
A Metrics and Quasimetrics622

A metric space (M, d) is composed of a set M and a metric d : M⇥M 7 �! R+[{1} that compares623

two points in that set. Here R+ is the set of non-negative real numbers.624

Definition 2. A metric d : M⇥M 7 �! R+ [{1} compares two points in set M and satisfies the625

following axioms 8m1,m2,m3 2 M:626

• d(m1,m2) = 0 () m1 = m2 (identity of indiscernibles)627

• d(m1,m2) = d(m2,m1) (symmetry)628

• d(m1,m2) d(m1,m3) + d(m3,m2) (triangle inequality)629

A variation on metrics that is important to this paper is quasimetrics.630

Definition 3. A quasimetric [61] is a function that satisfies all the properties of a metric, with the631

exception of symmetry d(m1,m2) 6= d(m2,m1).632

As an example, consider an MDP where the actions and transition dynamics allow an agent to navigate633

from any state to any other state. Let T (s2|⇡, s1) be the random variable for the first time-step that634

state s2 is encountered by the agent after starting in state s1 and following policy ⇡. The time-step635

metric d
⇡
T for this MDP can then be defined as636

d
⇡
T (s1, s2) : =E [T (s2|⇡, s1)]

d
⇡
T is a quasimetric, since the action space and transition function need not be symmetric, meaning the637

expected minimum time needed to go from s1 to s2 need not be the same as the expected minimum638

time needed to from s2 to s1. The diameter of an MDP [36, 39] is generally calculated by taking639

the maximum time-step distance between over all pairs of states in the MDP either under a random640

policy or a policy that travels from any state to any other state in as few steps as possible.641

B Optimal Transport and Wasserstein-1 Distance642

The theory of optimal transport [69, 13] considers the question of how much work must be done to643

transport one distribution to another optimally. More concretely, suppose we have a metric space644

(M, d) where M is a set and d is a metric on M. See the definitions of metrics and quasimetrics645

in Appendix A. For two distributions µ and ⌫ with finite moments on the set M, the Wasserstein-p646

distance is denoted by:647

Wp(µ, ⌫) : = inf
⇣2Z(µ,⌫)

E(X,Y)⇠⇣ [d(X,Y)p]1/p (10)

where Z is the space of all possible couplings between µ and ⌫. Put another way, Z is the space of648

all possible distributions ⇣ 2 �(M ⇥M) whose marginals are µ and ⌫ respectively. Finding this649

optimal coupling tells us what is the least amount of work, as measured by d, that needs to be done to650

convert µ to ⌫. This Wasserstein-p distance can then be used as a cost function (negative reward) by651

an RL agent to match a given target distribution [70, 17].652

Finding the ideal coupling (meaning finding the optimal transport plan from one distribution to the653

other) which gives us an accurate distance is generally considered intractable. However, if what we654

need is an accurate estimate of the Wasserstein distance and not the optimal transport plan (as is the655

case when we mean to use this distance as part of our intrinsic reward) we can turn our attention656

to the dual form of this distance. The Kantorovich-Rubinstein duality [69] for the Wasserstein-1657

distance on a ground metric d is of particular interest and gives us the following equality:658

W1(µ, ⌫) = sup
Lip(f)1

Ey⇠⌫ [f(y)]� Ex⇠µ [f(x)] (11)

15

where the supremum is over all 1-Lipschitz functions f : M 7 �! R in the metric space, and the659

Lipschitz constant of a function f is defined as:660

Lip(f) : = sup

⇢
|f(y)� f(x)|

d(x, y)
8(x, y) 2 M2

, x 6= y

�
(12)

That is, the Lipschitz condition of this function f (called the Kantorovich potential function) is661

measured according to the metric d. Recently, Jevtić [37] has shown that this dual formulation where662

the constraint on the potential function is a smoothness constraint extends to quasimetric spaces as663

well. If defined over a quasimetric space, the Wasserstein distance also has properties of a quasimetric664

