, useful to design Neural Networks which are266

Gauge invariant. It is an open question for future work which would be relevant many applications in267

physics [15].268

Example of vector operators for L∞ It is slightly unclear how the vector case p = ∞ can be269

handled in our framework, yet [1] seems to have interesting insights toward this direction.270

Linearization of Diff(M) In this work, we considered an exact commutation between operators271

and a symmetries: however, it is unclear which operators approximatively commute with a given272

symmetry group. Such operators would be better to linearize a high-dimensional symmetry group273

like Diff(M). An important instance of non-linear operators that are non-local and that ‘nearly’274

commute with diffeomorphisms is the Wavelet Scattering representation [20, 7, 25].275

References276

[1] John C Baez. Diffeomorphism invariant generalized measures on the space of connections277

modulo gauge transformations. In Proceedings of the Quantum Topology Conference. World278

Scientific, Singapore, 1994.279

[2] Christoph Bandt. Metric invariance of haar measure. Proceedings of the American Mathematical280

Society, pages 65–69, 1983.281

[3] Alberto Bietti, Luca Venturi, and Joan Bruna. On the sample complexity of learning under282

geometric stability. Advances in Neural Information Processing Systems, 34, 2021.283

[4] Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:284

Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.285

8



[5] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.286

Geometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine,287

34(4):18–42, 2017.288

[6] Joan Bruna. Scattering representations for recognition. PhD thesis, Ecole Polytechnique X,289

2013.290

[7] Joan Bruna and Stéphane Mallat. Invariant scattering convolution networks. IEEE transactions291

on pattern analysis and machine intelligence, 35(8):1872–1886, 2013.292

[8] Craig Calcaterra and Axel Boldt. Lipschitz flow-box theorem. Journal of mathematical analysis293

and applications, 338(2):1108–1115, 2008.294

[9] Zhi Chen, Yiqian Shi, and Bin Xu. The riemannian manifolds with boundary and large symmetry.295

Chinese Annals of Mathematics, Series B, 31(3):347–360, 2010.296

[10] Taco Cohen, Maurice Weiler, Berkay Kicanaoglu, and Max Welling. Gauge equivariant297

convolutional networks and the icosahedral cnn. In International conference on Machine298

learning, pages 1321–1330. PMLR, 2019.299

[11] Taco Cohen and Max Welling. Learning the irreducible representations of commutative lie300

groups. In International Conference on Machine Learning, pages 1755–1763. PMLR, 2014.301

[12] Taco Cohen and Max Welling. Group equivariant convolutional networks. In International302

conference on machine learning, pages 2990–2999. PMLR, 2016.303

[13] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of304

control, signals and systems, 2(4):303–314, 1989.305

[14] Pedro Boavida de Brito and Michael S Weiss. Manifold calculus and homotopy sheaves. arXiv306

preprint arXiv:1202.1305, 2012.307

[15] Michael Eickenberg, Erwan Allys, Azadeh Moradinezhad Dizgah, Pablo Lemos, Elena Mas-308

sara, Muntazir Abidi, ChangHoon Hahn, Sultan Hassan, Bruno Regaldo-Saint Blancard,309

Shirley Ho, et al. Wavelet moments for cosmological parameter estimation. arXiv preprint310

arXiv:2204.07646, 2022.311

[16] Stéphane Gonnord and Nicolas Tosel. Calcul différentiel: thèmes d’analyse pour l’agrégation.312

Ellipses, 1998.313

[17] Sigmundur Gudmundsson. An introduction to riemannian geometry. Lecture Notes version,314

pages 1–235, 2004.315

[18] Risi Kondor and Shubhendu Trivedi. On the generalization of equivariance and convolution316

in neural networks to the action of compact groups. In International Conference on Machine317

Learning, pages 2747–2755. PMLR, 2018.318

[19] John Lott and Cédric Villani. Ricci curvature for metric-measure spaces via optimal transport.319

Annals of Mathematics, pages 903–991, 2009.320

[20] Stéphane Mallat. Group invariant scattering. Communications on Pure and Applied Mathematics,321

65(10):1331–1398, 2012.322

[21] Stéphane Mallat. Understanding deep convolutional networks. Philosophical Transactions of323

the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065):20150203,324

2016.325

[22] Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Learning with invariances in random326

features and kernel models. In Conference on Learning Theory, pages 3351–3418. PMLR,327

