
Globally Optimal Algorithms for Fixed-Budged
Best Arm Identification

Anonymous Author(s)
Affiliation
Address
email

Abstract

We consider the fixed-budget best arm identification problem where the goal1

is to find the arm of the largest mean with a fixed number of samples. It is2

known that the probability of misidentifying the best arm is exponentially3

small to the number of rounds. However, limited characterizations have4

been discussed on the rate (exponent) of this value. In this paper, we5

characterize the optimal rate as a result of global optimization over all6

possible parameters. We introduce two rates, Rgo and Rgo
∞, corresponding to7

lower bounds on the misidentification probability, each of which is associated8

with a proposed algorithm. The rate Rgo is associated with Rgo-tracking,9

which can be efficiently implemented by a neural network and is shown to10

outperform existing algorithms. However, this rate requires a nontrivial11

condition to be achievable. To deal with this issue, we introduce the second12

rate Rgo
∞. We show that this rate is indeed achievable by introducing a13

conceptual algorithm called delayed optimal tracking (DOT).14

1 Introduction15

We consider K-armed best arm identification problem with T samples. In this problem,16

each arm i ∈ [K] = {1, 2, . . . ,K} is associated with (unknown) distribution Pi ∈ P for some17

class of distributions P . Upon choosing arm i, the forecaster observes reward X(t), which is18

independently drawn from Pi. The forecaster then tries to identify (one of) the best arm119

I∗ = argmaxi µi with the largest mean µ∗ = maxi µi for µi = EX∼Pi [X]. The problem2 is20

called the best arm identification (BAI, Audibert et al. (2010)), or the ranking and selection21

(R&S, Hong et al. (2021)).22

To this aim, the forecaster uses some algorithm that would adaptively choose an arm based23

on its history of rewards. At each round t, the algorithm chooses one of the arms I(t) ∈ [K]24

and receives the corresponding reward X(t). After the T -th round, the algorithm outputs a25

recommendation arm J(T) ∈ [K], which corresponds to an estimator of the best arm. The26

misidentification probability is expressed by P[J(T) /∈ I∗], which will be referred to as the27

probability of the error (PoE) throughout the paper. Best arm identification has two settings.28

In the fixed confidence setting, the forecaster minimizes the number of draws T until the29

confidence level on the PoE reaches a given value δ ∈ (0, 1). In this case, T is a stopping time30

that can be chosen adaptively. In the fixed-budget setting, the forecaster tries to minimize31

the PoE given a constant T . In this paper, we shall focus on the fixed-budget setting. In32

1We use I∗ = I∗(P) ⊂ [K] as the set of best arms and i∗ = i∗(P) ∈ I∗(P) as one of them (ties
are broken in an arbitrary way). These differences does not matter much in this paper.

2See Section 1.3 regarding the related work on BAI and R&S.

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not
distribute.

general, a good algorithm for the fixed-confidence setting is very different from that for the33

fixed-budget setting. To be more specific, an algorithm for the fixed-confidence setting can34

be instance-wise optimal3. Namely, several algorithms exist (Garivier and Kaufmann, 2016)35

that can be optimized for each instance of distributions P = (P1, P2, . . . , PK) as far as we36

consider algorithms called δ-PAC. By contrast, an algorithm for the fixed-budget setting37

requires consideration of the possibility that improving the PoE for an instance P worsens38

the PoE for another instance P ′. Thus, we must consider a kind of a global optimization of39

the performance over all possible P ∈ PK .40

1.1 Global optimality in the fixed-budget setting41

In the fixed-budget setting, the PoE decays exponentially to T as exp(−RT) for some rate42

R > 0. The instance-wise optimality given above is no longer available here. To demonstrate43

this, assume that we make an estimate of P based on the initial o(T) rounds, say,
√
T44

rounds. In this case, we can obtain the estimate of P that is ϵ-correct with probability45

exp(−ϵ2O(
√
T)) = exp(−o(T)). However, this estimation does not help to improve the rate46

of exponential convergence. In other words, estimating P requires non-negligible (i.e. O(T))47

cost for exploration. As a result, we cannot optimize the PoE for each instance P unlike the48

fixed-confidence setting. Instead, to discuss optimality in the fixed-budget setting, we must49

choose a complexity function H(P), and the performance of an algorithm must be evaluated50

on the rate normalized by the complexity.51

In literature, little is known about the optimal rate of the exponent. Audibert et al.52

(2010) proposed the successive rejects (SR) algorithm, which has the rate of 1/(logK)53

with the complexity function H2(P) := maxi∈[K]
i

∆2
i

for ∆i = maxj µj − µi satisfying54

∆1 ≤ ∆2 ≤ · · · ≤ ∆K . Carpentier and Locatelli (2016) showed a particular set of instances55

such that this rate matches the lower bound up to a constant factor. However, the constant56

used there is by far loose4, and there is limited discussion on the actual rate of such algorithms.57

1.2 Contributions58

This paper tightly characterizes the optimal minimax rate of the PoE as a result of a59

global optimization given P . Let H = H(P) : PK → R+ be any continuous complexity60

measure. We then discuss the best possible rate R > 0 such that the PoE is bounded by61

exp(−RT/H(P) + o(T)) for all P ∈ PK and make the following contributions.62

• We derive an upper bound on R (corresponding to a lower bound of the PoE), denoted63

by Rgo, which we obtain by considering a class of oracle algorithms that can determine64

the allocation of trials to each arm knowing the final empirical distribution after T65

rounds (Theorem 1).66

• We propose an algorithm (Rgo-tracking) that greedily tracks this oracle allocation67

based on the current empirical distribution (Section 2.1). Though this oracle allocation68

is expressed by a complicated minimax optimization, we propose a technique to learn69

this by a neural network and empirically confirm that the PoE of the learned algorithm70

is close to the lower bound (Sections 3 and 4). We also discuss that the algorithm is71

unlikely to provably achieve the bound even when the minimax problem is perfectly72

solved because of the impossibility of the tracking.73

• We tighten the PoE lower bound by weakening the oracle algorithms. Based on74

this refined bound, we propose the delayed optimal tracking (DOT) algorithm that75

asymptotically achieves the tightened lower bound for Bernoulli and Gaussian arms,76

though the algorithm is computationally almost infeasible (Sections 2.2 and 2.3).77

In summary, we propose a nearly-tight PoE lower bound with a computationally feasible78

algorithm that is empirically close to this bound. We also propose a provably tight lower79

bound and matching algorithm in a computationally infeasible form. Notation is listed in80

the supplementary material.81

3A more complete discussion on this topic can be found in Section D of supplementary material.
4Theorem 1 therein includes a large constant 400.

2

1.3 Related work82

Compared with the works of the fixed-confidence BAI, less is known about the fixed-budget83

BAI. For example, a book on this subject (Lattimore and Szepesvári, 2020) spends only two84

pages on the fixed-budget BAI.5 Many algorithms designed for the fixed-confidence BAI,85

such as D-tracking (Kaufmann et al., 2016), do not have a finite-time PoE guarantee when we86

apply them to the fixed-budget setting. Nevertheless, there are two well-known fixed-budget87

BAI algorithms: Successive rejection (SR, Audibert et al. (2010)) and successive halving (SH,88

Shahrampour et al. (2017)). Both SR and SH progressively narrow the candidate of the best89

arm at the end of each segment. While SR discards one arm after each segment, SH discards90

half of the remaining arms after each segment. SR and SH have the guarantee on PoE of the91

rate exp (−RT/H2(P)) for some constant R > 0. Other fixed-budget BAI algorithms, such92

as UCB-E (Audibert et al., 2010) and UGapE (Gabillon et al., 2012), require the knowledge93

of minimum gap mini ∆i, and thus are not universal to all best arm identification instances.94

Another literature on this topic is the ranking and selection (R&S) problems (Powell and95

Ryzhov, 2018; Hong et al., 2021). Although the goal of R&S problems is to identify the best96

arm, many R&S papers do not consider the estimation error of P in a finite time. As a result,97

algorithms therein do not have the guarantee on the PoE in the best arm identification setting.98

The optimal computing budget allocation (OCBA Chen et al. (2000); Glynn and Juneja99