(specifically, the distances are not necessarily symmetric).665

If the given metric space is a Euclidean space (d(x, y) = ky � xk2), the Lipschitz bound in Equation666

2 can be computed locally as a uniform bound on the gradient of f .667

W1(µ, ⌫) = sup
krfk1

Ey⇠⌫ [f(y)]� Ex⇠µ [f(x)] (13)

meaning that f is the solution to an optimization objective with the restriction that krf(x)k 1 for668

all x 2 M. This strong bound on the dual in Euclidean space is the one that has been used most in669

recent implementations of the Wasserstein generative adversarial network [3, 29] to regularize the670

learning of the discriminator function. Such regularization has been found to be effective for stability671

in other adversarial learning approaches such as adversarial imitation learning [25].672

Practically, the Kantorovich potential function f can be approximated using samples from the two673

distributions µ and ⌫, regularization of the potential function to ensure smoothness, and an expressive674

function approximator such as a neural network. A more in depth treatment of the Kantorovich675

relaxation and the Kantorovich-Rubinstein duality, as well as their application in metric and Euclidean676

spaces using the Wasserstein-1 distance we lay out above, is provided by Peyré and Cuturi [53].677

Now consider the problem of goal-conditioned reinforcement learning. Here the target distribution ⌫678

is the goal-conditioned target distribution ⇢g which is a Dirac at the given goal state. Similarly, the679

distribution to be transported µ is the agent’s goal-conditioned state distribution ⇢⇡ .680

The Wasserstein-1 distance of an agent executing policy ⇡ to the goal sg can be expressed in a fairly681

straightforward manner as:682

W1(⇢⇡, ⇢g) =
X

s2S

⇢⇡(s|sg)d(s, sg) (14)

The above is a simplification of Equation 1, where p = 1 and the joint distribution is easy to specify683

since the target distribution ⇢g is a Dirac distribution.684

C Lipschitz constant of Potential function685

For a given goal sg and all states s0 2 S, recall that function f is L-Lipschitz if it follows the686

Lipschitz condition as follows.687

f(sg)� f(s0) Ld
⇡
T (s0, sg) 8s0 2 S (15)

Proposition 4. If transitions from the agent policy ⇡ are guaranteed to arrive at the goal in finite688

time and f is L-bounded in expected transitions, i.e.,689

sup
s2S

E
s0⇠⇡,P

[f(s0)� f(s)] L,

then f is L-Lipschitz.690

Proof. Since f(sg)�f(s0) is a scalar quantity, we may write f(sg)�f(s0) = E⇡,P [f(sg)�f(s0)].691

Using this fact and that P (T (s0) < 1) = 1 where T (s0) = T
⇡(sg|⇡, s0) for notation simplicity,692

16

the LHS of the expression above becomes a telescopic sum693

f(sg)� f(s0) = E
⇡,P

[f(sg)� f(s0)]

= E
⇡,P

2

4
T (s0)�1X

t=0

f(st+1)� f(st)

3

5 .

Now let us assume that for all transitions (s, a, s0), E[f(s0)� f(s)] L. Then694

E
⇡,P

2

4
T (s0)�1X

t=0

f(st+1)� f(st)

3

5 = E
T (s0)

2

4 E
⇡,P

2

4
T (s0)�1X

t=0

f(st+1)� f(st)
���T (s0)

3

5

3

5

 E
T (s0)

2

4
T (s0)�1X

t=0

L

3

5

= L E
T (s0)

[T (s0)]

= Ld
⇡
T (s0, sg),

showing that f(sg)� f(s0) Ld
⇡
T (s0, sg).695

D Proofs of Claims696

The Bellman optimality condition gives us the following optimal distance to goal:697

d
⌥
T (s, sg) =

⇢
0 if s = sg

1 + mina2A

P
s02S P (s0|s, a, sg)d⌥T (s0, sg) otherwise

(16)

Proposition 1. A lower bound on the value of any state under a policy ⇡ can be expressed in terms698

of the time-step distance from that state to the goal: V (s0|sg) � �
d⇡
T (s0,sg).699

Proof.