2021.328

[23] Peter W Michor and Cornelia Vizman. n-transitivity of certain diffeomorphism groups. arXiv329

preprint dg-ga/9406005, 1994.330

9



[24] Sumner B Myers and Norman Earl Steenrod. The group of isometries of a riemannian manifold.331

Annals of Mathematics, pages 400–416, 1939.332

[25] Edouard Oyallon. Analyzing and introducing structures in deep convolutional neural networks.333

PhD thesis, Paris Sciences et Lettres, 2017.334

[26] Richard S Palais. Extending diffeomorphisms. Proceedings of the American Mathematical335

Society, 11(2):274–277, 1960.336

[27] Jialun Ping, Fan Wang, and Jin-Quan Chen. Group representation theory for physicists. World337

Scientific Publishing Company, 2002.338

[28] Mitsuo Sugiura. Unitary representations and harmonic analysis: an introduction. Elsevier,339

1990.340

[29] Bill Watson. Manifold maps commuting with the laplacian. Journal of Differential Geometry,341

8(1):85–94, 1973.342

[30] Maurice Weiler, Patrick Forré, Erik Verlinde, and Max Welling. Coordinate independent343

convolutional networks–isometry and gauge equivariant convolutions on riemannian manifolds.344

arXiv preprint arXiv:2106.06020, 2021.345

[31] Dmitry Yarotsky. Universal approximations of invariant maps by neural networks. Constructive346

Approximation, 55(1):407–474, 2022.347

Checklist348

1. For all authors...349

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s350

contributions and scope? [Yes]351

(b) Did you describe the limitations of your work? [Yes]352

(c) Did you discuss any potential negative societal impacts of your work? [N/A]353

(d) Have you read the ethics review guidelines and ensured that your paper conforms to354

them? [Yes]355

2. If you are including theoretical results...356

(a) Did you state the full set of assumptions of all theoretical results? [Yes]357

(b) Did you include complete proofs of all theoretical results? [Yes]358

3. If you ran experiments...359

(a) Did you include the code, data, and instructions needed to reproduce the main experi-360

mental results (either in the supplemental material or as a URL)? [N/A]361

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they362

were chosen)? [N/A]363

(c) Did you report error bars (e.g., with respect to the random seed after running experi-364

ments multiple times)? [N/A]365

(d) Did you include the total amount of compute and the type of resources used (e.g., type366

of GPUs, internal cluster, or cloud provider)? [N/A]367

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...368

(a) If your work uses existing assets, did you cite the creators? [N/A]369

(b) Did you mention the license of the assets? [N/A]370

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]371

372

(d) Did you discuss whether and how consent was obtained from people whose data you’re373

using/curating? [N/A]374

(e) Did you discuss whether the data you are using/curating contains personally identifiable375

information or offensive content? [N/A]376

5. If you used crowdsourcing or conducted research with human subjects...377

10



(a) Did you include the full text of instructions given to participants and screenshots, if378

applicable? [N/A]379

(b) Did you describe any potential participant risks, with links to Institutional Review380

Board (IRB) approvals, if applicable? [N/A]381

(c) Did you include the estimated hourly wage paid to participants and the total amount382

spent on participant compensation? [N/A]383

A Technical Lemmata384

Proof of Lemma 1. We simply exihibit the proof for E = L2
ω(M, TM). Indeed, let f ∈385

L2
ω(M, TM), then:386

‖Lφf‖2 =

∫
g(Lφf, Lφf)dω (10)

=

∫
supp(φ)

g(Lφf, Lφf)dω +

∫
M\supp(φ)

g(Lφf, Lφf)dω (11)

=

∫
φ(supp(φ))

g(dφ−1.f, dφ−1.f) det(Jφ−1)dω′ +

∫
M\supp(φ)

g(f, f)dω (12)

≤
∫

supp(φ)

g(f, f)‖dφ−1‖2 det(Jφ−1)dω′ + ‖f‖2 (13)

≤ ( sup
ω∈supp(φ)

‖dφ−1(ω)‖2(d+1) + 1)‖f‖2 <∞ (14)

(15)

Thus, Lφ is bounded.387

A.1 A remark on the Flowbox theorem388

Usually, the Flowbox Theorem (here Theorem 4) is stated for a (often local) diffeomorphism.389