(2004)) algorithm tries to minimize the PoE assuming the plug-in estimator matches the true100

parameter. Bayesian R&S algorithms try to solve the dynamic programming of minimizing101

the PoE given a prior, which is computationally prohibitive, and thus approximated solutions102

have been sought (Frazier et al., 2008; Powell and Ryzhov, 2018).103

2 Globally optimal algorithm104

In this section, we derive several lower bounds on the PoE and propose algorithms to105

empirically or theoretically achieve these bounds.106

First, we formalize the problem. Let P be a known class of reward distributions. We consider107

the case where P is the set of Bernoulli distributions with mean Θ ⊂ [0, 1] (including the108

case Θ = [0, 1]), or Gaussian distributions with mean in Θ ⊂ R (including the case Θ = R)109

and known variance σ2 > 0. It should be noted that many parts of results in this paper can110

be generalized to much wider classes of distributions, but it makes the notation much longer111

and is discussed in Appendix E.112

When we derive lower bounds and construct algorithms, we introduce Q as a class of113

distributions corresponding to the estimated distributions of the arms. Namely, we set Q as114

the set of all Bernoulli (resp. Gaussian) distributions with mean in [0, 1] (resp. R) when P is115

the set of Bernoulli (resp. Gaussian) distributions with mean in Θ. As such, we take Q ⊃ P116

so that the estimator of Pi is always in Q. In these models, we identify the distribution117

Pi ∈ P with its mean parameter in Θ ⊂ R.118

Our interest lies in the rate limT→∞
1
T log(1/P[J(T) /∈ I∗(P)]) of convergence of the PoE.119

Since we are interested in lower and upper bounds of the rate of algorithms including those120

requiring the knowledge of T , we define the rate for a sequence of algorithms {πT } by121

R({πT }) = inf
P∈PK

H(P) lim inf
T→∞

1

T
log(1/P[J(T) /∈ I∗(P)]). (1)

Here, a larger R({πT }) corresponds to a faster convergence of the PoE.122

2.1 PoE for oracle algorithms123

First, we derive a lower bound on the PoE that is unlikely to be achievable but strongly124

related to an optimal algorithm. Let D(P∥Q) = EX∼P [
dP
dQ (X)] be the Kullback–Leibler125

(KL) divergence between P and Q. Then we have the following bound.126

5Section 33.3 therein.

3

Algorithm 1: Rgo-Tracking
input : (ϵ-)optimal solution (r∗(·), J∗(·)) of (2).

1 Draw each arm once.
2 for t = K + 1, 2, . . . , T do
3 Draw arm argmaxi∈[K] {r∗i (Q(t− 1))−Ni(t− 1)/(t− 1)}.
4 return J(T) = J∗(Q).

Theorem 1. Under any sequence of algorithm {πT } it holds that127

R({πT }) ≤ sup
r(·)∈∆K , J(·)∈[K]

inf
Q∈QK

inf
P∈PK :J(Q)/∈I∗(P)

H(P)
∑
i∈[K]

ri(Q)D(Qi∥Pi) =: Rgo, (2)

where the outer supremum is taken over all functions r(·) : QK → ∆K , J(·) : QK → [K].128

All proofs are provided in the supplementary material owing to page limitation. This theorem129

states that under any algorithm there exists an instance P such that the PoE is at least130

exp(−TRgo/H(P)+o(T)). Intuitively speaking, the bound in Theorem 1 corresponds to the131

best possible rate of oracle algorithms that can determine the allocation as r = r∗(Q) ∈ ∆K132

knowing the final empirical mean Q = Q(T), where r∗(·) is the (ϵ-)optimal6 solution of (2).133

From the technical viewpoint, the main difference from the lower bound on the fixed-134

confidence setting is that we also have to consider candidates of empirical distributions Q135

as well as the true distributions P . This makes the analysis much more difficult, because136

a slight difference of the empirical distribution might (possibly discontinuously) affect the137

allocation unlike the difference of the true distribution P unknown to the algorithm. A138

naive analysis just depending on the empirical distribution fails because of this discontinuity139

of the allocation. To overcome this difficulty, we adopt a technique inspired by the typical140

set analysis often used in the information theory (Cover and Thomas, 2006). We define the141

typical allocation for each candidate of empirical distribution Q and prove the theorem by142

evaluating the error probability based on the typical allocation.143

Remark 1. We can take arbitrary H(P) > 0 as a complexity measure, but Rgo might144

become zero if H(P) is not taken reasonably. When Rgo = 0 any algorithm trivially satisfies145

PoE ≤ exp(−TRgo/H(P) + o(T)). This means that any algorithm is minimax-optimal in146

terms of H(P), that is, such choice of H(P) gives meaningless results.147

In the actual trial, the algorithm can only know the empirical mean Q(t−1) at the beginning148

of the current round t and we cannot ensure the achievability of the bound for oracle149

algorithms. Despite this, one reasonable choice of the algorithm would be to keep tracking150

this optimal allocation r∗(Q(t − 1)), expecting that the current empirical mean Q(t − 1)151

is close to Q(T). Rgo-tracking in Algorithm 1 is the algorithm based on this idea. Here,152

Ni(t− 1) is the number of times that the arm i is drawn at the beginning of the t-th round,153

and it draws the arm such that the current fraction of the allocation Ni(t− 1)/(t− 1) is the154

most insufficient compared with the estimated optimal allocation r∗(Q(t− 1).155

As we will see in Section 4, the empirical performance of Algorithm 1 is very close to the156

PoE lower bound stated above. However, it is difficult to expect that this algorithm provably157

achieves this bound in general because of the following: We could prove that Rgo-tracking is158

optimal if the fraction of allocation always satisfies Ni(t)/t = r(Q(t)) + o(1), that is, the159

algorithm can track the ideal allocation r(Q(t)). However, this does not generally hold. For160

example, the empirical mean Q(t) sometimes changes rapidly in the Gaussian case. Whilst161

this event occurs with exponentially small probability, the PoE itself is also an exponentially162

small probability and it is highly nontrivial to specify in which case the tracking failure163

probability becomes negligible.164

Remark 2. Eq. (2) also involves the optimization of the recommendation arm J(Q) as165

well as r(Q). We can easily see that it is optimal to set J(Q) = i∗(Q), that is, taking166

6This paper uses ϵ > 0 as an arbitrarily small gap to the optimal solution. An asterisk is used to
denote optimality.

4

the empirical best arm as the recommendation arm when P = Q since R(π) becomes zero167

otherwise. However, J(Q) = i∗(Q) might not hold for Q /∈ P when P ⊊ Q.168

2.2 PoE considering trackability169

To construct an algorithm that is provably optimal, we begin with refining the PoE lower170

bound by weakening the “strength” of the oracle algorithm.171

We consider splitting T rounds into B batches of size ⌊T/B⌋ or ⌊T/B⌋+ 1. Let172

rB = (r1(Q1), r2(Q1,Q2), r3(Q1,Q2,Q3), . . . , rB(Q1, . . . ,QB))

be a sequence of B functions, where rb : QKb → ∆K corresponds the allocation in the b-th173

batch when the empirical means of the first b batches are Qb = (Q1,Q2, . . . ,Qb). Based on174

this class of allocation rule, we have the following PoE lower bound.175

Theorem 2. (PoE Bound for batch-oracle algorithms) Under any sequence of algorithms176

πT and B ∈ N,177

R({πT }) ≤ sup
rB(·),J(·)

inf
QB∈QKB

inf
P :J(QB)/∈I∗(P)

H(P)

B

∑
i∈[K],b∈[B]

rb,iD(Qb,i∥Pi) =: Rgo
B . (3)

Here, the outer supremum is taken over all functions rB(·) = (r1(·), r2(·), . . . , rB(·)) for178

rb(·) : QKb → ∆K and J(·) : QKB → [K].179

Theorem 1 is the special case of this theorem with B = 1. This bound corresponds to180

the best bound of oracle algorithms that can determine the allocation of the b-th batch181

knowing the empirical distribution of this batch. It is tighter than that given in Theorem 1,182

as the oracle considered here cannot know the empirical distribution of the later batches183

b+ 1, b+ 2, . . . , B. It follows that we can obtain the following result.184

Corollary 3. We have Rgo
B ≤ Rgo for any B ∈ N.185

We will show that Rgo
∞ := limB→∞ Rgo

B exists and is the best possible rate.186

2.3 Matching algorithm187

In this section, we derive an algorithm that has a rate that almost matches Rgo
B . For any ϵ > 0,188

let an ϵ-optimal solution of Eq. (3) be (rB,∗(·), J∗(·)) = (r∗1(·), r∗2(·), r∗3(·), . . . , r∗B(·), J∗(·))189

with its objective at least190

inf
QB∈QKB

inf
P :J∗(QB)/∈I∗(P)

H(P)

B

∑
i∈[K],b∈[B]

r∗b,i(Q
b)D(Qb,i∥Pi) ≥ Rgo

B − ϵ.