V
⇡(s|sg) = E

h
�
T (sg|⇡,s)

i
� �

d⇡
T (s,sg) 8 s 2 S

where the inequality follows as a consequence of Jensen’s inequality and the convex nature of the700

value function.701

Proposition 2. If the transition dynamics are deterministic, the policy that maximizes expected return702

is the policy that minimizes the time-step metric (⇡
⇤ = ⇡

⌥
).703

Proof. Consider the value of a state s given goal sg . If the transitions are deterministic and the agent704

policy ⇡ is deterministic (as is the case for the optimal policy), then the time to reach the goal satisfies705

Var(T (sg|⇡, s)) = 0, implying that �Jensen vanishes and therefore706

V
⇡(s|sg) = �

d⇡
T (s,sg).

Since � 2 [0, 1), V ⇡ is monotonically decreasing with d
⇡
T707

argmax
⇡

V
⇡(s|sg) = argmin

⇡
d
⇡
T (s, sg) 8 s 2 S

That is, in the deterministic transition dynamics scenario, ⇡⇤ = ⇡
⌥.708

Proposition 3. For a given policy ⇡, the Wasserstein distance of the state visitation measure of that709

policy from the goal state distribution ⇢g under the ground metric d
⇡
T can be written as710

W
⇡
1 (⇢⇡, ⇢g) = E

s0⇠⇢0

h(d⇡T (s0, sg)) +

�

1� �
(�⇡

Jensen
(s0)� 1)

�
(6)

where h is an increasing function of d
⇡
T .711

17

Proof. The first step of the proof is to obtain an analytical expression for the the expected distance to712

the goal after t steps as a function of the expected distance at t = 0. To reduce the notation burden,713

denote T (s0) = T (sg|⇡, s0) and let st(s0) be the state after t steps conditional on some starting state714

s0 where actions are taken according to ⇡. We have excluded sg and ⇡ from the notation since they715

are fixed for the purpose of this proposition. Using the law of total expectation we have that for every716

initial s0717

Est [d(st(s0), sg)] = ET (s0)[Est [d(st(s0), sg) | T (s0)]] = ET (s0)[max(T (s0)� t, 0)],

Now, by expanding the definition of ⇢⇡(s | sg) in equation 5, exchanging the order of summation,718

and using the previous equation we may write719

W
⇡
1 (⇢⇡, ⇢g) =

X

s2S

1X

t=0

(1� �)�tEs0 [P (st = s | ⇡, sg)]d⇡T (s, sg)

= Es0

"
(1� �)

1X

t=0

�
tEst [d(st(s0), sg) | s0]

#

= Es0

"
ET (s0)

"
(1� �)

1X

t=0

�
t max(T (s0)� t, 0)

���s0

##

Standard but tedious algebraic manipulations given in Lemma 1 in the Appendix show that720

1X

t=0

(1� �)�t max(T (s0)� t, 0) = T (s0)�
�

1� �
(1� �

T (s0)).

Combining the two identities above we arrive at721

W
⇡
1 (⇢⇡, ⇢g) = Es0

ET (s0)

T (s0)�

�

1� �
(1� �

T (s0))
���s0

��

= Es0

d(s0, sg)�

�

1� �
(1� E[�T (s0) | s0])

�

= Es0

d(s0, sg) +

�

1� �
�
d(s0,sg) � �

1� �
(1� E[�T (s0) | s0] + �

d(s0,sg))

�

= Es0

d(s0, sg) +

�

1� �
�
d(s0,sg) +

�

1� �
(�⇡

Jensen(s0)� 1)

�
.

