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A Formal Setup527

In this section, we present the formal definitions of all problems required to state our hardness result528

(Theorem 3.2). We begin with a description of average-case decision problems, of which the CLWE529

decision problem is a special instance [A1].530

A.1 Average-Case Decision Problems531

We introduce the notion of average-case decision problems (or simply binary hypothesis testing532

problems), based on [A2], where we refer the interested reader for more details. In such average-533

case decision problems the statistician receives m samples from either a distribution D or another534

distribution D
0 and needs to decide based on the produced samples whether the generating distribution535

is D or D0
. We assume that the statistician may use any, potentially randomized, algorithm A which is536

a measurable function of the m samples and outputs the Boolean decision {YES,NO} corresponding537

to their prediction of whether D or D0 respectively generated the observed samples. Now, for any538

Boolean-valued algorithm A = Ad examining the samples, we define the advantage of A solving the539

decision problem, as the sequence of positive numbers540
���Px⇠D⌦m [A(x) = YES]� Px⇠D0⌦m [A(x) = YES]

��� .

As mentioned above, we assume that the algorithm A outputs two values “YES” or “NO”. Further-541

more, the output “YES” means that algorithm A has decided that the given samples x comes from542

the distribution D, and “NO” means that A decided that x comes from the alternate distribution D
0.543

Therefore, naturally the advantage corresponds to by how much the algorithm is performing better544

than just deciding with probability 1/2 between the two possibilities.545

Our setup requires two standard adjustments to the setting described above. First, in our setup we546

consider a sequence of distinguishing problems, indexed by a growing (dimension) d 2 N, and for547

every d we receive m = m(d) samples and seek to distinguish between two distributions Dd and D
0
d.548

Now, for any sequence of Boolean-valued algorithms A = Ad examining the samples, we naturally549

define the advantage of A solving the sequence of decision problems, as the sequence of positive550

numbers551 ���Px⇠D⌦m
d

[A(x) = YES]� Px⇠D0⌦m
d

[A(x) = YES]

��� .

As a remark, notice that any such distinguishing algorithm A required to terminate in at most time552

T = T (d), is naturally implying that the algorithm has access to at most m  T samples.553

Now, as mentioned above, we require another adjustment. We assume that the distributions Dd, D
0
d are554

generating m samples in two stages: first by drawing a common structure for all samples, unknown to555

the statistician (also called in the statistics literature as a latent variable), which we call s, and second556

by drawing some additional and independent-per-sample randomness. In CLWE, s corresponds to557

the hidden vector w chosen uniformly at random from the unit sphere and the additional randomness558

per sample comes from the Gaussian random variables xi. Now, to appropriately take into account559

this adjustment, we define the advantage of a sequence of algorithms A = {Ad}d2N solving the560

average-case decision problem of distinguishing two distributions Dd,s and D
0
d,s parametrized by d561

and some latent variable s chosen from some distribution Sd, as562
���Ps⇠Sd,x⇠D⌦m

d,s
[A(x) = YES]� Ps⇠Sd,x⇠D0⌦m

d,s
[A(x) = YES]

��� .

Finally, we say that algorithm A = {Ad}d2N has non-negligible advantage if its advantage is at least563

an inverse polynomial function of d, i.e., a function behaving as ⌦(d�c
) for some constant c > 0.564

A.2 Decision and Phaseless CLWE565

We now give a formal definition of the decision CLWE problem, continuing the discussion from566

Section 3. We also introduce the phaseless-CLWE distribution, which can be seen as the CLWE567

distribution Aw,�,� defined in (5), with the absolute value function applied to the labels (recall that we568

take representatives in [�1/2, 1/2) for the mod 1 operation). The Phaseless-CLWE distribution is, at569

an intuitive level, useful for stating and proving guarantees of our LLL algorithm in the exponentially570

small noise regime for learning the cosine neuron (See Section 4.3 and Appendix D).571
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Definition A.1 (Decision-CLWE). For parameters �, � > 0, the average-case decision problem572

CLWE�,� is to distinguish the following two distributions over Rd⇥ [�1/2, 1/2) with non-negligible573

advantage: (1) the CLWE distribution Aw,�,� , per (5), for some uniformly random unit vector574

w 2 S
d�1 (which is fixed for all samples), or (2) N(0, Id)⇥ U([�1/2, 1/2]).575

Phaseless-CLWE. We define the Phaseless-CLWE distribution on dimension d with frequency �,576

�-bounded adversarial noise, hidden direction w to be the distribution of random samples of the form577

(xi, zi) 2 Rd ⇥ [0, 1/2] where xi
i.i.d.⇠ N(0, Id) and578

zi = ✏i(�hxi, wi+ ⇠i) mod 1 (10)

for some ✏i 2 {�1, 1} such that zi � 0, and bounded noise |⇠i|  �.579

A.3 Worst-Case Lattice Problems580

We begin with a definition of a lattice. A lattice is a discrete additive subgroup of Rd. In this work,581

we assume all lattices are full rank, i.e., their linear span is Rd. For a d-dimensional lattice ⇤, a set582

of linearly independent vectors {b1, . . . , bd} is called a basis of ⇤ if ⇤ is generated by the set, i.e.,583

⇤ = BZd where B = [b1, . . . , bd]. Formally,584

Definition A.2. Given linearly independent b1, . . . , bd 2 Rd, let585

⇤ = ⇤(b1, . . . , bd) =

(
dX

i=1

�ibi : �i 2 Z, i = 1, . . . , d

)
, (11)

which we refer to as the lattice generated by b1, . . . , bd. We also refer to (b1, . . . , bd) as an (ordered)586

basis for the lattice ⇤.587

We now present a worst-case decision problem on lattices called GapSVP. In GapSVP, we are given588

an instance of the form (⇤, t), where ⇤ is a d-dimensional lattice and t 2 R, the goal is to distinguish589

between the case where �1(⇤), the `2-norm of the shortest non-zero vector in ⇤, satisfies �1(⇤) < t590

from the case where �1(⇤) � ↵(d) · t for some “gap” ↵(d) � 1. Given a decision problem, it is591

straightforward to conceive of its search variant. That is, given a d-dimensional lattice ⇤, approximate592

�1(⇤) up to factor ↵(d). Note that the search version, which we call ↵-approximate SVP in the main593

text, is harder than its decision variant, since an algorithm for the search variant immediately yields594

an algorithm for the decision problem. Hence, the worst-case hardness of decision problems implies595

the hardness of their search counterparts. We note that GapSVP is known to be NP-hard for “almost”596

polynomial approximation factors, that is, 2(log d)1�✏

for any constant ✏ > 0, assuming problems in597

NP cannot be solved in quasi-polynomial time [A3, A4]. As mentioned in the introduction of the598

paper, the problem is strongly believed to be computationally hard (even with quantum computation),599

for any polynomial approximation factor ↵(d) [A5].600

Below we present formal definitions of two of the most fundamental lattice problems, GapSVP601

and the Shortest Independent Vectors Problem (SIVP). The SIVP problem, similar to GapSVP, is602

also believed to be computationally hard (even with quantum computation) for any polynomial603

approximation factor ↵(d). Interestingly, the hardness of CLWE can also be based on the worst-case604

hardness of SIVP [A1].605

Definition A.3 (GapSVP). For an approximation factor ↵ = ↵(d), an instance of GapSVP↵ is606

given by an d-dimensional lattice ⇤ and a number t > 0. In YES instances, �1(⇤)  t, whereas in607

NO instances, �1(⇤) > ↵ · t.608

Definition A.4 (SIVP). For an approximation factor ↵ = ↵(d), an instance of SIVP↵ is given by an609

d-dimensional lattice ⇤. The goal is to output a set of d linearly independent lattice vectors of length610

at most ↵ · �d(⇤).611

B Appendix for the Exponential-Time Algorithm: Constant Noise612

We provide full details of the proof of Theorem 4.1, restated as Corollary B.5 at the end of this section.613

Algorithm 1, the recovery algorithm in the main text, is restated as Algorithm 3 here. The goal of614

Algorithm 3 is to use m = poly(d) samples to recover in polynomial-time the hidden direction w 2615
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Algorithm 3: Information-theoretic recovery algorithm for learning cosine neurons (Restated)
Input: Real numbers � = �(d) > 1, � = �(d), and a sampling oracle for the cosine distribution

(3) with frequency �, �-bounded noise, and hidden direction w.
Output: Unit vector ŵ 2 S

d�1 s.t. min{kŵ � wk2, kŵ + wk2} = O(arccos(1� �)/�).