We cannot naively follow the allocation r∗b,i(Q
b) because it requires the empirical mean191

of the current batch Qb, which is not fully available until the end of the current batch.192

The delayed optimal tracking algorithm (DOT, Algorithm 2) addresses this issue. This193

algorithm divides T rounds into B +K − 1 batches, where the b-th batch corresponds to194

(bTB + 1, bTB + 2, . . . , (b+ 1)TB)-th rounds for TB = T/(B +K − 1). Here, for simplicity,195

we assume that T is a multiple of B +K − 1. In the other case, we can reach almost the196

same result by just ignoring the last T − (B +K − 1)⌊T/(B +K − 1)⌋ rounds.197

The crux of Algorithm 2 is to determine allocation rb by using the stored empirical mean198

Q′
1,Q

′
2, . . .Q

′
B rather than the true empirical mean Q1,Q2, . . .QB+K−1: The first K batches199

are devoted to uniform exploration and the samples are stored in a queue (though this200

explanation is not strict, in that the actual procedure is done after taking the mean of the201

stored samples). At the b-th batch for b ≥ K+1, we draw each arm i for nb,i ≈ TBrb times7,202

where rb is determined based on the stored samples in the queue. When drawing arm i203

for nb,i times, we dequeue and open nb,i stored samples instead of opening the actual nb,i204

samples, the latter of which are enqueued and kept unopened.205

By the nature of this algorithm we can ensure the following property.206

7The −K in Line 6 of Algorithm 2 is for the ceiling fractional values. This is reflected in the term
T ′ in Theorem 5. If T is large compared to B,K, the difference between T and T ′ does not matter.

5

Algorithm 2: Delayed optimal tracking (DOT)
input : ϵ-optimal solution rB,∗(·) = (r∗1(·), r∗2(·), . . . , r∗B(·), J∗(·)) of (3).

1 for b = 1, 2, . . . ,K do
2 Set rb,i = 1[i = b] for i ∈ [K] and draw arm b for TB times.
3 Set Q′

1 := QK for the empirical mean QK .
4 for b = K + 1,K + 2, . . . , B +K − 1 do
5 Compute rb = (rb,1, rb,2, . . . , rb,K) = r∗b−K(Q′

1,Q
′
2, . . . ,Q

′
b−K).

6 Draw each arm i for nb,i times, where nb,i ≥ rb,i(TB −K) is taken so that∑
i∈[K] nb,i = TB .

7 Observe empirical mean Qb of the batch.
8 Update the stored empirical average as

Q′
b−K+1 = Q′

b−K + rb(Qb −Q′
b−K),

where rbQ denotes the element-wise product.
9 Recommend J(T) = J∗(Q′

1,Q
′
2, . . . ,Q

′
B).

Lemma 4. Assume that we run Algorithm 2. Then, the following inequality always holds:207

1

B +K − 1

∑
i∈[K],b∈[B+K−1]

rb,iD(Qb,i||Pi) ≥
B

B +K − 1

Rgo
B − ϵ

H(P)
. (4)

Lemma 4 states that the empirical divergence of DOT given in the LHS of (4) almost matches208

the upper bound Rgo
B /H(P) for sufficiently large B despite the delayed allocation. Using209

this property we obtain the following achievability bound.210

Theorem 5. (Performance bound of Algorithm 2) The PoE of the DOT algorithm satisfies211

P[J(T) /∈ I∗(P)] ≤ exp

(
− BT ′

B +K − 1

Rgo
B − ϵ

H(P)
+ f(K,B, T)

)
,

where T ′ = T − (B +K − 1)K and f(K,B, T) = 2BK log(2T).212

The following corollary is immediate since f(K,B, T) = o(T) holds for fixed K,B.213

Corollary 6. The worst-case rate of the DOT algorithm πDOT,T satisfies214

R({πDOT,T }) ≥
B

B +K − 1
(Rgo

B − ϵ).

2.4 Optimality215

In this section, we show the rate R(πDOT) of DOT becomes arbitrarily close to optimal when216

we take a sufficiently large number of batches B.217

Theorem 7. (Optimality of DOT) Assume H(P) be such that Rgo <∞. Then, the limit218

Rgo
∞ := lim

B→∞
Rgo

B (5)

exists. Moreover, for any η > 0, there exist parameters B, ϵ such that the following holds on219

the performance of the DOT algorithm:220

R({πDOT,T }) = inf
P∈P

H(P) lim inf
T→∞

log(1/P[J(T) /∈ I∗(P)])

T
≥ Rgo

∞ − η. (6)

Remark 3. (η-optimality) Since R({πT }) ≤ Rgo
B holds for any sequence of algorithms {πT }221

and b ∈ N, we have222

R({πT }) ≤ inf
B∈N

Rgo
B ≤ lim inf

B→∞
Rgo

B = Rgo
∞

from (5). Therefore the rate of the DOT algorithm given in (6) is optimal up to η for223

arbitrary small η > 0. This essentially states that, no algorithm can be η-better than DOT224

in terms of the rate against the worst-case instance P .225

6

Algorithm 3: Gradient descent method for θ

input : learning rate η
1 while not converged do

/* Compute Pmin and Qmin which minimizes the negative exponent */
2 Set Emin ←∞.
3 for n1 = 1, 2, . . . , N true do
4 Sample true parameters P from P uniformly at random.
5 for n2 = 1, 2, . . . , N emp do
6 Sample Q from {Q ∈ QK : I∗(Q) ∩ I∗(P) = ∅}.
7 if E(P ,Q;θ) < Emin then
8 Pmin ← P , Qmin ← Q, Emin ← E(Pmin,Qmin;θ)

9 Update parameters θ ← θ − η∇θE(Pmin,Qmin;θ).

Algorithm 4: Rgo-Tracking by Neural Network (TNN)
1 Draw each arm once.
2 for t = K + 1, 2, . . . , T do
3 Draw arm argmax (rθ,i(Q(t− 1))−Ni(t− 1)/(t− 1)).
4 return J(T) = argmaxQi(T) (empirical best arm).

Remark 4. (Utility of the DOT algorithm) Although DOT (Algorithm 2) has an asymptoti-226

cally optimal rate Rgo
∞, it is difficult to calculate, or to even approximate, the optimal solution227

of (3) since it is not an optimization of a finite-dimensional vector but an optimization of228

function rB , which has high input dimension proportional to B. In this sense, DOT algorithm229

as well as Theorem 7 is purely theoretical thus far, and the existence of a computationally230

tractable and provably optimal algorithm is an important open question.231

3 Learning232

In this section, we propose a method to learn r(Q) of Eq. (2) by utilizing a neural network to233

practically realize Rgo-tracking in Algorithm 1. Throughout this section, we assume a class234

of algorithms satisfying J(Q) ∈ I∗(Q), that is, algorithms that recommend the empirical235

best arm, which is guaranteed to be optimal when P = Q (see Remark 2).236

3.1 Learning allocation237

Let rθ(Q) : QK → ∆K be a neural network with a set of parameters θ. We consider238

alternately optimizing rθ(·) and (P ,Q), and we update θ via mini-batch gradient descent.239

Given a complexity function H(P), Eq. (2) is defined as the minimum over all (P ,Q) such240

that the best arm is different. Our learning method (Algorithm 3) uses L mini-batches8. Let241

E(P ,Q;θ) := H(P)

K∑
i=1

rθ,i(Q)D (Qi∥Pi) . (7)

Given allocation rθ, Eq. (7) is the negative log-likelihood (rate) of the bandit instance P242

given the empirical means Q. At each batch, it obtains the pair Pmin,Qmin such that Eq. (7)243

is minimized. Specifically, for each iteration, we sample N true candidates of true means P244

uniformly from PK , then for each P , we sample N emp values of empirical means Q ∈ QK245

such that I∗(Q) ∩ I∗(P) = ∅ uniformly at random.246

8Algorithm 3 is a conceptual explanation and the actual implementation used a momentum
method. See Section 4.1 for implementation details.