(17)

To finalize the proof, we only need to show that the function h(µ) = µ+ �
1�� �

µ is monotonically722

increasing for every � 2 [0, 1). This is a standard calculus exercise that we show in Lemma 2 in723

Appendix E.724

Theorem 1. If the transition dynamics are deterministic, the policy that minimizes the Wasserstein725

distance over the time-step metrics in a goal-conditioned MDP (see equation 5) is the optimal policy.726

Proof. Proposition 2 shows that the Jensen gap vanishes for the optimal policy of an MDP with727

deterministic transitions and that it minimizes the expected distance from start for all initial states.728

Proposition 3, on the other hand, implies that when the Jensen gap vanishes, the Wasserstein distance729

is monotonically increasing in the expected distance from the start. Together, the two propositions730

show that ⇡⇤ minimizes the Wasserstein distance.731

E Auxiliary results for Proposition 3732

Lemma 1. Let T be a positive integer. Then733

1X

t=0

(1� �)�t max(T � t, 0) = T � �

1� �
(1� �

T).

18

Algorithm 1: AIM + HER

Input: Agent policy ⇡✓, discriminator f�, environment env,
number of Epochs N , number of time-steps per epoch K,
policy update period k, discriminator update period m, episode length T ,
replay buffer (for HER), smaller replay buffer (for discriminator)

1 Initialize discriminator parameters �;
2 Initialize policy parameters ✓;
3 for n = 0, 1, . . . , N � 1 do
4 t = 0;
5 goal_reached = True;
6 while t < K do
7 if goal_reached or episode_over then
8 Sample goal sg ⇠ �(G);
9 Sample start state s ⇠ ⇢0(S);

10 goal_reached = False;
11 episode_over = False;
12 tstart = K;
13 end
14 Sample action a ⇠ ⇡✓(·|s, sg);
15 s

0 = env.step(a);
16 if s0 = sg then
17 goal_reached = True;
18 end

// end episode if goal not reached in T steps
19 if t� tstart = T then
20 episode_over = True;
21 end
22 Add (s, a, s0, sg, goal_reached) to replay buffer and smaller replay buffer;
23 if goal_reached or episode_over then
24 Add hindsight goals to both buffers;
25 end

// Update policy parameters ✓ every k steps
26 if t%k = 0 then
27 Sample tuples (s, a, s0, sg, goal_reached) from replay buffer;
28 Get intrinsic reward (Equation 9);
29 Update policy parameters ✓ using any off-policy learning algorithm;
30 end

// Update discriminator parameters � every m steps
31 if t%m = 0 then
32 Sample tuples (s, a, s0, sg, goal_reached) from smaller replay buffer;
33 Update discriminator parameters � using Equation 8;
34 end
35 t = t+ 1;
36 end
37 Evaluate agent policy;
38 end

Proof. Direct computation gives734

(1� �)
1X

t=0

�
t max(T � t, 0) = (1� �)

T�1X

t=0

�
t(T � t)

= (1� �)T
T�1X

t=0

�
t � (1� �)

T�1X

t=0

t�
t

19

We will now simplify the two terms of the last expression. For the first one, have735

(1� �)T
T�1X

t=0

�
t = (1� �)T

1� �
T

1� �
= T � T�

T
.

For the second one, the computations are a bit more involved736

(1� �)
T�1X

t=0

t�
t = (1� �)�

T�1X

t=1

t�
t�1

= (1� �)
T�1X

t=1

�
d

d�
�
t

= �(1� �)
d

d�

T�1X

t=0

�
t

= �(1� �)
d

d�

1� �
T

1� �

=
�

(1� �)

�
�T�

T�1(1� �) + (1� �
T)

�
= �T�

T +
�

(1� �)
(1� �

T).

When combining the two simplified expressions the terms with T�
T will cancel out, yielding the737

desired expression.738

Lemma 2. The function h�(µ) = µ+ �
1�� �

µ
is monotonically increasing for every � 2 [0, 1).739

Proof. We must show that d
dµh�(µ) > 0 for every � 2 [0, 1) and every µ > 0. Computing the740

derivative directly we obtain741

d

dµ
h�(µ) = 1 +

log(�)�µ+1

1� �
.