Let ⌧ = arccos(1� �)/(2⇡), ✏ = 2⌧/�, m = 64d log(1/✏), and let C be an ✏-cover of the unit
sphere S

d�1. Draw m samples {(xi, yi)}mi=1 from the cosine distribution (3).
for i = 1 to m do

zi = arccos(yi)/(2⇡)

for v 2 C do
Compute
Tv =

1
m

Pm
i=1 [|�hv, xii � zi mod 1|  3⌧ ] + [|�hv, xii+ zi mod 1|  3⌧ ]

return ŵ = argmaxv2C Tv .

S
d�1, in the `2 sense. More concretely, the goal is to compute an estimator ŵ = ŵ((xi, zi)i=1,...,m)616

for which it holds min{kŵ � wk22, kŵ + wk22} = o(1/�
2
), with probability 1� exp(�⌦(d)).617

We first start with Lemma B.1, which reduces the recovery problem under the cosine distribution618

(See Eq. (3)) to the recovery problem under the phaseless CLWE distribution (See Appendix A.2).619

Then, we prove Lemma B.4, which states that there is an exponential-time algorithm for recovering620

the hidden direction w 2 S
d�1 in Phaseless-CLWE under sufficiently small adversarial noise.621

Theorem 4.1 follows from Lemmas B.1 and B.4.622

Lemma B.1. Assume � 2 [0, 1]. Suppose that one receives a sample (x, z̃) from the cosine distribu-623

tion on dimension d with frequency � under �-bounded adversarial noise. Let z̄ := sgn(z̃)min(1, |z̃|).624

Then, the pair (x, arccos(z̄)/(2⇡) mod 1) is a sample from the Phaseless-CLWE distribution on625

dimension d with frequency � under 1
2⇡ arccos(1� �)-bounded adversarial noise.626

Proof. Recall z̃ = cos(2⇡(�hw, xi)) + ⇠, for x ⇠ N(0, Id) and |⇠|  �. It suffices to show that627

1

2⇡
arccos(z̄) = ✏�hw, xi+ ⇠

0
mod 1 (12)

for some ✏ 2 {�1, 1} and ⇠
0 2 R with |⇠0|  1

2⇡ arccos(1� �).628

First, notice that we may assume that without loss of generality z̄ = z̃. Indeed, assume for now z̃ > 1.629

The case z̃ < �1 can be shown with almost identical reasoning. From the definition of z̃, it must630

hold that ⇠ > 0 and z̃  1 + ⇠. Hence631

z̄ = 1 = cos(2⇡(�hw, xi)) + ⇠̃.

for ⇠̃ := ⇠ + 1 � z̃ 2 (0, ⇠) ✓ (0,�). Hence, (x, z̄) is a sample from the cosine distribution in632

dimension d with frequency � under �-bounded adversarial noise.633

Now, given the above observation, to establish (12), it suffices to show that for some ✏ 2 {�1, 1},634

and K 2 Z,635
����
1

2⇡
arccos(z̃)� ✏�hw, xi �K

���� 
1

2⇡
arccos(1� �) ,

or equivalently using that the cosine function is 2⇡ periodic and even, it suffices to show that636

| arccos(z̃)� arccos(cos(2⇡�hw, xi))|  arccos(1� �) .

The result then follows from the definition of z̃ and the simple calculus Lemma H.7.637

We will use the following covering number bound for the running time analysis of Algorithm 3, and638

the proof of Lemma B.4.639

Lemma B.2 ([A6, Corollary 4.2.13]). The covering number N of the unit sphere S
d�1 satisfies the640

following upper and bounds for any ✏ > 0641

✓
1

✏

◆d

 N (S
d�1

, ✏) 
✓
2

✏
+ 1

◆d

. (13)
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Algorithm 4: Information-theoretic recovery algorithm for learning the Phaseless-CLWE
Input: Real numbers � = �(d) > 1, � = �(d), and a sampling oracle for the phaseless-CLWE

distribution (10) with frequency �, �-bounded noise, and hidden direction w.
Output: Unit vector ŵ 2 S

d�1 s.t. min{kŵ � wk2, kŵ + wk2} = O(�/�).

Let ✏ = 2⌧/�, m = 64d log(1/✏), and let C be an ✏-cover of the unit sphere S
d�1. Draw m

samples {(xi, zi)}mi=1 from the phaseless CLWE distribution (10).
for v 2 C do

Compute
Tv =

1
m

Pm
i=1 [|�hv, xii � zi mod 1|  3�] + [|�hv, xii+ zi mod 1|  3�]

return ŵ = argmaxv2C Tv .

Remark B.3. An ✏-cover for the unit sphere S
d�1 can be constructed in time O(exp(d log(1/✏)))642

by sampling O(N logN) unit vectors uniformly at random from S
d�1, where we denote by N =643

N (S
d�1

, ✏). The termination time gurantee follows from Lemma B.2 and the property holds with644

probability 1� exp(�⌦(d)). We direct the reader for a complete proof of this fact in Appendix F.645

Now we prove our main lemma, which states that recovery of the hidden direction in Phaseless-CLWE646

under adversarial noise is possible in exponential time, when the noise level � is smaller than a small647

constant.648

Lemma B.4 (Information-theoretic upper bound for recovery of Phaseless-CLWE). Let d 2 N and649

let � = �(d) > 1, and � = �(d) 2 (0, 1/400). Moreover, let P be the Phaseless-CLWE distribution650

with frequency �, �-bounded adversarial noise, and hidden direction w. Then, there exists an651

exp(O(d log(�/�)))-time algorithm, described in Algorithm 4, using O(d log(�/�)) samples from652

P that outputs a direction ŵ 2 S
d�1 satisfying653

min(kŵ � wk22, kŵ + wk22)  40000�
2
/�

2 (14)

with probability 1� exp(�⌦(d)).654

Proof. Let P be the Phaseless-CLWE distribution and w be the hidden direction of P . We describe655

first the algorithm we use and then prove its correctness.656

Let ✏ = �/�, and C be an ✏-cover of the unit sphere. By Remark B.3, we can construct such657

an ✏-cover C in O(exp(d log(�/�))) time such that |C|  exp(O(d log(�/�))). We now draw658

m = 36d log(�/�) samples {(xi, zi)}mi=1 from P . Now, given these samples and the threshold value659

t = 3�, we compute for each of the |C|  exp(O(d log(�/�))) directions v 2 C the following660

counting statistic,661

Tv :=
1

m

mX

i=1

( [|�hv, xii � zi mod 1|  3�] + [|�hv, xii+ zi mod 1|  3�]) .