If c(m) 6= 0, c̃(m) 6= 0, then there exists U, V and φ : U → V a diffeomorphism such that390

m ∈ U ∩ V and Lφ(1Uc) = 1V c̃. However, we note that thanks to Theorem 4 of [26], it is391

possible to find Ũ smaller such that there exists φ̃ :M→M which is a global diffeomorphism and392

∀m ∈ Ũ , φ̃(m) = φ(m). In this case, φ̃, Ũ and Ṽ = φ̃(Ũ) are the candidates of our statement in393

Theorem 4. As this is quite technical and rather intuitive, we skipped this remark in the main paper.394

A.2 Spatial localization (common to the scalar and vector case)395

We now explain how to localize our operator M . Equipped with Lemma 2, we can extend our396

contraction result on Rd toM as follow:397

Corollary 1 (Contraction of an openset). For any U ∈ O1 and W openset such that Ū ⊂W ⊂M,
there exists φn supported on W such that for any f ∈ Lpω(M, TM):

Lφn(1Uf)→ 0 .

Proof. We prove first the result for U = B(0, 1) and Ū ⊂W . In this case, it is possible to find ε > 0398

such that B(0, 1 + ε) ⊂W . Now, taking φ−1
n as in Lemma 2, we get:399 ∫

Rd
‖Lφn(1B(0, 1)f)(u)‖p du =

∫
Rd
‖1B(0, 1)(φ−1

n (u))dφn(u).f(φ−1
n (u))‖p du (16)

=

∫
Rd
‖1B(0, 1n )(u)dφn(u).f(nu)‖p du (17)

=
1

nd

∫
Rd

1B(0,1)(u)‖dφn(
u

n
).f(u)‖p du (18)

≤ 1

nd+1
‖1B(0,1)f‖p → 0 (19)
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Next, getting back to the manifold, we know that if U ∈ Ȯ1, there is V ∈ O1 such that Ū ⊂ V . We400

can thus find an openset B ⊂ V , such that in the chart of V , B is an open ball, and U ⊂ B ⊂ W .401

We can thus apply the technique derived above to get φn : V → V , compactly supported, which402

contracts B(and thus U ) to 0 and supported in W . Since it is smooth, compactly supported on W , we403

can extend it onM and we get the result.404

Next, this technique can be used to build a sequence of contraction, which allows to explicitly localize405

the image of a compactly supported function, as follow:406

Lemma 9 ( Lemma 3 restated for closed sets). Let F ⊂ M a closed set. Then, for any f ∈
Lpω(M,R), we have:

M [f1F ] = 1FM [f ]

Proof. BecauseM is a manifold, it is second countable and thus there is a countable collection of407

opens such thatM\F = ∪i≥0Ui with Ui ∈ O1. We use Lemma 12 and, we apply the dominated408

convergence theorem to fn = 1∪i≤nUif to conclude.409

Proof of Lemma 3. We note that if U ∈ Ȯ1, then ω(Ū\U) = 0 and we can thus use the Corollary 1410

to conclude.411

A.3 Action on locally constant functions, for the scalar and vector cases412

We now prove the part specific to the vector field setting, i.e., that the action of M is locally a413

multiplication by a scalar.414

Proof of Lemma 4. Step 1:M(1Uc)(m) = 1V λ(m,U, c)c such that c(m) 6= 0,∀m ∈ U .415

Let c ∈ C∞c (M, TM). For U ∈ Ȯ1, m0 ∈ U , fix a chart ψ : U → Rd, ψ(m0) = 0 and c is constant
in ψ denoted cψ ∈ Rd, which is possible thanks to the Theorem 4. This can also be written as for m
in a neighborhood of m0:

dψ(m).c(m) = cψ .