7

3.2 Tracking by neural network247

Having trained rθ, we propose the Rgo-Tracking by Neural Network (TNN) algorithm248

(Algorithm 4), which is an implementation of Rgo-Tracking by the trained neural network.249

This algorithm draws the arm such that the current fraction of samples Ni(t− 1)/(t− 1) is250

the most insufficient compared with the learned allocation rθ(Q(t− 1)).251

4 Simulation252

This section tests numerically the performance of TNN algorithm. We compared the253

performance of TNN (Algorithm 4) with two algorithms: Uniform algorithm, which samples254

each arm in a round-robin fashion, and Successive Rejects (SR, Audibert et al., 2010), where255

the entire trial is divided into segments before the game starts, and one arm with the smallest256

estimated mean reward is removed for each segment.257

We consider Bernoulli bandits with K = 3 arms, where each mean parameter is in [0, 1]. In258

particular, we consider the three sets of true parameters: (instance 1) P = (0.5, 0.45, 0.3),259

(instance 2) P = (0.5, 0.45, 0.05), and (instance 3) P = (0.5, 0.45, 0.45). The number of the260

rounds T is fixed to 2000, and we repeated the experiments for 105 times.261

4.1 Training neural networks262

Here, we show experimental details for training neural networks for the TNN algorithm263

discussed in Section 3.2.264

We used the complexity measure H1(P) =
∑

i ̸=i∗(P)(P
∗−Pi)

−2 as a standard choice of H(P).265

We used the neural network with four layers (including the input layer and output layer),266

where we used the ReLU for the activation functions and introduced the skip-connection (He267

et al., 2016) between each hidden layer to make training the network easier. To obtain the268

map to ∆K , we adopted the softmax function. The number of nodes in the hidden layers269

was fixed to K × 3. We used AdamW (Loshchilov and Hutter, 2019) with a learning rate270

10−3 and weight decay 10−7 to update the parameters.271

For training the neural network, we ran Algorithm 3 with N true = 32 and N emp = 90. Addi-272

tionally, to allow the neural network to easily learn r, the elements of P = (P1, P2, . . . , PK)273

were sorted beforehand. Other details of the implementation is given in Appendix C.274

4.2 Experimental results275

Figure 1 illustrates the results of our simulations. Each column corresponds to the result for276

each instance.277

The first row ((a)–(c)) shows the PoE of the compared methods when the arm with the largest278

empirical mean is regarded as the estimated best arm J(t) at each round t. Here, the black279

line represents exp(−t infQ
∑

i rθ,i(Q)D(Qi∥Pi)), which corresponds to the exponent of the280

oracle algorithm that can perfectly track the allocation ri,θ(Q). Therefore, the asymptotic281

slope of TNN cannot be better than that of the black line. We can see from the figures that282

the slope of the TNN is close to the oracle algorithm and performs better than or comparable283

to the other algorithms. Note that this is the result for fixed time horizon T . Though the284

final slope of SR may look outperforming TNN, it just comes from the fact that SR is not285

anytime and is an algorithm that divides T rounds into several segments.286

The second row ((d)–(f)) shows the tracking error of the TNN algorithm, which is defined as287

disc(t) = maxi∈[K] |ri(Q(t))−Ni(t)/t|, which measures the discrepancy between the ideal288

allocation ri(Q(t)) and the actual allocation Ni(t)/t. If this quantity is o(T) in almost all289

trials (including the ones where the algorithm failed to recommend the best arm) and all290

instances, then we can guarantee Rgo = Rgo
∞. The labels TNN (average), TNN (worst), and291

TNN (average in fail) corresponds to the average tracking error of all trials, the worst-case292

tracking error and the average tracking error of all failed trials, respectively. The fact that293

‘TNN (worst)’ is small at T = 2,000 implies that the gap between Rgo and Rgo
∞ is small,294

which supports the reasonableness of algorithms based on Rgo.295

8

0 500 1000 1500 2000
round t

10 1

100

pr
ob

ab
ili

ty
 o

f e
rr

or

Uniform
SR
TNN
Oracle

(a) Instance 1, PoE

0 500 1000 1500 2000
round t

10 1

100

pr
ob

ab
ili

ty
 o

f e
rr

or

Uniform
SR
TNN
Oracle

(b) Instance 2, PoE

0 500 1000 1500 2000
round t

10 1

100

pr
ob

ab
ili

ty
 o

f e
rr

or

Uniform
SR
TNN
Oracle

(c) Instance 3, PoE

0 500 1000 1500 2000
round t

0.0

0.1

0.2

0.3

0.4

tra
ck

in
g

er
ro

r

TNN (average)
TNN (worst)
TNN (average in fail)

(d) Instance 1, tracking error

0 500 1000 1500 2000
round t

0.0

0.1

0.2

0.3

tra
ck

in
g

er
ro

r

TNN (average)
TNN (worst)
TNN (average in fail)

(e) Instance 2, tracking error

0 500 1000 1500 2000
round t

0.0

0.1

0.2

0.3

0.4

tra
ck

in
g

er
ro

r

TNN (average)
TNN (worst)
TNN (average in fail)

(f) Instance 3, tracking error

Figure 1: Bernoulli bandits, K = 3, T = 2000, average over 105 trials.

5 Conclusion296

This paper considered the fixed-budget best arm identification problem. We identified the297

minimax rate Rgo
∞ on the exponent of the probability of error by introducing a matching298

algorithm (DOT algorithm). Optimization on the rate Rgo
∞ is very challenging to implement,299

and we considered the learning of a simpler optimization problem of rate Rgo by using a300

neural network (TNN algorithm). The TNN algorithm ourperformed existing algorithms. A301

number of possible lines of future work include the following points.302

• A more scalable learning of r(Q): TNN adopted a neural network to obtain the303

oracle allocation r(Q) associated with the rate bound. While its empirical results are304

promising and support our theoretical findings, the current experiment is limited to305

the case of K = 3 arms because the learning is very costly even for small K. A more306

sophisticated learning algorithm is desired to realize Rgo-tracking for larger K.307

• Identifying the existence (or non-existence) of the gap: though the empirical results308

suggest that Rgo is very close (or maybe equal) to the optimal rate Rgo
∞ for the309

Bernoulli case, a formal analysis of this gap for general cases is demanded since the310

DOT algorithm to achieve Rgo
∞ is computationally almost infeasible.311

• A bound for another rate measure: we defined the worst-case rate of convergence by312

(1), which first takes the limit of T and then takes the worst-case instance P . Another313

natural choice of the rate would be to exchange them, that is, to consider314

R′({πT }) = lim inf
T→∞

inf
P∈PK

H(P)

T
log(1/P[J(T) /∈ I∗(P)]) ≤ R({πT }).