Tv is simply measuring the fraction of the zi’s falling in a mod 1-width 3� interval around �hv, xii662

or ��hv, xii, accounting for the uncertainty over the sign ✏ 2 {�1, 1} in the definition of Phaseless-663

CLWE. We then suggest our estimator to be ŵ = argmaxv2C Tv. The algorithm can be clearly664

implemented in |C|  exp(O(d log(�/�))) time.665

We prove the correctness of our algorithm by establishing (14) with probability 1� exp(�⌦(d)). We666

first show that some direction v 2 C which is sufficiently close to w satisfies Tv � 2
3 with probability667

1 � exp(�⌦(d)). Indeed, let us consider v 2 C be a direction such that kw � vk2  ✏ = �/�.668

The existence of such a v follows from our definition of C. We denote for every i = 1, . . . ,m by669

✏i 2 {�1, 1} the sign chosen by the i-th sample, and670

⇠i = zi � ✏i�hw, xii (15)

the adversarial noise added to the sample per (10). Now notice that the following trivially holds671

almost surely for v,672

Tv �
1

m

mX

i=1

[|�hv, xii � ✏izi mod 1|  3�] .
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By elementary algebra and using (15) we have ✏izi� �hv, xii mod 1 = �hw� v, xii+ ⇠i mod 1.673

Combining the above it suffices to show that674

1

m

mX

i=1

[|�hw � v, xii+ ⇠i mod 1|  3�] � 2

3
. (16)

with probability 1� exp(�⌦(d)).675

Now we have676

P[|�hw � v, xii+ ⇠i mod 1|  3�] � P[|�hw � v, xii mod 1|  2�]

� P[|�hw � v, xii|  2�]

using for the first inequality that �-bounded adversarial noise cannot move points within distance 2�677

to the origin to locations with distance larger than 3� from the origin and for the second the trivial678

inequality |a| � |a mod 1|. Now, notice that �hw�v, xii is distributed as a sample from a Gaussian679

(see Definition H.1) with mean 0 and standard deviation at most �kv�wk2  �✏ = �. Hence, we can680

immediately conclude P[|�hw�v, xii|  2�] � 3/4 since the probability of a Gaussian vector falling681

within 2 standard deviations of the mean is at least 0.95. By a standard application of Hoeffding’s682

inequality, we can then conclude that (16) holds with probability 1�exp(�⌦(m)) = 1�exp(�⌦(d)).683

We now show that with probability 1�exp(�⌦(d)) for any v 2 C which satisfies min(kv�wk2, kv+684

wk2) � 200�/�, it holds Tv  1/2. Notice that given the established existence of a v which is685

�/�-close to w and satisfies Tv � 2/3, with probability 1 � exp(�⌦(d)), the result follows. Let686

v 2 C be a direction satisfying kv � wk2 � 200�/�. Without loss of generality, assume that687

kv � wk2  kv + wk2. Then, using (15) we have �hv, xii � zi = �hv � ✏iw, xii � ✏i⇠i mod 1688

and �hv, xii + zi = �hv + ✏iw, xii + ✏i⇠i mod 1. Hence, since ✏ 2 {�1, 1}, |⇠i|  � for all689

i = 1, . . . ,m we have by a triangle inequality690

Tv 
1

m

mX

i=1

( [|�hv � w, xii mod 1|  4�] + [|�hv + w, xii mod 1|  4�]) .

Now by our assumption on v both �hv�w, xii and �hv+w, xii are distributed as mean-zero Gaussians691

with standard deviation at least �kw�vk2 � 200�. Hence, both �hv�w, xii mod 1 and �hv+w, xii692

mod 1 are distributed as periodic Gaussians with width at least 200� (see Definition H.1). By693

Claim H.6 and the fact that � < 1/400,694

P[|�hv � w, xii mod 1|  4�]  16�/(400�
p
2⇡) · (1 + 2(1 + (400�)

2
)e

�1/(160000�2)

 4/(25
p
2⇡) <

1

12
.

By symmetry the same upper bound holds for P[|�hv + w, xii mod 1|  4�]. Hence,695

P(xi,zi)⇠P [{|�hv � w, xii mod 1|  3�} [ {|�hv + w, xii mod 1 mod 1|  3�}] < 1/6 .

By a standard application of Hoeffding’s inequality, we have696

P[Tv > 1/2]  exp(�m/18)  exp(�2d log(1/✏)),
and by the union bound over all v 2 C satisfying kv � wk � 200�/�,697

P

2

4
[

kv�wk�200�/�

{Tv > 1/2}

3

5 < |C| · exp(�2d log(1/✏)) = exp(�⌦(d)) .

This completes the proof.698

Finally, we discuss the recovery in terms of samples from the cosine distribution.699

Corollary B.5 (Restated Theorem 4.1). For some constants c0, C0 > 0 (e.g., c0 = 1 �700

cos(⇡/200), C0 = 40000) the following holds. Let d 2 N and let � = �(d) > 1, � = �(d)  c0,701

and ⌧ =
1
2⇡ arccos(1 � �). Moreover, let P be the cosine distribution with frequency �, hidden702

direction w, and noise level �. Then, there exists an exp(O(d log(�/⌧)))-time algorithm, described703

in Algorithm 3, using O(d log(�/⌧)) i.i.d. samples from P that outputs a direction ŵ 2 S
d�1704

satisfying min{kŵ � wk22, kŵ + wk22}  C0⌧
2
/�

2 with probability 1� exp(�⌦(d)).705

18



Proof. We first define m = O(d log(�/�)) reflecting the sample size needed for the algorithm706

analyzed in Lemma B.4 to work. We then draw m samples {(xi, z̃i)}mi=1 from the cosine distribution.707

From this point Algorithm 3 simply combined the reduction step of Lemma B.1 and then the algorithm708

described in the proof of Lemma B.4.709

Specifically, using Lemma B.1, we can transform our i.i.d. samples to i.i.d. samples from the710

Phaseless CLWE distribution on dimension d with frequency � under 1
2⇡ arccos(1 � �)-bounded711

adversarial noise. The transformation simply happens by applying the arccosine function to every712

projected z̃i, so it takes O(1) time per sample, a total of O(m) steps. We then use the last step713

of Algorithm 3 and employ Lemma B.4 which analyzes Algorithm 3 to conclude that the output714

ŵ 2 S
d�1 satisfies min(kŵ�wk2, kŵ+wk2)  40000⌧

2
/�

2 with probability 1�exp(�⌦(d)).715

C Appendix for the Cryptographically-Hard Regime: Polynomially-Small716

Noise717

We give a full proof of Theorem 4.3, restated as Theorem C.1 here. Given Theorem 4.3, Corollary 4.4,718

also restated below as Corollary C.2, follows from the hardness of CLWE [A1].719

Theorem C.1 (Restated Theorem 4.3). Let d 2 N, � = !(
p
log d),� = �(d) 2 (0, 1). Moreover,720

let L > 0, let � : R ! [�1, 1] be an L-Lipschitz 1-periodic univariate function, and ⌧ = ⌧(d) be721

such that �/(L⌧) = !(
p
log d). Then, a polynomial-time (improper) algorithm that weakly learns722

the function class F�
� = {f�,w(x) = �(�hw, xi) | w 2 Sd�1} over Gaussian inputs xi.i.d.⇠ N(0, Id)723

under �-bounded adversarial noise implies a polynomial-time algorithm for CLWE⌧,� .724