Following the strategy in Lemma 8,there is W ∈ Od such that Wcψ = cψ and Wv = −v for any416

vector v orthogonal to cψ . By compacity, we can find A an open set small enough, with boundary of417

measure 0, such that 0 ∈ A, andWA ⊂ ψ(U) for anyW ∈ Od. Now, setting φ̃ = ψ−1 ◦W ◦ ψ,418

which is well defined on the open ∪W∈OdWA, using Theorem 4 of [26](see remark Sec. A.1 of the419

appendix), we can can extend φ globally such that on a local neighborhood, ∀m ∈ Ũ , φ(m) = φ̃(m).420

Now, up to taking A even smaller, we can use: V = ψ−1(∪n∈ZWnA) ⊂ U , which is closed with a421

measure 0 boundary(we have a countable union). We get:422

Lφ(1V c)(m0) = [dψ−1(m0) ◦W ◦ dψ(m0)]c(m0)1V (20)
= 1V c(m0) . (21)

Let us denote p⊥cψ the orthogonal projection (with respect to the Euclidean scalar product) on the423

orthogonal plane to cψ .424

As V ⊂ U , V is closed and U ∈ Ȯ1 from Lemma 9, we know that:

M(c)(m0) = M(1Uc)(m0) = M(1V c)(m0) = λ(m0, c, U)dψ−1(0)cψ+dψ−1(0)p⊥cψM(1V c)(m0)

Yet, on the other hand:425

LφM(1V c)(m0) = λ(m0, c, U)dψ−1(0)cψ − dψ−1(0)p⊥cψM(1V c)(m0) (22)

As this is true for any m0, we thus proved that:

M(1Uc)(m) = 1Uλ(m,U, c)c

Step 2: In fact, λ(m, c, U) = λ(m,U) if c does not cancel on U and m ∈ U .426

Let c, c̃ be two vector fields as above and defined on U both not equal to 0, and m ∈ U . Using the
Theorem 4 combined with the remark of Sec. A.1 of the appendix, there exists φ : M → M a
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diffeomorphism and Ṽ , V ⊂ U and m ∈ Ṽ ∩ V , such that Lφ(1V c(m)) = 1Ṽ c̃(m) and φ(m) = m
Now, we could take a smaller closed set V ⊂ U with measure 0 boundary, so that M [1V c](m) =
M [1Uc](m) = M [c](m), which would lead to, following a similar argument to above:

λ(m, c̃, U)c̃(m) = M [1Ṽ c̃(m)] = LφM [1V c](m) = Lφ(λ(., c, U)c)(m) = λ(m, c, U)c̃(m)

and then locally λ is independent of the choice of a vector field, which implies the desired property.427

Step 3: In fact, λ(m,U) = λ(U). Indeed, let m,m0 ∈ V and φ ∈ Diff(M) such that φ(m) = m0

(as V is connex, by using Lemma 11). Now, along the same line as above:

λ(m,U) = λ(m0, U)

The previous results hold when the vector field can be locally straightened, however the vector428

fields that take value 0 on some points of U can not be straightened. We will now show that vector429

fields that can be straightened on U ∈ Ȯ1 are dense dense in C∞(U, TU) for the Lpω norm. Let430

f ∈ C∞(U, TU), let A = {x ∈ U |f(x) = 0}, and Aε = {x ∈ U |‖f(x)‖ ≤ ε} for ε > 0. By431

Urysohn’s lemma there is χε : U → R be such that χ|Aε = 1 and χ|U\A2ε = 0. Let,432

f ε = f + 2εχε

For any x ∈ U ,433

‖f ε(x)‖ ≥ |‖f(x)‖ − 2εχε(x)| (23)

and by construction |‖f(x)‖ − 2εχε(x)| > 0.434

Therefore,435

M [f ε1U ] = λ(U)f ε (24)

Furthermore for all 0 < ε ≤ 1, ‖f ε‖ is bounded by ‖f‖ + 2 that is integrable, so by dominated436

convergence theorem, f ε
Lpω−→
ε→0

f . So, M [f1U ] = λ(U)f .437

To end the proof, one remarks that C∞c (M, TM) is dense in Lpω(M, TM).438

439

The next Lemma shows that, in the scalar case, we can consider M̃f , Mf − M(0) for f ∈440

Lpω(M,R) without losing in generality.441

Lemma 10. Under the assumptions of Theorem 1, M(0) is constant, and if ω(M) = ∞, then442

M(0) = 0.443

Proof. Following the Theorem 1 of [23], for any m,m0 ∈M, we can find φ global diffeomorphism
such that φ(m) = m0. We note that Lφ(0) = 0 and thus for any m ∈M:

M(0)(m) = M [Lφ(0)] = LφM(0)(m) = M(0)(m0)