Thus, it will suffice to show that the second term above is greater than -1. For this purpose, first note742

that log(�)�µ+1
> log(�) since � < 1. Now, we use the fact that log(�) < 1� � for � < 1. This743

can be verified noting that 1� � is the tangent line to the concave curve log(�) and the curves meet744

at � = 1. And therefore log(�)/(1� �) > �1. Putting these observation together,745

d

dµ
h�(µ) = 1 +

log(�)�µ+1

1� �
> 1 +

log(�)

1� �
> 1� 1 = 0,

concluding the proof.746

F Grid World Experiments747

Basic experiment The environment is a 10⇥ 10 grid with 4 discrete actions that take the agent in748

the 4 cardinal directions unless blocked by a wall or the edge of the grid. The agent policy is learned749

using maximum entropy Q-learning [30], with an entropy coefficient of 0.1 and a discount factor of750

� = 0.99. We do not use hindsight goals for this experiment, and use a single buffer with size 5000751

for both the policy as well as the discriminator training. The results are discussed in the main text.752

The compute used to conduct these experiments was a personal laptop with an Intel i7 Processor and753

16 GB of RAM.754

Additional experiments We conducted variations form the basic experiment in the grid world to755

show that AIM and its novel regularization can learn a reward function which guides the agent to the756

goal even in the presence of stochastic transitions as well as transitions where the state features vary757

wildly from one step to the next.758

First, we evaluate AIM’s ability to learn in the presence of stochastic and asymmetric transitions in a759

windy version (Figure 4a) of the above grid world. Transitions in the last six columns of the grid are760

affected by a wind blowing from the top. Actions that try to move upwards only succeed 60% of the761

20

(a) Grid world with wind
affecting transitions in last 6

columns

(b) Learned Reward (50 training
iterations)

(c) Agent state distribution
learning with AIM reward (50

training iterations)

Figure 4: Windy grid world (Figure 4a) experiments. The columns with arrows at the top and bottom
have stochastic and asymmetric transitions induced by wind blowing from the top. Learned reward
function (Figure 4b). Reward at each state of the grid world after training for 50 iterations with AIM.
Hollow red circle indicates the goal state. White lines indicate the walls the agent cannot transition
through. The agent’s state visitation (Figure 4c): The hollow blue circle indicates agent’s start state.
The hollow red circle is the goal. Blue bubbles indicate relative time the agent’s policy causes it to

spend in respective states. Black lines indicate walls.

time, and actions attempting to move sideways cause a transition diagonally downwards 40% of the762

time. Movements downwards are unaffected. The rest of the experiment is carried out in the same763

way as above, but with 128 hidden units in the hidden layer of the agent’s Q function approximator764

(the reward function architecture is unchanged from the previous experiment). In Figure 4 we see765

that AIM learns a reward function that is still useful and interpretable, and leads to a policy that can766

confidently reach the goal, regardless of these stochastic and asymmetric transitions. Notice the effect767

of the stochastic transitions in the increased visitation in the sub-optimal states in the bottom two768

rows of column number 4.769

The next experiment tests what happens when the transition function causes the agent to jump between770

states where the state features vary sharply. As an example consider a toroidal grid world, where771

if an agent steps off one side of the grid it is transported to the other side. The distance function772

here should be smooth across such transitions, but might be hampered by the sharp change in input773

features. In Figure 5 we see show the policy and reward for a 10⇥ 10 toroidal grid world with start774

state at (2, 2) and goal at (7, 7). Transitions are deterministic but wrap around the edges of the grid775

as described above: a down action in row 0 will transport the agent to the same column but row 9.776

The start and the goal state are set up so that there are multiple optimal paths to the goal. The entropy777

maximizing soft Q-learning algorithm should take these paths with almost equal probability. From778