Proof. Recall that a polynomial-time algorithm for CLWE⌧,� refers to distinguishing between725

m samples (xi, zi = �hw, xii + ⇠i mod 1)i=1,2,...,m, where xi ⇠ N(0, Id), ⇠i ⇠ N(0, ⌧) and726

w ⇠ U(S
d�1

), from m random samples (xi, zi)i=1,2,...,m, where yi ⇠ U([0, 1]) with non-negligible727

advantage over the trivial random guess (See Appendix A.1 and A.2). We refer to the former sampling728

process as drawing m i.i.d. samples from the CLWE distribution, where from now on we call P for729

the CLWE distribution, and to the latter as sampling process drawing m i.i.d. samples from the null730

distribution, which we denote by Q. Here, and everywhere in this proof, the number of samples m731

denotes a quantity which depends polynomially on the dimension d.732

Let ✏ = ✏(d) 2 (0, 1) be an inverse polynomial, and let A be a polynomial-time learning algorithm733

that takes as input m samples from P , and with probability 2/3 outputs a hypothesis h : R ! R734

such that LP (h)  LP (E[�(z)])� ✏. Since we are using the squared loss, we can assume without735

loss of generality that h : R ! [�1, 1] because clipping the output of the hypothesis h, i.e.,736

h̃(x) = sgn(h) ·max(|h(x)|, 1) is always an improvement over h pointwise because the labels are737

always inside the range [�1, 1].738

Let D be an unknown distribution on 2m i.i.d. samples, that is equal to either P or Q. Our reduction739

consists of a statistical test that distinguishes between D = P and D = Q. Our test is using the740

(successful in weakly learning f�,w if D = P ) predictor h returned by A on (some appropriate741

function of the first) m out of the 2m samples drawn from D. Then, we compute the empirical loss742

of h on the remaining m samples from D, and m samples drawn from Q, respectively, and test743

L̂D(h)  L̂Q(h)� ✏/4 . (17)

We conclude D = P if h passes the test and D = Q otherwise. The way we prove that this test744

succeeds with probability 2/3� o(1), is by using the fact that A outputs a hypothesis h with ✏-edge745

with probability 2/3 when given m samples from P as input. In the following, we now formally746

prove the correctness of this test.747

We first assume D = P , and consider the first m samples (xi, zi)i=1,...,m drawn from P . Now748

observe the elementary equality that for all v 2 R it holds �(v mod 1) = �(v). Hence,749

�(�hw, xii+ ⇠i) = �(zi).

Furthermore, notice that by the fact that the � is an L-Lipschitz function we have750

�(�hw, xii) + ⇠̃i = �(zi) (18)
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for some ⇠̃i 2 [�L|⇠i|, L|⇠i|]. By Mill’s inequality, for all i = 1, 2, . . . ,m we have P[|⇠i| > �/L] 751 p
2/⇡ exp(��2

/(2L
2
⌧
2
)). Since �/(L⌧) = !(

p
log d), we conclude that752

P[
m[

i=1

{|⇠i| > �/L}] 
p
2/⇡ ·m exp(��2

/(8⇡
2
⌧
2
)) = md

�!(1)
= o(1) ,

where the last equality holds because m depends polynomially on d. Hence, it holds that753

|⇠0i|  L|⇠i|  � ,

for all i = 1, . . . ,m with probability 1�o(1) over the randomnesss of ⇠i, i = 1, 2, . . . ,m. Combining754

the above with (18), we conclude that with probability 1 � o(1) over ⇠i, using our knowledge of755

(xi, zi), we have at our disposal samples from the function f�,w(x) = �(�hw, xi) corrupted by756

adversarial noise of magnitude at most �. Let us write by �(P ) the data distribution obtained by757

applying � to labels of the samples from P , and similarly write �(Q) for the null distribution Q.758

By assumption and the above, given these samples (xi,�(zi))i=1,2,...,m we have that A outputs an759

hypothesis h : Rd ! [�1, 1] such that for m large enough, with probability at least 2/3,760

L�(P )(h)  L�(P )

✓
E

(x,z)⇠P
[�(z)]

◆
� ✏,

for some ✏ = 1/poly(d) > 0.761

Now, note that by Claim H.6, the marginal distribution of �(�hw, xi) is 2 exp(�2⇡2
�
2
)-close in762

total variation distance to the distribution of �(y), where y ⇠ U([0, 1]). Moreover, notice that since763

the loss ` is continuous, and h(x), x 2 Rd and of course �(z), y 2 R both take values in [�1, 1],764

sup

(x,y)2Rd⇥R
`(h(x),�(y))  sup

(a,b)2[�1,1]d⇥[�1,1]
`(a, b)  4; . (19)

Let us denote c = E(x,y)⇠Q[�(y)] for simplicity. Clearly |c|, |�(y)|  1. Also,765

|L�(P )(c)� L�(Q)(c))| =
���� E
(x,y)⇠P

[(�(y)� c)
2
]� E

(x,y)⇠Q
[(�(y)� c)

2
]

����


Z 1

�1
�(y)

2|P (y)�Q(y)|dy + 2c

Z 1

�1
|�(y)||P (y)�Q(y)|dy

 (1 + 2|c|)
Z 1

�1
|P (y)�Q(y)|dy

 6 · TV (Py, Qy)

 12 exp(�2⇡2
�
2
) .

From the above, we deduce766

L�(P )

✓
E

(x,z)⇠P
[�(�hw, xi)]

◆
 L�(P )

✓
E

y⇠Q
[�(y)]

◆
 L�(Q)

✓
E

y⇠Q
[�(y)]

◆
+ 12 exp(�2⇡2

�
2
) .

Since E[�(y)] is the optimal predictor for Q under the squared loss, L�(Q)(E[�(y)])  L�(Q)(h)767

for any predictor h. In addition, exp(�2⇡2
�
2
) = o(✏) since � = !(

p
log d) and ✏ is an inverse768

polynomial in d. Hence, for m large enough, with probability at least 2/3769

L�(P )(h)  L�(P )(E[�(�hw, xi)])� ✏

 L�(Q)(h) + 12 exp(�2⇡2
�
2
)� ✏

 L�(Q)(h)� ✏/2 . (20)

Using the remaining m samples from P , we now compute the empirical losses L̂�(P )(h) =770

1
m

Pm
i=1 `(h(xi),�(zi)), and L̂�(Q)(h) =

1
m

Pm
i=1 `(h(xi),�(yi)), where (xi, zi) are drawn from771

P and (xi, yi) are drawn from Q. By a standard use of Hoeffding’s inequality, and the fact that the772

loss is bounded based on (19), it follows that773

|L̂�(P )(h)� L�(P )(h)| 
✏

8
,
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with probability 1� exp(�⌦(m)) and respectively774

|L̂�(Q)(h)� L�(Q)(h)| 
✏

8
,

with probability 1� exp(�⌦(m)) for sufficiently large, but still polynomial in d, m. Combining the775

last two displayed equations with (20), we have that, for m large enough, with probability at least776

2/3� o(1),777

L̂�(P )(h)  L�(P )(h) +
✏

8
 L̂�(Q)(h)�

✏

4
.