Whereas Theorems 1 and 2 on the upper bounds of R(π) are still valid for R′({πT }) ≤315

R({πT }), the current achievability analysis does not apply and analyzing the tightness316

of Rgo
∞ for R′({πT }) is an open problem.317

9

References318

Jean-Yves Audibert, Sébastien Bubeck, and Rémi Munos. Best arm identification in multi-319

armed bandits. In COLT 2010 - The 23rd Conference on Learning Theory, pages 41–53.320

Omnipress, 2010.321

L. Jeff Hong, Weiwei Fan, and Jun Luo. Review on ranking and selection: A new perspective.322

Frontiers of Engineering Management, 8(3):321–343, Sep 2021.323

Aurélien Garivier and Emilie Kaufmann. Optimal best arm identification with fixed confidence.324

In Conference on Learning Theory, Proceedings of Machine Learning Research, 2016.325

Alexandra Carpentier and Andrea Locatelli. Tight (lower) bounds for the fixed budget best326

arm identification bandit problem. In Conference on Learning Theory, 2016.327

Tor Lattimore and Csaba Szepesvári. Bandit Algorithms. Cambridge University Press, 2020.328

doi: 10.1017/9781108571401.329

Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On the complexity of best-arm330

identification in multi-armed bandit models. Journal of Machine Learning Research, 17331

(1):1–42, 2016.332

Shahin Shahrampour, Mohammad Noshad, and Vahid Tarokh. On sequential elimination333

algorithms for best-arm identification in multi-armed bandits. IEEE Transactions on334

Signal Processing, 65(16):4281–4292, 2017.335

Victor Gabillon, Mohammad Ghavamzadeh, and Alessandro Lazaric. Best arm identification:336

A unified approach to fixed budget and fixed confidence. In Advances in Neural Information337

Processing Systems, 2012.338

Warren Buckler Powell and Ilya O. Ryzhov. Optimal Learning. Second edition. Unpub-339

lished Manuscript, March 2018. URL https://castlelab.princeton.edu/wp-content/340

uploads/2019/02/Powell-OptimalLearningWileyMarch112018.pdf.341

Chun-Hung Chen, Jianwu Lin, Enver Yücesan, and Stephen E. Chick. Simulation budget342

allocation for further enhancing theefficiency of ordinal optimization. Discrete Event343

Dynamic Systems, 10(3):251–270, July 2000.344

Peter Glynn and Sandeep Juneja. A large deviations perspective on ordinal optimization. In345

Winter Simulation Conference, volume 1. IEEE, 2004.346

Peter I. Frazier, Warren B. Powell, and Savas Dayanik. A knowledge-gradient policy for347

sequential information collection. SIAM J. Control Optim., 47(5):2410–2439, sep 2008.348

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley-Interscience,349

second edition, July 2006. ISBN 0471241954.350

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016351

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778,352

Los Alamitos, CA, USA, jun 2016. IEEE Computer Society.353

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International354

Conference on Learning Representations, 2019.355

Checklist356

1. For all authors...357

(a) Do the main claims made in the abstract and introduction accurately reflect358

the paper’s contributions and scope? [Yes] See Section 1.2359

(b) Did you describe the limitations of your work? [Yes] See Section 5360

(c) Did you discuss any potential negative societal impacts of your work? [N/A]361

10

(d) Have you read the ethics review guidelines and ensured that your paper conforms362

to them? [Yes] This is a methodology paper and ethical concerns do not directly363

apply here.364

2. If you are including theoretical results...365

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See366

Section 2367

(b) Did you include complete proofs of all theoretical results? [Yes] See Appendices368

3. If you ran experiments...369

(a) Did you include the code, data, and instructions needed to reproduce the main370

experimental results (either in the supplemental material or as a URL)? [No]371

We will publish the source code upon acceptance.372

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how373

they were chosen)? [Yes] See Section 4374

(c) Did you report error bars (e.g., with respect to the random seed after running375

experiments multiple times)? [Yes] Yes376

(d) Did you include the total amount of compute and the type of resources used377

(e.g., type of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix B.378

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new379

assets...380

(a) If your work uses existing assets, did you cite the creators? [N/A]381

(b) Did you mention the license of the assets? [N/A]382

(c) Did you include any new assets either in the supplemental material or as a383

URL? [N/A]384

(d) Did you discuss whether and how consent was obtained from people whose data385

you’re using/curating? [N/A]386

(e) Did you discuss whether the data you are using/curating contains personally387

identifiable information or offensive content? [N/A]388

5. If you used crowdsourcing or conducted research with human subjects...389

(a) Did you include the full text of instructions given to participants and screenshots,390

if applicable? [N/A]391

(b) Did you describe any potential participant risks, with links to Institutional392

Review Board (IRB) approvals, if applicable? [N/A]393

(c) Did you include the estimated hourly wage paid to participants and the total394

amount spent on participant compensation? [N/A]395

11

Table 1: Major notation
symbol definition
K number of the arms
T number of the rounds
B number of the batches
TB = T/(B +K − 1)
T ′ = T − (B +K − 1)K
I(t) arm selected at round t
X(t) reward at round t
J(T) recommendation arm at the end of round T
P ∈ PK true parameters
Pi ∈ P i-th component of P
I∗ = I∗(P) Set of best arms under parameter P
i∗(P) one arm in I∗(P) (taken arbitrary in a deterministic way)
Q ∈ QK estimated parameters of P
Qi ∈ Q i-th component of Q
Qb ∈ QK estimated parameters of b-th batch
Qb,i ∈ Q i-th component of Qb

Qb = (Q1,Q2, . . . ,Qb)
Q′

b stored parameters (in Algorithm 2)
Q′

b,i ∈ Q i-th component of Q′
b

P hypothesis class of P
Q distribution of estimated parameter of Q
D(Q∥P) KL divergence between Q and P
∆K probability simplex in K dimensions
r ∈ ∆K allocation (proportion of arm draws)
ri i-th component of r
rb ∈ ∆K allocation at b-th batch
rb,i i-th component of rb
rb = (r1, r2, . . . , rb)
nb Number of draws of Algorithm 2 at b-th batch
nb,i i-th component of nb. Note that nb,i ≥ rb,i(TB −K) holds.
J(QB) recommendation arm given QB

(rB,∗, J∗) ϵ-optimal allocation
H(·) complexity measure of instances
R({πT }) worst-case rate of PoE of sequence of algorithms {πT } in (1)
Rgo best possible R({πT }) for oracle algorithms in (2)
Rgo

B best possible R({πT }) for B-batch oracle algorithms in (3)
Rgo

∞ limB→∞ Rgo
B . Limit exists (Theorem 7)

θ model parameter of the neural network
rθ allocation by a neural network with model parameters θ
rθ,i i-th component of rθ

A Notation table396

Table 1 summarizes our notation.397

B Computational resources398

We used a modern laptop (Macbook Pro) for learning θ. It took less than one hour to learn399

θ. For conducting a large number of simulations (i.e., Run TNN and existing algorithms for400

12

105 times), we used a 2-CPU Xeon server of sixteen cores. It took less than twelve hours to401

complete simulations. We did not use a GPU for computation.402

C Implementation details403

To speed up computation, the same Q was used for each P with the same optimal arm i∗(P)404

in the mini-batches.405

The final model θ of the neural network is chosen as follows. We stored sequence of models406

θ(1),θ(2), . . . during training (Algorithm 3). Among these models, we chose the one with407

the maximum objective function argmaxl min(P ,Q)∈(Pemp,Qemp) E(P ,Q;θ(l)). Here, the408

minimum is taken over a finite dataset of size |Pemp| = 32 and |Qemp| = 105.409

The black lines in Figure 1 (a)–(c) representing exp(−t infQ
∑

i rθ,i(Q)D(Qi∥Pi)) are com-410

puted by the grid search of Q with each Qi separated by intervals of 5.0× 10−3.411

D Instance optimality in the fixed-confidence setting412

For sufficiently small δ > 0, the asymptotic sample complexity for fixed-confidence setting is413

known. Namely, any fixed-confidence algorithm is required to draw at least414

lim inf
δ→+0

T

log(δ−1)
≥ Cconf(P) (8)

times, where415

Cconf(P) =

(
sup

r(P)∈∆K

inf
P ′:i∗(P ′)/∈I∗(P)

K∑
i=1

riD(Pi∥P ′
i)

)−1

.

Garivier and Kaufmann (2016) proposed C-Tracking and D-Tracking algorithms that have416

a sample complexity bound that matches Eq. (8). This bound implies that an algorithm417

adapts the true parameter P without paying essential cost of exploration. In fact, building418

an optimal algorithm such that Eq. (8) holds is not very difficult.419

Roughly speaking, a o(log(1/δ)) cost, say, uniform exploration of
√

log(1/δ) rounds, enables420

us to obtain enough accuracy the bound of421

|P̂ − P | ∼ (log(1/δ))−1/4 = o(1) (9)

with probability 1− o(1). The expected value of the stopping time is bounded as:422 √
log(1/δ)︸ ︷︷ ︸

uniform exploration

+ (Cconf(P) + o(1)) log(δ−1)︸ ︷︷ ︸
stopping time bound under Eq. (9)

+ o(1)︸︷︷︸
probability of Eq. (9) does not hold

×O
(
log(δ−1)

)
.