Thus, M(0) is constant, and if ω(M) =∞, it is necessary that M(0) = 0.444

The corresponding Lemma in the scalar case is substantially simpler, as strongly convex sets are445

connex:446

Proof of Lemma 5. Fix m0 ∈ V , and let m ∈ V , using Lemma 11(because V ∈ Ȯ1 is connex, we447

can apply a connexity argument or the transitivity argument of Theorem 1 of [23] for compactly448

supported diffeomorphisms), we can find φ supported in V such that φ(m0) = m. Thus, Lφf = f449

and Mf(m0) = MLφf(m0) = LφMf(m0) = Mf(m). Thus, M(c1V ) = h(c, V )1V . The450

Lipschitz aspect is inherited from the fact that M is Lipschitz.451
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A.4 Extrapolation to any good open sets (common to the scalar and vector case)452

In this section, we use the fact that we want to prove that both scalar and vector operators correspond453

to point-wise non-linearity, which are locally Lipschitz due to the regularity assumptions that we454

used.455

Proof of Proposition 1. Step 1:Fix c, for any m ∈ U such that V ⊂ U , then h(c, U)(m) =456

h(c, V )(m)457

Indeed, we note that for m ∈ U , where we used Lemma 3:

M(1V f)(m) = 1V (m)M(f)(m) = 1U (m)M(f)(m) = M(1Uf)(m)

Thus, h(c, V )|V = h(c, U)|V for any V ⊂ U .458

Step 2: extension by density, for any f , M(f1U ) = 1Uh(f, U) for any f ∈ Lpω(M,R). Using459

Lemma 7, consider f ∈ C∞c (E), fn =
∑
n 1Uncn, where cn is either a constant scalar, either a vector460

field, with disjoint support such that ‖1Uf − 1Ufn‖ < ε.461

We know that, from Lemma 6 that:462

M(1Ufn) = M [
∑
n

1Uncn] =
∑
n

1UnM [1Uncn] =
∑
n

1Unh(cn, U)

Next, we note that:463

‖M1Uf − 1Uh(f, U)‖ ≤ ‖1U (Mfn −Mf)‖+ ‖1UMfn − 1Uh(fn, U)‖ (25)
+ ‖1U (h(fn, U)− h(f, U))‖ (26)
≤ 2L‖1U (fn − f)‖ (27)

and from this, given that h(., U) is L-Lipschitz, we conclude by density of C∞c (M) in Lpω(M,R).464

Step 3: Independence from U465

Step 1 allows for the following definition of a global h from local hU : let m ∈M, pose,466

∀U ∈ Ȯ1 h(f(m)) := h(f(m), U) (28)

In the scalar case and in the vector case, one can build a scalar function and vector function such that,467

f(m) = µ ∈ R or f(m) = c ∈ TxM (as shown in Step 3 of proof of 4). Therefore in the scalar case468

h is a function from R to R and in the vector case for any x ∈M and v ∈ TxM, h(x) = λx.469

470

We only prove the Vitali version for Lpω(M,R), as the proof for Lpω(M, TM) would be identical,471

replacing solely the scalar by constant vector fields in their local parametrization.472

Proof of Lemma 7. We consider U small enough such that U ∈ Ȯ1, m ∈ U and expm : B → U
is locally a diffeomorphism from B ⊂ TMm, and let Ui = expm(Bi) with B(xi, ri) ⊂ B, which
is strongly convex and thus Ui ∈ Ȯ1. We remind that expm is bi-Lipschitz on the bounded
set U . In this case, there is C1, C2 > 0 such that for any xi, ri with B(xi, ri) ⊂ B, we have
rdi ≤ λ(B(xi, ri)) ≤ C1ω(Ui) ≤ C2λ(B(xi, ri)) ≤ Cdr

d. By Vitali’s lemma, we have for any
ε > 0 and r > 0, the existence of some xi, ri < r:

‖1B −
n∑
i=1

1B(xi,ri)‖
p ≤ εp

For f smooth, let:473

‖f(x)1U −
n∑
i=1

f(xi)1Ui‖p ≤ ‖
n∑
i=1

(f(x)− f(xi))1Ui‖p + ‖1U\(∪iUi)f(x)‖p (29)
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Now, as expm is bi-Lipschitz, we get a r small enough such that |f(x)− f(xi)| < ε. Next, because474

the sets are disjoint:475

‖
n∑
i=1

(f(x)− f(xi))1Ui‖p =

n∑
i=1

∫
Ui

|f(x)− f(xi)|p (30)

≤
n∑
i=1

ω(Ui)ε
p (31)

≤ εpω(U)) . (32)

Now, using |f(x)| ≤ ‖f‖∞, we get:

‖1U\(∪iUi)f(x)‖p ≤ ‖f‖∞εp

And:

‖f −
n∑
i=1

f(xi)1Ui‖ < (1 + ω(U))1/pε .