Hence, for m large enough, with probability at least 2/3� o(1), the test correctly concludes D = P778

or D = Q by using the empirical loss L̂�(D)(h), and comparing it with the value L̂�(Q)(h)� ✏/4.779

780

Corollary C.2 (Restated Corollary 4.4). Let d 2 N, � = �(d) � 2
p
d and ⌧ = ⌧(d) 2 (0, 1) be781

such that �/⌧ = poly(d), and � = �(d) be such that �/⌧ = !(
p
log d). Then, a polynomial-time782

algorithm that weakly learns the cosine neuron class F� under �-bounded adversarial noise implies783

a polynomial-time quantum algorithm for Õ(d/⌧)-approximate SVP.784

Proof. The cosine function �(z) = cos(2⇡z) is 2⇡-Lipschitz and 1-periodic. Hence, the result785

follows from Theorem C.1 with L = 2⇡.786

D Appendix for the LLL-based Algorithm: Exponentially Small Noise787

In this section we offer the required missing proofs from the Section 4.3.788

D.1 The LLL Algorithm: Background and the Proof of Theorem 3.4789

The most crucial component of the algorithm analyzed in this section is an appropriate use of the LLL790

lattice basis reduction algorithm. The LLL algorithm receives as input n linearly independent vectors791

v1, . . . , vn 2 Zn and outputs an integer combination of them with “small" `2 norm. Specifically, let792

us (re)-define the lattice generated by n integer vectors as simply the set of integer linear combination793

of these vectors.794

Definition D.1. Given linearly independent v1, . . . , vn 2 Zn, let795

⇤ = ⇤(v1, . . . , vn) =

(
nX

i=1

�ivi : �i 2 Z, i = 1, . . . , n

)
, (21)

which we refer to as the lattice generated by integer-valued v1, . . . , vn. We also refer to (v1, . . . , vn)796

as an (ordered) basis for the lattice ⇤.797

The LLL algorithm is defined to approximately solve the search version of the Shortest Vector Problem798

(SVP) on a lattice ⇤, given a basis of it. We have already defined decision-SVP in Appendix A.3. We799

define the search version below for completeness.800

Definition D.2. An instance of the algorithmic�-approximate SVP for a lattice ⇤ ✓ Zn is as follows.801

Given a lattice basis v1, . . . , vn 2 Zn for the lattice, ⇤; find a vector bx 2 ⇤, such that802

kbxk  � min
x2⇤,x 6=0

kxk .

The following theorem holds for the performance of the LLL algorithm, whose details can be found803

in [A7].804

Theorem D.3 ([A7]). There is an algorithm (namely the LLL lattice basis reduction algorithm),805

which receives as input a basis for a lattice ⇤ given by v1, . . . , vn 2 Z which806

(1) solves the 2
n
2 -approximate SVP for ⇤ and,807

(2) terminates in time polynomial in n and log (max
n
i=1 kvik1) .808
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In this work, we use the LLL algorithm for an integer relation detection application.809

Definition D.4. An instance of the integer relation detection problem is as follows. Given a vector810

b = (b1, . . . , bn) 2 Rn, find an m 2 Zn \ {0}, such that hb,mi =
Pn

i=1 bimi = 0. In this case, m811

is said to be an integer relation for the vector b.812

We now establish Theorem 3.4, by proving following more general result. In particular, Theorem813

3.4 follows from the theorem below by choosing M = 2
n+1km0k2 and using notation m

0 (used in814

Theorem 3.4) instead of m, and t (used in Theorem 3.4) instead of m0.815

The following theorem, is rigorously showing how the LLL algorithm can be used for integer relation816

detection. The proof of the theorem, is based upon some key ideas of the breakthrough use of the LLL817

algorithm to solve the average-case subset sum problem by Frieze [A8], and its recent extensions in818

the context of regression [A9, A10].819

Theorem D.5. Let n,N 2 Z�1. Suppose b 2 (2
�NZ)n with b1 = 1. Let also m

0 2 Zn be an integer820

relation of b, an integer M � 2
n+1
2 km0k2 and set b�1 = (b2, . . . , bn) 2 (2

�NZ)n�1. Then running821

the LLL basis reduction algorithm on the lattice generated by the columns of the following n ⇥ n822

integer-valued matrix,823

B =

✓
M2

N
b1 M2

N
b�1

0(n�1)⇥1 I(n�1)⇥(n�1)

◆
(22)

outputs t 2 Zn which824

(1) is an integer relation for b with ktk2  2
n+1
2 km0k2kbk2 and,825

(2) terminates in time polynomial in n,N, logM and log(kbk1).826

Proof. It is immediate that B is integer-valued and that the determinant of B is M2
N 6= 0, and827

therefore the columns of B are linearly independent. Hence, from Theorem D.3, we have that the828

LLL algorithm outputs a vector z = Bt with t 2 Zn such that it holds829

kzk2  2
n
2 min

x2Zn\{0}
kBxk2. (23)

Moreover, it terminates in time polynomial in n and log(M2
Nkb1k1) and therefore in time polyno-830

mial in n,N, logM and log(kbk1).831

Since m
0 is an integer relation for b it holds, Bm

0
= (0,m

0
2, . . . ,m

0
n)

t and therefore832

min
x2Zn\{0}

kBxk2  kBm
0k2  km0k2.

Hence, combining with (23) we conclude833

kzk2  2
n
2 km0k2. (24)

or equivalently834
q
(Mh2Nb, ti)2 + kt�1k22  2

n
2 km0k2, (25)

where t�1 := (t2, . . . , tn) 2 Zn�1.835

Now notice that since 2
N hb, ti = h2Nb, ti 2 Z either 2N hb, ti 6= 0 and the left hand side of (25)836

is at least M , or 2N hb, ti = 0. Since the former case is impossible given the right hand side of837

inequality described in (25) and that M � 2
n+1
2 km0k2 > 2

n
2 km0k2 we conclude that 2N hb, ti = 0838

or equivalently hb, ti = 0. Therefore, t is an integer relation for b.839

To conclude the proof it suffices to show that ktk2  2
n
2 +1km0k2kbk2. Now again from (25) and the840

fact that t is an integer relation for b, we conclude that841

kt�1k2  2
n
2 km0k2. (26)

But since hb, ti = 0 and b1 = 1 we have by Cauchy-Schwartz and (25)842

|t1| = |ht�1, b�1i|  kt�1k2kb�1k2  2
n
2 km0k2kbk2.

Hence,843

ktk2 
p
2max{2n

2 km0k2kbk2, 2
n
2 km0k2}  2

n+1
2 km0k2kbk2,

since kbk2 � |b1| = 1.844
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Algorithm 5: LLL-based algorithm for learning the single cosine neuron. (Restated)

Input: Real numbers � > 0, and i.i.d. noisy �-single cosine neuron samples {(xi, zi)}d+1
i=1 .

Output: Unit vector ŵ 2 S
d�1 such that min(kŵ � wk, kŵ + wk) = exp(�⌦((d log d)3)).

for i = 1 to d+ 1 do
zi  sgn(zi) ·min(|zi|, 1)
z̃i = arccos(zi)/(2⇡) mod 1

Construct a d⇥ d matrix X with columns x2, . . . , xd+1, and let N = d
3
(log d)

2.
if det(X) = 0 then

return ŵ = 0 and output FAIL
Compute �1 = 1 and �i = �i(x1, . . . , xd+1) given by (�2, . . . ,�d+1)

>
= X

�1
x1.

Set M = 2
3d and ṽ =

�
(�2)N , . . . , (�d+1)N , (�1z1)N , . . . , (�d+1zd+1)N , 2

�N
�
2 R2d+2

Output (t1, t2, t) 2 Zd+1 ⇥ Zd+1 ⇥ Z from running the LLL basis reduction algorithm on the
lattice generated by the columns of the following (2d+ 3)⇥ (2d+ 3) integer-valued matrix,

✓
M2

N
(�1)N M2

N
ṽ

0(2d+2)⇥1 I(2d+2)⇥(2d+2)

◆

where (t1, t2, t) 2 Zd+1 ⇥ Zd+1 ⇥ Z.
Compute g = gcd(t2), by running Euclid’s algorithm.
if g = 0 _ (t2/g) /2 {�1, 1}d+1 then

return ŵ = 0 and output FAIL
ŵ  SolveLinearEquation(w

0
, �hxi, w

0i = (t2/g)iz̃i + (t1/g)i, i = 2, . . . , d+ 1.)
return ŵ and output SUCCESS.