The first and the third terms does not hurt the optimal rate, and thus the bound of Eq. (8)423

is derived.424

E Extension to wider models425

In the main body of the paper, we assumed that P ∈ P and Q ∈ Q are Bernoulli or Gaussian426

distributions. Many parts of the results of the paper can be extended to exponential families427

or distributions over a support set S ⊂ R.428

Let us consider an exponential family of form429

dP (x|θ) = exp(θ⊤Y (x)−A(θ))dF (x),

where F is a base measure and θ ∈ Θ ⊂ Rd is a natural parameter. We assume that430

A′(θ) = EX∼F (·|θ)[Y (X)] has the inverse (A′)−1 : im(Y)→ Θ, where im(Y) is the image of431

Y .432

13

Let P be a class of reward distributions. P can be the family of distributions over a known433

support S ⊂ R. We can also consider the case where P is the above exponential family434

with possibly restricted parameter set Θ′ ⊂ Θ. For example, P can be the set of Gaussian435

distributions with mean parameters in [0, 1] and variances in (0,∞).436

When we derive lower bounds and construct algorithms, we introduce Q as a class of437

distributions corresponding to the estimated reward distributions of the arms. We set Q = P438

when P is a family of distributions over a known support S ⊂ R. When we consider a natural439

exponential family with parameter set Θ′ ⊂ Θ, we set Q as this exponential family with440

parameter set Θ, so that the estimator of Pi is always within Q. For example, if we consider441

P as a class of Gaussians with means in [0, 1] and variances in (0,∞), Q is the class of all442

Gaussians with means in (−∞,∞) and variances in (0,∞).443

In Algorithm 2, we use a convex combination of distributions Q and Q′. The key property444

used in the analysis is the convexity of KL divergence between distributions. When we445

consider the family P of distributions over support set S, the convexity446

D(αQ+ (1− α)Q′ ∥P) ≤ αD(Q∥P) + (1− α)D(Q′∥P)

holds for any P,Q,Q′ ∈ Q when we define αQ+ (1− α)Q′ as the mixture of Q and Q′ with447

weight (α, 1−α). When P is the exponential family, the convexity of the KL divergence holds448

when αQ+ (1− α)Q′ is defined as the distribution in this family such that the expectation449

of the sufficient statistics Y (X) is equal to αEX∼Q[Y (X)]+ (1−α)EX∼Q′ [Y (X)]. Note that450

this corresponds to taking the convex combination of the empirical means when we consider451

Bernoulli distributions or Gaussian distributions with a known variance.452

By the convexity of the KL divergence, most parts of the analysis apply to P in this section453

and we straightforwardly obtain the following result.454

Proposition 8. Theorems 1 and 2, Corollary 3, and Lemma 4 hold under the models P455

with the definition of the convex combination in this section.456

The only part where the analysis is limited to Bernoulli or Gaussian is Theorem 5 on the PoE457

upper bound of the DOT algorithm. The subsequent results immediately follow if Theorem 5458

is extended to the models in this section. Since the key property of the DOT algorithm in459

Lemma 4 on the trackability of the empirical divergence is still valid for these models, we460

expect that Theorem 5 can also be extended though it remains as an open question.461

F Proofs462

F.1 Proofs of Theorems 1 and 2463

We only give the proof of Theorem 2 since Theorem 1 is a special case of this theorem with464

B = 1.465

In this proof, we consider many candidates of the true distributions P = (P1, P2, . . . , PK)466

and we write P [A] to denote the probability of the event A when the reward of each467

arm i follows Pi. We divide T rounds into B batches, and the b-th batch corresponds to468

(tb, tb+1, . . . , tb+1−1)-th rounds for b ∈ [B] and tb = ⌊(b−1)T/B⌋+1. We define the history469

of the b-th batch by Hb = ((I(tb), X(tb)), (I(tb +1), X(tb +2)), . . . , I(tb+1− 1), X(tb+1− 1)).470

The entire history is denoted by HB = (H1,H2, . . . ,HB).471

By slight abuse of notation, we interchangeably write472

Hb = ((Xb,1,1, Xb,1,2, . . . , Xb,1,Nb,1
), (Xb,2,1, Xb,2,2, . . . , Xb,2,Nb,2

),

. . . , (Xb,K,1, Xb,K,2, . . . , Xb,K,Nb,K
)),

where Xb,k,n is the reward of the n-th draw of arm k in the b-th batch and Nb,k is the number473

of draws of arm k in the b-th batch.474

We adopt the formulation of the random rewards such that every Xb,k,m, the m-th reward475

of arm k in the b-th batch, is randomly generated before the game begins, and if an arm is476

drawn then this reward is revealed to the player. Then Yb,k,m is well-defined even if arm k is477

not drawn m times in the b-th batch.478

14

Fix an arbitrary ϵ > 0. We define sets of “typical” rewards under QB : we write Tϵ(QB) to479

denote the event such that rewards (a part of which might be unrevealed as noted above)480

satisfy481

K∑
k=1

∣∣∣∣∣
(
nb,kD(Qb,k∥Pk)−

nb,k∑
m=1

log
dQb,k

dPk
(Xb,k,m)

)∣∣∣∣∣ ≤ ϵT/B (10)

for any b ∈ [B] and nb = (nb,1, nb,2, . . . , nb,K) such that
∑

k∈[K] nb,k = tb+1 − tb. By the482

strong law of large numbers, limT→∞ QB [T B
ϵ (QB)] = 1, where QB [·] denotes the probability483

under which Xk(t) follows distribution Qb,k for t ∈ {tb, tb + 1, . . . , tb+1 − 1}.484

We define rB = rB(HB) = (r1, r2, . . . , rB) for rb = nb/(tb+1 − tb), where nb =485

(nb,1, nb,2, . . . , nb,K). In other words, rb is the fractions of arm-draws in the b-th batch486

under history Hb.487

Let RT,B ⊂ (∆K)B be the set of all possible rB(HB). Since nb,k ∈ {0, 1, . . . , tb+1 − tb} and488

tb+1 − tb ≤ T/B + 1, we see that489

|RT,B | ≤ (T/B + 2)KB ,

which is polynomial in T .490

Consider an arbitrary algorithm π and define the “typical” allocation rb(Qb;π, ϵ) and decision491

J(QB ;π, ϵ) of the algorithm for distributions Qb = (Q1,Q2, . . . ,Qb) as492

r1(Q
1;π, ϵ) = argmax

r∈RT,1

Q1
[
r1(H1) = r

∣∣Tϵ(QB)
]
,

rb(Q
b;π, ϵ) = argmax

r∈RT,b

Qb
[
rb(Hb) = r

∣∣rb−1(Hb−1) = rb−1(Qb−1;π, ϵ), Tϵ(QB)
]
,

b = 2, 3, . . . , B,

J(QB ;π, ϵ) = argmax
i∈[K]

QB
[
J(T) = i

∣∣∣rB(HB) = rB(QB ;π, ϵ), Tϵ(QB)
]
.

Then we have493

QB
[
rB(HB) = rB(QB ;π, ϵ)

∣∣∣Tϵ(QB)
]
≥ 1

|RT,B |
, (11)

QB
[
J(T) = J(QB ;π, ϵ)

∣∣∣rB(HB) = rB(QB ;π, ϵ), Tϵ(QB)
]
≥ 1

K
. (12)

Lemma 9. Let ϵ > 0 and algorithm π be arbitrary. Then, for any P ,QB be such that494

J(QB ;π, ϵ) ̸= I∗(P) it holds that495

1

T
logP [J(T) /∈ I∗(P)] ≥ − 1

B

B∑
b=1

K∑
k=1

rb,k(Q
b;π, ϵ)D(Qb,k∥Pk)− ϵ− δP ,QB ,ϵ(T)

for a function δP ,QB ,ϵ(T) satisfying limT→∞ δP ,QB ,ϵ(T) = 0.496

Proof. For arbitrary QB we obtain by a standard argument of a change of measures that497

P [J(T) /∈ I∗(P)]

≥ P [Tϵ(QB), rB(HB) = rB(QB ;π, ϵ), J(T) = J(QB ;π, ϵ)]

= P [Tϵ(QB), rB(HB) = rB(QB ;π, ϵ)]