Figure 5 it is evident that AIM learns a reward function that is smooth across the actual transitions in779

the environment and allows the agent to learn a Q-function that places near equal mass on multiple780

trajectories.781

G Statistical Analysis of the Results on Fetch Robot Tasks782

To compare the performance of each method with statistical rigor, we used a repeated measures783

ANOVA design for binary observation where an observation is successful if an agent reaches the goal784

within an episode. We then conducted a Tukey test to compare the effects of each method, i.e., the785

estimated odds of reaching the goal given the algorithm. The goal of the statistical analysis presented786

here is twofold787

1. Separate the uncertainty on the performance of each method from the variation due to788

random seeds.789

2. Adjust the probability of making a false discovery due to multiple comparisons. This extra790

step is necessary to avoid detecting a large fraction of falsely “significant" differences since791

typical tests are designed to control the error rate of only one experiment.792

21

The data for statistical analysis comes from Nepisodes = 100 evaluation episodes per each one of793

Nseeds = 6 seeds. For all environments but FetchReach, these data is collected after 1 million794

environment interactions; and for FetchReach it is taken after 2000 interactions.795

The repeated measures ANOVA design is formulated as a mixed effects generalized linear model and796

fitted separately for each one of the four environments797

yijk
iid⇠ Bernoulli(pij), k 2 {1, . . . , Nepisodes}

logit(pij) = rseedi + �algorithmj
i 2 {1, . . . , Nseeds}, j 2 {1, . . . , Nalgorithms}

rseedi
iid⇠⇠ Normal(0,�2)

The variation due to the seed effects is measured by �
2, whereas the uncertainty about the odds of798

reaching the goal using each algorithm is measured by the standard errors of the coefficients �algorithmj
.799

The Tukey test evaluates all null hypotheses H0:�algorithmj
= �algorithmj0

for all combinations of j, j0.800

To adjust for multiple comparisons each Tukey tests uses the Holm method. Since we are also doing801

a Tukey test for each environment, we further apply a Bonferroni adjustment with a factor of four.802

These types of adjustments are fairly common for dealing with multiple comparison in the literature803

of experimental design; the interested reader may consult [45].804

The results, shown in Table 1, signal strong statistical evidence of the improvements from using805

the AIM learned rewards. In three of the four environments AIM and AIM+ R have similar odds of806

reaching the goal as the dense shaped reward (H0 is not rejected,) and in all four environments AIM807

and AIM+ R have statistically significant higher odds of reaching the goal than the sparse reward (H0808

is rejected and � is higher.)809

Contrast Slide Push PickAndPlace Reach

�AIM+R � �HER+dense 0.34 (0.14) -1.74 (0.77) -0.10 (0.45) *-3.43 (0.34)
�AIM � �HER+dense 0.21 (0.14) -2.19 (0.75) *-1.50 (0.37) *-5.01 (0.35)

�AIM+R � �HER+sparse *0.69 (0.13) *5.32 (0.35) *4.71 (0.33) *4.75 (0.25)
�AIM � �HER+sparse *0.57 (0.13) *4.86 (0.30) *3.31 (0.19) *3.17 (0.24)

Table 1: Results of the Tukey test on the evaluation of Fetch tasks. The table entries are log odds
ratios with standard deviations shown in parentheses. Positive values mean that AIM or AIM+R
perform better than the method with negative sign in the contrast and viceversa. Asterisks mark
statistical significance at 95%. If there is no asterisk, then H0 is not rejected in which case the

differences could be due to random chance.

(a) Reward function with AIM (b) Policy distribution under
AIM

(c) Reward function estimated with
WGAN loss

Figure 5: The reward function (Figure 5a) learned with AIM and subsequent policy distribution
(Figure 5b) in a toroidal grid world, where an agent can transition from one edge of the grid across to
the other. The hollow blue circle denotes the start state and the hollow red circle is the goal state. The
reward function respects the sharp transitions from one end of the grid to the other. Conversely, if the

reward function is learned using the WGAN objective [29] (Figure 5c), it does not respect the
environment dynamics.