D.2 Towards proving Theorem 4.5: Auxiliary Lemmas845

We present here three crucial lemmas towards proving the Theorem 4.5. The proofs of them are846

deferred to later sections, for the convenience of the reader.847

We first repeat the algorithm here for convenience, see Algorithm 5.848

The first lemma establishes that given a small, in `2‘norm, “approximate" integer relation between849

real numbers, one can appropriately truncate each number to some sufficiently large number of850

bits, so that the truncated numbers satisfy a small in `2-norm integer relation between them. This851

lemma is important for the appropriate application of the LLL algorithm, which needs to apply for852

integer-valued input. Recall that for real number x we denote by (x)N its truncation to its first N bits853

after zero, i.e. (x)N := 2
�Nb2Nxc.854

Lemma D.6. Suppose n  C0d for some constant C0 > 0 and s 2 Rn satisfies for some m 2 Zn855

that |hm, si| = exp(�⌦((d log d)3)). Then for some sufficiently large constant C > 0, if N =856

dd3(log d)2e there is an m
0 2 Zn+1 which is equal with m in the first n coordinates, which satisfies857

that km0k2  Cd
1
2 kmk2 and is an integer relation for the numbers (s1)N , . . . , (sn)N , 2

�N
.858

The proof of Lemma D.6 is in Section H.3.859

The following lemma establishes multiple structural properties surrounding d+ 1 samples from the860

cosine neuron, of the form (xi, zi), i = 1, . . . , d+ 1 given by (3).861

Lemma D.7. Suppose that �  d
Q for some constant Q > 0. For some hidden direction w 2 S

d�1862

we observe d+ 1 samples of the form (xi, zi), i = 1, . . . , d+ 1 where for each i, xi is a sample from863

the distribution N(0, Id), and864

zi = cos(2⇡(�hw, xii)) + ⇠i,

for some unknown and arbitrary ⇠i 2 R satisfying |⇠i|  exp(�(d log d)3). Denote by X 2 Rd⇥d the865

random matrix with columns given by the d vectors x2, . . . , xd+1. With probability 1� exp(�⌦(d))866

the following properties hold.867
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(1)

max
i=1,...,d+1

kxik2  10

p
d.

(2)

min
i=1,...,d+1

| sin(2⇡�hxi, wi)| � 2
�d

.

(3) For all i = 1, . . . , d+ 1 it holds zi 2 [�1, 1] and868

zi = cos(2⇡(�hxi, wi+ ⇠
0
i)),

for some ⇠
0
i 2 R with |⇠0i| = exp(�⌦((d log d)3)).869

(4) The matrix X is invertible. Furthermore,870

kX�1
x1k1 = O(2

d
2

p
d).

(5)

0 < |det(X)| = O(exp(d log d)).

The proof of Lemma D.7 is in Section H.3.871

As explained in the description of our main results in Section 4.3, a step of crucial importance872

is to show that all “near-minimal" integer relations, such as (9), for the (truncated versions of)873

�i,�iz̃i, i = 1, . . . , d+ 1 are "informative". In what follows, we show that the integer relation with874

appropriately “small" norm are indeed informative in terms of recovering the unknown ✏i,Ki of (9)875

and therefore the hidden vector w. The following technical lemma is of instrumental importance for876

the analysis of the algorithm.877

Lemma D.8. Suppose that �  d
Q for some constant Q > 0, and N = dd3(log d)2e. Let ⇠0 2 Rd+1878

be such that k⇠0k1  exp(�(d log d)3) and w 2 S
d�1. Suppose that for all (xi)i=1,...,d+1 are i.i.d.879

N(0, Id) and that for each i = 1, . . . , d+1 for some z̃i 2 [�1/2, 1/2] there exist ✏i 2 {�1, 1},Ki 2880

Z with |Ki|  d
Q such that881

�hw, xii = ✏iz̃i +Ki � ⇠
0
i. (27)

Define also X 2 Rd⇥d the matrix with columns the x2, . . . , xd+1 and set �1 = 1 and882

(�2, . . . ,�d+1)
t
= X

�1
x1. Then with probability 1� exp(�⌦(d)), any integer relation t 2 Z2d+3883

between (�1)N , . . . , (�d+1)N , (�1z̃1)N , . . . , (�d+1z̃d+1)N , 2
�N with ktk2  2

2d satisfies in the884

first 2d+ 2 coordinates it is equal to a non-zero integer multiple of (K1, . . . ,Kd+1, ✏1, . . . , ✏d+1).885

The proof of Lemma D.8 is in Section D.4.886

D.3 Proof of Theorem 4.5887

We now proceed with the proof of the Theorem 4.5 using the lemmas from the previous sections.888

Proof. We analyze the algorithm by first analyze it’s correctness step by step as it proceeds and then889

conclude with the polynomial-in-d bound on its termination time.890

We start with using part 3 of Lemma D.7 which gives us that zi 2 [�1, 1] with probability 1 �891

exp(�⌦(d)) for all i = 1, 2, . . . , d + 1. Therefore the zi’s remain invariant under the operation892

zi  sgn(zi)min(|zi|, 1), with probability 1� exp(�⌦(d)). Furthermore, using again the part 3 of893

Lemma D.7 the z̃i’s computed in the second step satisfy894

cos(2⇡z̃i) = cos(2⇡(�hw, xii+ ⇠
0
i))

for some ⇠
0
i 2 R with |⇠0i|  exp(�⌦((d log d)3)). Using the 2⇡- periodicity of the cosine as well as895

that it is an even function we conclude that for all for i = 1, . . . , d+1 there exists ✏i 2 {�1, 1},Ki 2896

Z for which it holds for every i = 1, . . . , d+ 1897

�hw, xii = ✏iz̃i +Ki � ⇠
0
i. (28)
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Notice that if we knew the exact values of ✏i,Ki, since we already know xi, z̃i the problem would898

reduce to inverting a (noisy) linear system of d + 1 equations and d unknowns. The rest of the899

algorithm uses an appropriate application of the LLL to learn the values of ✏i,Ki and solve the (noisy)900

linear system.901

Now, notice that using the part 5 of Lemma D.7 with probability 1� exp(�⌦(d)) the matrix X is902

invertible and the algorithm is not going to terminate in the second step.903

In the following step, the �i, i = 1, 2, . . . , d + 1 are given by �1 = 1 and the unique �i =904

�i(x1, . . . , xd+1) 2 R, i = 2, . . . , d+ 1 satisfying905

d+1X

i=1

�ixi = x1 +X(�2, . . . ,�d+1)
>
= 0.

Hence, we conclude that for the unknown direction w it holds906

d+1X

i=1

�i�hw, xii = �hw,
d+1X

i=1

�ixii = 0.

Using now (28) and rearranging the noise terms we conclude907

d+1X

i=1

�iz̃i✏i +

d+1X

i=1

�iKi =

d+1X

i=1

�i⇠
0
i. (29)

Now using the fourth part of Lemma D.7 and the upper bound on k⇠0k1 we have with probability908

1� exp(�⌦(d)) that909
�����

d+1X

i=1

�i⇠
0
i

����� = O(dk�k1k⇠0k1) = O(d2
d
2

p
d exp(�⌦((d log d)3))) = exp(�⌦((d log d)3)).