× P [J(T) = J(QB ;π, ϵ) | HB ∈ Tϵ(QB), rB(HB) = rB(QB ;π, ϵ)]

= P [Tϵ(QB), rB(HB) = rB(QB ;π, ϵ)]

×QB [J(T) = J(QB ;π, ϵ) | HB ∈ Tϵ(QB), rB(HB) = rB(QB ;π, ϵ)] (13)

≥ 1

K
P [Tϵ(QB), rB(HB) = rB(QB ;π, ϵ)] (by (12))

15

=
1

K
EP

[
1
[
HB ∈ Tϵ(QB), rB(HB) = rB(QB ;π, ϵ)

]]
=

1

K
EQB

[
1
[
Tϵ(QB), rB(HB) = rB(QB ;π, ϵ)

] B∏
b=1

tb+1−1∏
t=tb

dPI(t)

dQb,I(t)
(X(t))

]

≥ 1

K
EQB

[
1
[
HB ∈ Tϵ(QB), rB(HB) = rB(QB ;π, ϵ)

]]
× exp

(
−T

B

B∑
b=1

K∑
k=1

rb,k(Q
b;π, ϵ)D(Qb,k∥Pk)− ϵT

)
(by (10))

=
1

K
QB

[
Tϵ(QB), rB(HB) = rB(QB ;π, ϵ)

]
× exp

(
−T

B

B∑
b=1

K∑
k=1

rb,k(Q
b;π, ϵ)D(Qb,k∥Pk)− ϵT

)

≥ QB [HB ∈ Tϵ(QB)]

K|RT,B |
exp

(
−T

B

B∑
b=1

K∑
k=1

rb,k(Q
b;π, ϵ)D(Qb,k∥Pk)− ϵT

)
, (by (11))

where (13) holds since J(T) does not depend on the true distribution P given the history498

HB . The proof is completed by letting δP ,QB ,ϵ = log QB [HB∈Tϵ(Q
B)]

K|RT,B | .499

Proof of Theorem 2. For each QB, let rB(QB ; {πT }, ϵ), J(QB ; {πT }, ϵ) be such that there500

exists a subsequence {Tn}n ⊂ N satisfying501

lim
n→∞

rB(QB ;πTn , ϵ) = rB(QB ; {πT }, ϵ),

J(QB ;πTn , ϵ) = J(QB ; {πT }, ϵ), ∀n.
Such rB(QB ; {πT }, ϵ) ∈ (∆K)B and J(QB ; {πT }, ϵ) ∈ [K] exist since (∆K)B and [K] are502

compact. By Lemma 9, for any J(QB ; {πT }, ϵ) /∈ I∗(P) we have503

lim inf
T→∞

1

T
log 1/P [J(T) /∈ I∗(P)] ≤ lim inf

n→∞

1

Tn
log 1/P [J(Tn) /∈ I∗(P)]

≤ 1

B

B∑
b=1

K∑
k=1

rb,k(Q
b; {πT }, ϵ)D(Qb,k∥Pk) + ϵ. (14)

By taking the worst case we have504

R({πT }) = inf
P

H(P) lim inf
T→∞

1

T
log 1/P [J(T) /∈ I∗(P)]

≤ inf
P∈PK ,QB∈QKB :J(QB ;{πT },ϵ)/∈I∗(P)

H(P)

B

B∑
b=1

K∑
k=1

rb,k(Q
b; {πT }, ϵ)D(Qb,k∥Pk) + ϵ.

By optimizing {πT } we have505

R({πT }) ≤ sup
{πT }

inf
P∈PK

H(P) lim inf
T→∞

1

T
log 1/P [J(T) /∈ I∗(P)]

= sup
rB(·),J(·)

sup
{πT }:rB(·;{πT },ϵ)=rB(·)

inf
P∈PK

H(P)

B
lim inf
T→∞

1

T
log 1/P [J(T) /∈ I∗(P)]

≤ sup
rB(·),J(·)

sup
{πT }:rB(·;{πT },ϵ)=rB(·)

inf
P∈PK ,QB∈QKB :J(QB)/∈I∗(P)

H(P)

B

B∑
b=1

K∑
k=1

rb,k(Q
b)D(Qb,k∥Pk) + ϵ

(by (14))

≤ sup
rB(·),J(·)

inf
P∈PK ,QB∈QKB :J(QB)/∈I∗(P)

H(P)

B

B∑
b=1

K∑
k=1

rb,k(Q
b)D(Qb,k∥Pk) + ϵ.

We obtain the desired result since ϵ > 0 is arbitrary.506

16

F.2 Proof of Corollary 3507

Proof of Corollary 3. We have508

Rgo
B

:= sup
rB(QB),J(QB)

inf
QB

inf
P :J(QB)/∈I∗(P)

H(P)

B

∑
i∈[K],b∈[B]

rb,iD(Qb,i||Pi)

≤ sup
rB(QB),J(QB)

inf
QB :Q1=Q2=···=QB

inf
P :J(QB)/∈I∗(P)

H(P)

B

∑
i∈[K],b∈[B]

rb,iD(Qb,i||Pi) (inf over a subset).

= sup
rB(Q),J(Q)

inf
Q

inf
P :J(Q)/∈I∗(P)

H(P)
∑
i∈[K]

 1

B

∑
b∈[B]

rb,i

D(Qi||Pi)

(by denoting Q = Q1 = Q2 = . . .QB)

= sup
r(Q),J(Q)

inf
Q

inf
P :J(Q)/∈I∗(P)

H(P)
∑
i∈[K]

riD(Qi||Pi)

(by letting ri = (1/B)
∑
b

rb,i)

= Rgo (by definition).

509

F.3 Additional Lemma510

The following lemma is used to derive the regret bound.511

Lemma 10. Assume that we run Algorithm 2. Then, for any BC ∈ K,K + 1, . . . , B, it512

follows that513 ∑
i,b∈[BC]

rb,iD(Qb,i||Pi) ≥
∑

i,a∈[BC−K]

r∗a,iD(Q′
a,i||Pi) +

∑
i∈[K]

D(Q′
BC−K+1,i||Pi). (15)

Proof of Lemma 10. We use induction over BC = K,K + 1, . . . , B. (i) It is trivial to derive514

Eq. (15) for BC = K. (ii) Assume that Eq. (15) holds for BC . In batch BC+1, the algorithm515

draws arms in accordance with allocation rBC+1 = r∗BC−K+1. We have,516 ∑
i∈[K],b∈[BC+1]

rb,iD(Qb,i||Pi)

≥
∑

i∈[K],a∈[BC−K]

r∗a,iD(Q′
a,i||Pi) +

∑
i∈[K]

D(Q′
BC−K+1,i||Pi) +

∑
i

rBC+1,iD(QBC+1,i||Pi)︸ ︷︷ ︸
Batch BC + 1

(by the assumption of the induction)

=
∑
i

 ∑
a∈[BC−K]

r∗a,iD(Q′
a,i||Pi) + r∗BC−K+1,iD(Q′

BC−K+1,i||Pi)

+
∑
i

(
1− r∗BC−K+1,i

)
D(Q′

BC−K+1,i||Pi)

+
∑
i

rBC+1,iD(QBC+1,i||Pi)

=
∑
i

 ∑
a∈[BC−K]

r∗a,iD(Q′
a,i||Pi) + r∗BC−K+1,iD(Q′

BC−K+1,i||Pi)

+
∑
i

(1− rBC+1,i)D(Q′
BC−K+1,i||Pi)

17

+
∑
i

rBC+1,iD(QBC+1,i||Pi)

(by definition)

=
∑
i

 ∑
a∈[BC−K]

r∗a,iD(Q′
a,i||Pi) + r∗BC−K+1,iD(Q′

BC−K+1,i||Pi)

+
∑
i

D(Q′
BC−K+2,i||Pi)

(by Jensen’s inequality and Q′
BC−K+2,i = rBC+1,iQBC+1,i + (1− rBC+1,i)Q

′
BC−K+1,i)

=
∑
i

∑
a∈[BC−K+1]

r∗a,iD(Q′
a,i||Pi) +

∑
i

D(Q′
BC−K+2,i||Pi).