476

The following Lemma allows to build diffeomorphism with compact support - we give this proof for477

the sake of completeness, at it is proved in [23].478

Lemma 11. Fix ρ > 0, and x0, x1 ∈ B(0, ρ), there exists φ diffeomorphism, such that φ(x0) = x1479

and supp(φ) ⊂ B(0, ρ).480

Proof. Consider f , smooth, supported in [−1, 1] and such that f(0) = 1. We will use a connexity481

argument: let us fix x0 ∈ B(0, ρ). Let’s consider Γ = {x ∈ B(0, ρ) : ∃φ diffeomorphism φ(x) =482

x0, supp(φ) ⊂ B(0, ρ)}. Let x1 ∈ Γ, then there is η < 1
2 , B(x1, η) ⊂ B(0, ρ). For x2 such that483

‖x1 − x2‖ ≤ η
4 sup |f ′| , we introduce:484

τ(x) = (x2 − x1)f(
‖x− x1‖2

η2
) .

We have that supp(I− τ) ⊂ B(x1, η), and:485

∂τ

∂x
(x) = 2

(x2 − x1)〈x− x1, x1〉
η2

f ′(
‖x− x1‖2

η2
)

leading to:486

‖∂τ
∂x

(x)‖ < 1

2
This implies that the spectrum of ∂τ is in [0, 1[ and thus, I− ∂τ is invertible. Now, by assumption,487

we know there is φ such that φ(x1) = x0, compactly supported in Ω. Introducing φ′ = φ ◦ (I− τ),488

then φ′ is a diffeomorphism, compactly supported in Ω and φ′(x2) = φ(x1) = x, thus x2 ∈ Γ. This489

shows Γ is open. But also Γ is closed (otherwiwe, we can make a path ...). Thus, by connexity490

Γ = Ω.491

The next Lemma is crucial in our proof, and allows to characterize union of well behaving opensets:492

Lemma 12. Let n ≥ 0, {Ui}i≤n ⊂ Ȯ1 and F a closed set such that Ūi ∩ F = ∅,∀i. Then for any
f ∈ Lpω(M, TM):

1FM [(1F + 1∪i≤nUi)f ] = 1FM [1F f ]

Proof. We work by induction on n. For n = 0, the result is true. Then, let’s write U εn+1 =493

{x, d(Un+1, x) < ε}. It’s an openset which contains Ūn+1, and by assumption we can pick ε small494

enough such that U εn+1 ∩ F = ∅. Next, let’s apply Lemma 1 to Un+1 and W = U εn+1. Then:495

1FM [(1F + 1(∪i≤nUi\Uεn+1)∪Un+1
)f ] = Lφ−1

n
1FM [(1F + 1(∪i≤nUi\Uεn+1)∪Un+1

)f ] (33)

= 1FM [Lφn(1F f + 1(∪i≤nUi\Uεn+1)∪Un+1
f)] (34)

→ 1FM [1F f + 1(∪i≤nUi\Uεn+1)f ] (35)
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Now, we remark that:496

1FM [1F f + 1(∪i≤nUi\Uεn+1)f ] = 1FM [1F f + 1∪i≤nUi(1M\Uεn+1
f)] (36)

And we apply the induction hypothesis to (1M\Uεn+1
f).497

The next Lemma is crucial in our proof, and allows to characterize disjoint union of well behaving498

opensets:499

Proof of lemma 6. We note that ∪ni=1Ui = ∪ni=1Ui. Thus, using Lemma 9, given this union is closed500

and disjoint; as for any closed set,501

M [f1F ]1F c = M [0]1F c = 0 (37)

the following linearity property holds,502

M [

n∑
i=1

1Ūif ] =

n∑
i=1

1ŪiM [f ] =

n∑
i=1

M [1Ūif ]

Now, we conclude as the boundaries have measure 0.503
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