Hence, using (29) we conclude that with probability 1� exp(�⌦(d)) it holds910
�����

d+1X

i=1

�iz̄i✏i +

d+1X

i=1

�iKi

����� = exp(�⌦((d log d)3)). (30)

Define s 2 R2d+2 given by si = �i, i = 1, . . . , d+1 and si = �i�d�1z̃i�d�1, i = d+2, . . . , 2d+2.911

Define also m 2 Z2d+2 given by mi = Ki, i = 1, . . . , d+1 and mi = ✏i�d�1, i = d+1, . . . , 2d+2.912

For these vectors, given the above, it holds with probability 1 � exp(�⌦(d)) that |hs,mi| =913

exp(�⌦((d log d)3)) based on (30). Now notice that914

max
i=1,...,d+1

|Ki| = O(�

p
d) (31)

with probability 1 � exp(�⌦(d)). Indeed, from the definition of Ki we have for large enough915

values of d that |Ki|  �|hw, xii|+ 1 + |⇠i|  �kxik2 + 2. Recall that using part 1 of Lemma D.7916

for all i = 1, . . . ,m it holds kxik2 = O(
p
d) with probability 1 � exp(�⌦(d)). Hence, for all i,917

|Ki| = O(�
p
d), with probability 1� exp(�⌦(d)). Therefore, since |✏i| = 1 for all i = 1, . . . , d+1918

it also holds with probability 1� exp(�⌦(d)) that kmk2 = O(dkKk1) = O(�d
3
2 ).919

We now employ Lemma D.6 for our choice of s and m to conclude that for the N chosen by the920

algorithm there exists an integer m0
2d+3 so that m0

= (m,m
0
2d+3) 2 Z2d+3 is an integer relation for921

(�1)N , . . . , (�d+1)N , (�1z1)N , . . . , (�d+1zd+1)N , 2
�N with km0k2 = O(d

2
�).922

Now we set b 2 (2
�NZ)2d+3 given by bi = (�i)N for i = 1, . . . , d+ 1, bi = (�i�d�1z̃i�d�1)N for923

i = d + 2, . . . , 2d + 2, and b2d+3 = 2
�N

. Notice that b1 = (1)N = 1 and furthermore that the ṽ924

defined by the algorithm satisfies ṽ = (b2, . . . , b2d+3). On top of this, we have that the m0 defined in925

previous paragraph is an integer relation for b with km0k2 = O(d
2
�). Since � is polynomial in d we926

have that 2
2d+3+1

2 km0k2  2
3d for large values of d. Hence, to analyze the LLL step of our algorithm927

we use Theorem D.5 for n = 2d+ 3, to conclude that the output of the LLL basis reduction step is a928

t = (t1, t2, t
0
) 2 Zd+1 ⇥ Zd+1 ⇥ Z which is an integer relation for b and it satisfies that929

ktk2  2
d+2km0k2kbk2,

25



with probability 1� exp(�⌦(d)).930

Now we use part 4 of Lemma D.7 to conclude that k�k2  dk�k1 = O(2
d
2 d

3
2 ), with probability931

1� exp(�⌦(d)). Since for any real number x it holds |(x)N |  |x|+ 1 and z̃i 2 [�1/2, 1/2] for all932

i = 1, 2, . . . , d+1 we conclude that kbk2 = O(k�k2) = O(2
d
2 d

3
2 ), with probability 1�exp(�⌦(d)).933

Furthermore, since km0k = O(d
2
�) we conclude that since � is polynomial in d, for large values of934

d it holds,935

ktk2 = O(2
3d
2 )  2

2d
, (32)

with probability 1� exp(�⌦(d)).936

We now use the above and (31) to crucially apply Lemma D.8 and conclude that for some non-zero937

integer multiple c it necessarily holds (t1)i = cKi and (t2)i = c✏i, with probability 1� exp(�⌦(d)).938

Note that the assumptions of the Lemma can be checked to be satisfied in straightforward manner.939

Now, the greatest common divisor between the elements of t2 equals either to c or to �c, since the940

elements of t2 are just c-multiples of ✏i which themselves are taking values either �1 or 1. Hence the941

step of the algorithm using Euclid’s algorithm outputs g such that g = ✏c for some ✏ 2 {�1, 1}. In942

particular, t2/g = ✏(✏1, . . . , ✏d+1) 6= 0 implying that the algorithm does not enter the if-condition943

branch on the next step.944

Finally, since c = eg it also holds t1/g = ✏(K1, . . . ,Kd+1) and therefore the last step of the945

algorithm is solving the linear equations for i = 2, . . . , d+ 1 given by946

�hxi, ŵi = ✏ (✏iz̃i + ✏Ki) = ✏�hxi, wi+ ✏⇠
0
i,

where we have used (28). Hence if ⇠0 = (⇠
0
2, . . . , ⇠

0
d+1)

t we have947

ŵ = ✏w + ✏
1

�
X

�1
⇠

Hence,948

kŵ � ✏wk2 
1

�
kX�1

⇠k2.

Now, using standard results on the extreme singular values of X , such as [A11, Equation (3.2)],949

we have that �max(X
�1

) = 1/�min(X)  2
d
, with probability 1 � exp(�⌦(d)). Hence, with950

probability 1� exp(�⌦(d)) it holds951

kŵ � ✏wk2  O(
2

d
2

�
k⇠k2) = O(2

d
2 exp(�⌦((d log d)3))) = exp(�⌦((d log d)3)).

Since ✏ 2 {�1, 1} the proof of correctness is complete.952

For the termination time, it suffices to establish that the step using the LLL basis reduction algorithm953

and the step using the Euclid’s algorithm can be performed in polynomial-in-d time. For the LLL954

step we use Theorem D.5 to conclude that it runs in polynomial-time in d,N, logM and log k�k1.955

Now clearly N, logM are polynomial in d. Furthermore, by part 4 of Lemma D.7 also log k�k1956

is polynomial in d with probability 1 � exp(�⌦(d)). The Euclid’s algorithm takes time which is957

polynomial in d and in log kt2k1. But we have established in (32) that kt2k2  ktk2  2
2d
, with958

probability 1 � exp(�⌦(d)) and therefore the Euclid’s algorithm step also indeed requires time959

which is polynomial-in-d.960

D.4 Proof of Lemma D.8961

We focus this section on proving the crucial Lemma D.8. As mentioned above, the proof of the lemma962

is quite involved, and, potentially interestingly, it requires the use of anticoncentration properties of963

the coefficients �i which are rational function of the coordinates of xi. In particular, the following964

result is a crucial component of establishing Lemma D.8.965

Lemma D.9. Suppose w 2 S
d�1 is an arbitrary vector on the unit sphere and � � 1. For two966

sequences of integer numbers C = (Ci)i=1,2,...,d+1, C
0
= (C

0
i)i=1,2,...,d+1 we define the polynomial967
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PC,C0(x1, . . . , xd+1) in d(d+ 1) variables which equals968

det(x2, . . . , xd+1) (h�w, x1iC1 + (C
0
)1) (33)

+

d+1X

i=2

det(x2, . . . , xi�1,�x1, xi+1, . . . , xd+1) (h�w, xiiCi + (C
0
)i) ,

where each x1, . . . , xd+1 is assumed to have a d-dimensional vector form.969

We now draw xi’s in an i.i.d. fashion from the standard Gaussian measure on d dimensions. For any970

two sequences C,C 0 it holds971

Var(PC,C0(x1, . . . , xd+1)) = (d� 1)!�
2

X

1i<jd+1

(Ci � Cj)
2
+ d!

d+1X

i=1

(C
0
)
2
i .