517

F.4 Proof of Lemma 4518

Proof of Lemma 4.∑
i,b∈[B+K−1]

rb,iD(Qb,i||Pi) ≥
∑

i,b∈[B−1]

r∗b,iD(Q′
b,i||Pi) +

∑
i

D(Q′
B,i||Pi). (by (15))

≥
∑

i,b∈[B]

r∗b,iD(Q′
b,i||Pi)

≥
B(Rgo

B − ϵ)

H(P)
(by definition of ϵ-optimal solution).

519

F.5 Proof of Theorem 5520

Proof of Theorem 5, Bernoulli rewards. Since the reward is binary, the possible values that521

Qb,i take lies in a finite set522

V =

{
l

m
: l ∈ N,m ∈ N+

}
,

where it is easy to prove |V| ≤ (T/(B +K − 1) + 2)2 ≤ (T/B + 2)2. We have523

P[J(T) /∈ I∗(P)] =
∑

V1,...,VB∈VK

P

[
J(T) /∈ I∗(P),

⋂
b

{Qb = Vb}

]

=
∑

V1,...,VB∈VK :J∗(V1,...,VB)/∈I∗(P)

P

[⋂
b

{Qb = Vb}

]
.

By using the Chernoff bound, we have524

P

Qb,i = Vb,i

∣∣∣∣ ⋂
b′∈[b−1]

{Qb′ = Vb′}

 ≤ e−
T ′

B+K−1 rb,iD(Vb,i||Pi), (16)

and thus525

P

[⋂
b

{Qb = Vb}

]

=
∏
b

P

[
Qb = Vb

∣∣∣∣ b−1⋂
b′=1

{Qb′ = Vb′}

]

18

≤
∏
b

e−
T ′

B+K−1

∑
i rb,iD(Vb,i||Pi) (by Eq. (16))

= e−
T ′

B+K−1

∑
b,i rb,iD(Vb,i||Pi). (17)

Furthermore,526

P

[⋂
b

{Qb = Vb}

]

= P

⋂
b

{Qb = Vb} ,
∑

i,b∈[B+K−1]

rb,iD(Qb,i||Pi) ≥
B(Rgo

B − ϵ)

H(P)

(by Lemma 4).

= P

[⋂
b

{Qb = Vb}

]
P

 ∑
i,b∈[B+K−1]

rb,iD(Qb,i||Pi) ≥
B(Rgo

B − ϵ)

H(P)

∣∣∣∣⋂
b

{Qb = Vb}

= P

[⋂
b

{Qb = Vb}

]
P

 ∑
i,b∈[B+K−1]

rb,iD(Vb,i||Pi) ≥
B(Rgo

B − ϵ)

H(P)

= P

[⋂
b

{Qb = Vb}

]
E

1
 ∑
i,b∈[B+K−1]

rb,iD(Vb,i||Pi) ≥
B(Rgo

B − ϵ)

H(P)

≤ e−

T ′
B+K−1

∑
b,i rb,iD(Vb,i||Pi)E

1
 ∑
i,b∈[B+K−1]

rb,iD(Vb,i||Pi) ≥
B(Rgo

B − ϵ)

H(P)

(by Eq. (17))

= E

e− T ′
B+K−1

∑
b,i rb,iD(Vb,i||Pi)1

 ∑
i,b∈[B+K−1]

rb,iD(Vb,i||Pi) ≥
B(Rgo

B − ϵ)

H(P)

≤ E

[
e−

T ′
B+K−1

B(R
go
B

−ϵ)

H(P)

]
= e−

T ′
B+K−1

B(R
go
B

−ϵ)

H(P) . (18)

Therefore, we have527

P[J(T) /∈ I∗(P)]

≤
∑

V1,...,VB∈VK

e−
B

B+K−1

(R
go
B

−ϵ)T ′

H(P)

(by Eq. (18))

≤ (T/B + 2)2KBe−
B

B+K−1

(R
go
B

−ϵ)T ′

H(P) .

Here, log((T/B + 2)2KB) = o(T) to T when we consider K,B as constants.528

529

Proof of Theorem 5, Normal rewards. Let530

B =
⋃
i,b

{|Qb,i| ≥ T} .

Then, it is easy to see531

P[B] = T 2KBO(e−T 2/2),

19

which is negligible because log(1/P[B])/T diverges.532

The PoE is bounded as533

P[J(T) /∈ I∗(P)] = P [J(T) /∈ I∗(P),Bc] + P[B]

We have,534

P [J(T) /∈ I∗(P),Bc]

=

∫ T

−T

· · ·
∫ T

−T

1[J(T) /∈ I∗(P)]p(QB |QB−1 . . .Q1)dQB . . . p(QB |QB−1 . . .Q1)dQb . . . p(Q1)dQ1.

(19)
Here,535

p(QB |QB−1 . . .Q1) =
∏

i∈[K]

nb,i√
2π

exp

(
−nb,i(Qb,i − Pi)

2

2

)
=
∏

i∈[K]

nb,i√
2π

exp (−nb,iD(Qb,i||Pi))

≤
∏

i∈[K]

T exp (−nb,iD(Qb,i||Pi)) .

Finally, we have536

(19) ≤ TBK

∫ T

−T

· · ·
∫ T

−T

1[J(T) /∈ I∗(P)]
∏

b∈[B]

∏
i∈[K]

exp (−nb,iD(Qb,i||Pi)) dQB . . . dQ1

≤ TBK

∫ T

−T

· · ·
∫ T

−T

1[J(T) /∈ I∗(P)]
∏

b∈[B]

∏
i∈[K]

exp

(
− T ′r(b,i)

B +K − 1
D(Qb,i||Pi)

)
dQB . . . dQ1

≤ TBK

∫ T

−T

· · ·
∫ T

−T

1[J(T) /∈ I∗(P)] exp

(
− B

B +K − 1

(Rgo
B − ϵ)T ′

H(P)

)
dQB . . . dQ1 (by Lemma 4)

≤ TBK

∫ T

−T

· · ·
∫ T

−T

exp

(
− B

B +K − 1

(Rgo
B − ϵ)T ′

H(P)

)
dQB . . . dQ1

≤ TBK(2T)BK exp

(
− B

B +K − 1

(Rgo
B − ϵ)T ′

H(P)

)
.

537

F.6 Proof of Theorem 7538

Proof of Theorem 7. We first show that the limit539

Rgo
∞ = lim

B→∞
Rgo

B

exists. Namely, for any η > 0 there exists B0 ∈ N such that for any B1 > B0 we have540

|Rgo
B0
−Rgo

B1
| ≤ η.

Theorem 5 implies that Algorithm 2 with B = B0 and ϵ = η/2 satisfies9541

lim inf
T→∞

log(1/P[J(T) /∈ I∗(P)])

T
≥ B0

B0 +K − 1

Rgo
B0
− η/2

H(P)
,

9Strictly speaking, Algorithm 2 depends on T , and we take sequence of the algorithm
(πDOT,T)T=1,2,....

20

and thus542

infH(P) lim inf
T→∞

log(1/P[J(T) /∈ I∗(P)])

T
≥ B0

B0 +K − 1

(
Rgo

B0
− η

2

)
. (20)

Moreover, Theorem 2 implies that any algorithm satisfies543

infH(P) lim sup
T→∞

log(1/P[J(T) /∈ I∗(P)])

T
≤ Rgo

B1
. (21)

Combining Eq. (20) and Eq. (21), we have544

B0

B0 +K − 1

(
Rgo

B0
− η/2

)
≤ Rgo

B1

and thus545

Rgo
B0
≤ Rgo

B1
+

η

2
+

K − 1

B0 +K − 1
Rgo

B0

≤ Rgo
B1

+
η

2
+

K − 1

B0 +K − 1
Rgo (by Corollary 3)

≤ Rgo
B1

+
η

2
+

η

2
(by K ≥ 2, by taking B0 ≥ 2KRgo/η)

≤ Rgo
B1

+ η.

By swapping B0, B1, it is easy to show that546

Rgo
B1
≤ Rgo

B0
+ η,

and thus547

|Rgo
B0
−Rgo

B1
| ≤ η,

which implies that the limit exists. It is easy to confirm that the performance of Algorithm 2548

with any B ≥ 2KRgo
1 /η and ϵ = η/2 satisfies Eq. (6).549

21