22

H Details of Experiments on Fetch Robot810

The Fetch robot domain in OpenAI gym has four tasks available for testing. They are named Reach,811

Push, Slide, and Pick And Place. The Reach task is the simplest, with the goal being the 3-d812

coordinates where the end effector of the robot arm must be moved to. The Push task requires pushing813

an object from its current position on the table to the given target position somewhere else on the814

table. Slide is similar to Push, except the coefficient of friction on the table is reduced (causing815

pushed objects to slide) and the potential targets are over a larger area, meaning that the robot needs816

to learn to hit objects towards the goal with the right amount of force. Finally, Pick And Place is the817

task where the robot actuates it’s gripper, picks up an object from its current position on the table and818

moves it through space to a given target position that could be at some height above the table. The819

goal space for the final three tasks are the required position of the object, and the goal the current820

state represents is the current position of that object.821

Next, we note the hyperparameters used for various baselines as well as our implementation. The822

names of the hyperparameters are as specified in the stable baselines repository and used in the RL823

Zoo [54] codebase which we use for running experiments. Both the stable baselines repository and824

RL Zoo are available under the MIT license. These experiments were run on a compute cluster with825

each experiment assigned an Nvidia Titan V GPU, a single CPU and 12 GB of RAM. Each run of the826

TD3 baseline HER + R or HER + dense required 18 hours to execute, and each run which included827

AIMrequired 24 hours to complete execution.828

TD3 [23], like its predecessor DDPG [43], suffers from the policy saturating to extremes of its829

parameterization. Hausknecht and Stone [32] have suggested various techniques to mitigate such830

saturation. We use a quadratic penalization for actions that exceed 80% of the extreme value at831

either end, which is sufficient to not hurt learning and prevent saturation. Assuming the policy832

network predicts values between �1 and 1 (as is the case when using the tanh activation function),833

the regularization loss is:834

La =
1

N

NX

i=1

[max(|⇡✓(si)|�0.8, 0)]2

where N is the mini-batch size and si is the state for the i
th transition in the batch.835

The other modification made to the stable baselines code is to use the Huber loss instead of the836

squared loss for Q-learning.837

For evaluation, in the Reach domain the agent policy is evaluated for 100 episodes every 2000 steps.838

For the other three domains, the experiment is run for 1 million timesteps, and evaluated at every839

20,000 steps for 100 episodes.840

H.1 TD3 and HER (R + HER)841

Hyperparameter Value
n_sampled_goal 4

goal_selection_strategy future
buffer_size 106

batch_size 256
� (discount factor) 0.95

random_exploration 0.3
target_policy_noise 0.2

learning_rate 1�3

noise_type normal
noise_std 0.2

MLP size of agent policy and Q function [256, 256, 256]
learning_starts 1000

train_freq 10
gradient_steps 10

⌧ (target policy update rate) 0.05

842

23

H.2 Dense reward TD3 and HER (dense + HER)843

Hyperparameter Value
n_sampled_goal 4

goal_selection_strategy future
buffer_size 106

batch_size 256
� (discount factor) 0.95

random_exploration 0.3
target_policy_noise 0.2

learning_rate 1�3

noise_type normal
noise_std 0.2

MLP size of agent policy and Q function [256, 256, 256]
learning_starts 1000

train_freq 100
gradient_steps 200
policy_delay 5

⌧ (target policy update rate) 0.05

844

H.3 TD3 and HER with AIM (AIM + HER) and (AIM + R + HER)845

Hyperparameter Value
n_sampled_goal 4

goal_selection_strategy future
buffer_size 106

batch_size 256
� (discount factor) 0.9

random_exploration 0.3
target_policy_noise 0.2

learning_rate 1�3

noise_type normal
noise_std 0.2

MLP size of agent policy and Q function [256, 256, 256]
learning_starts 1000

train_freq 100
gradient_steps 200
disc_train_freq 100

disc_steps 20
⌧ (target policy update rate) 0.1

846

24