Furthermore, for some universal constant B > 0 the following holds. If Ci, C
0
i are such that either972

the Ci’s are not all equal to each other or the C
0
i’s are not all equal to zero, then for any ✏ > 0,973

P(|PC,C0(x1, . . . , xd+1)|  ✏)  B(d+ 1)✏
1

d+1 . (34)

Proof. The second part follows from the first one combined with the fact that under the assumptions974

on C,C
0 in holds that for some i = 1, . . . , d+ 1 either (Ci � C

0
i)

2 � 1 or (C 0
i)

2 � 1. In particular,975

in both cases since � � 1,976

Var(PC,C0(x1, . . . , xd+1)) � (d� 1)! � 1.

Now we employ [A12, Theorem 1.4] which implies that for some universal constant B > 0, since977

our polynomial is multilinear and has degree d+ 1 it holds for any ✏ > 0978

P(|PC,C0(x1, . . . , xd+1)|  ✏

q
Var(PC,C0(x1, . . . , xd+1)))  B(d+ 1)✏

1
d+1 .

Using our lower bound on the variance we conclude the result.979

Now we proceed with the variance calculation. First we denote980

µ(x�1) := det(x2, . . . , xd+1) ,

and for each i > 2981

µ(x�i) := det(x2, . . . , xi�1,�x1, xi+1, . . . , xd+1).

As all coordinates of the xi’s are i.i.d. standard Gaussian, for each i = 1, . . . , d + 1 the random982

variable µ(x�i) has mean zero and variance d!. Furthermore, let us denote `(xi) := h�w, xii, which983

is a random variable with mean zero and variance �
2. In particular µ(x�i)`(xi) has also mean zero984

as µ(x�i) is independent with xi. Now notice that under this notation,985

PC,C0(x1, . . . , xd+1) =

dX

i=1

Ciµ(x�i)`(xi) +

dX

i=1

C
0
iµ(x�i).

Hence, we conclude986

E[PC,C0(x1, . . . , xd+1)] = 0.

Now we calculate the second moment of the polynomial. We have987

E[P 2
C,C0(x1, . . . , xd+1)] =

d+1X

i=1

C
2
i d!�

2
+

X

1i 6=jd

CiCjE[µ(x�i)`(xi)µ(x�j)`(xj)] +

d+1X

i=1

C
02
i d! .

Now for all i 6= j,988

E[µ(x�i)`(xi)µ(x�j)`(xj)]

= E[det(. . . , xi�1,�x1, xi+1, . . .) det(. . . , xj�1,�x1, xj+1, . . .)h�w, xiih�w, xji]

=

dX

p,q=1

�
2
wpwqE[det(. . . , xi�1,�x1, xi+1, . . .) det(. . . , xj�1,�x1, xj+1, . . .)(xi)p(xj)q]
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Now observe that the monomials of the product989

det(. . . , xi�1,�x1, xi+1, . . .) det(. . . , xj�1,�x1, xj+1, . . .)(xi)p(xj)q

have the property that each coordinate of the various x
0
is appears at most twice; in other words990

the degree per variable is at most 2. Hence, the monomials that could potentially have not zero991

mean with respect to the standard Gaussian measure are the ones where all coordinates of every992

xi, i = 1, . . . , d + 1 appear exactly twice or none at all, in which case the monomial has mean993

equal to the coefficient of the monomial. By expansion of the determinants, we have that the studied994

product of polynomials equals to the sum over all �, ⌧ permutations on d variables of the terms995

(�1)sgn(�⌧
�1)

(. . . xi�1,�(i�1)(�x1)�(i)xi+1,�i+1 . . .)(. . . xj�1,⌧(j�1)(�x1)⌧(j)xj+1,⌧(j+1) . . .)(xi)p(xj)q.

Hence, a straightforward inspection allows us to conclude that for every coordinate to appear996

exactly twice, we need the corresponding permutations �, ⌧ to satisfy ⌧(i) = p,�(j) = q (from the997

coordinates (xi)p, (xj)q), �(i) = ⌧(j) (from the coordinate of x1) and finally �(x) = ⌧(x) for all998

x 2 [d] \ {i, j} (the rest coordinates). Furthermore, the value of the mean of this monomial would999

then be given simply by (�1)sgn(�⌧�1)
.1000

Now we investigate more which permutations �, ⌧ can satisfy the above conditions. The last two1001

conditions imply in straightforward manner that ⌧�1
� is the transposition (i, j). Hence, ⌧�1

�(j) = i.1002

But we have �(j) = q and therefore i = ⌧
�1

�(j) = ⌧
�1

(q) which gives ⌧(i) = q. We have though1003

as our condition that ⌧(i) = p which implies that for such a pair of permutations �, ⌧ to exist it must1004

hold p = q. Furthermore, for any � with �(j) = p there exist a unique ⌧ satisfying the above given1005

by ⌧ = � � (i, j), where � corresponds to the multiplication in the symmetric group Sd. Hence, if1006

p 6= q no such pair of permutations exist and the mean of the product is zero. If p = q there are1007

exactly (d� 1)! such pairs (all permutations � sending j to p and ⌧ given uniquely given �) which1008

correspond to (d� 1)! monomials with mean (�1)sgn(�)+sgn(⌧)
= (�1)sgn(��1⌧)

= �1, where we1009

used that the sign of a transposition is �1. Combining the above we conclude that1010

E[det(. . . , xi�1,�x1, xi+1, . . .) det(. . . , xj�1,�x1, xj+1, . . .)(xi)p(xj)q] = �(d� 1)!1(p = q).

Hence, since kwk2 = 1,1011

E[µ(x�i)`(xi)µ(x�j)`(xj)] =

dX

p=1

��2
w

2
p = ��2

.

Therefore,1012

E[P 2
C,C0(x1, . . . , xd+1)] =

d+1X

i=1

C
2
i d!�

2 � (d� 1)!�
2

X

1i 6=jd+1

CiCj +

d+1X

i=1

C
02
i d!

= (d� 1)!�
2

X

1i<jd+1

(Ci � Cj)
2
+ d!

d+1X

i=1

(C
0
)
2
i .

The proof is complete.1013

We now proceed with the proof of Lemma D.8.1014

Proof of Lemma D.8. Let t1, t2 2 Zd
, t

0 2 Z with k(t1, t2, t0)k2  2
2d which is an integer relation;1015

d+1X

i=1

(�i)N (t1)i +

d+1X

i=1

(�iz̃i)N (t2)i + t
0
2
�N

= 0.

First note that it cannot be the case that t1 = t2 = 0 as from the integer relation it should be also1016

that t0 = 0 and therefore t = 0 but an integer relation needs to be non-zero. Hence, from now on we1017

restrict ourselves only to the case where t1, t2 are not both zero. Now, as clearly |t0|  2
2d it also1018

holds1019
�����

d+1X

i=1

(�i)N (t1)i +

d+1X

i=1

(�iz̃i)N (t2)i

�����  2
2d
2
�N

.
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Consider T the set of all pairs t = (t1, t2) 2 (Zd+1 ⇥ Zd+1
) \ {0} for which there does not exists a1020

c 2 Z \ {0} such that for i = 1, . . . , d+ 1 (t1)i = cKi and (t2)i = c✏i.1021

To prove our result it suffices therefore to prove that1022

P

0

@
[

t2T ,ktk222d

(�����

d+1X

i=1

(�i)N (t1)i +

d+1X

i=1

(�iz̃i)N (t2)i

�����  2
2d
/2

N

)1

A  exp(�⌦(d))

for which, since for any x it holds |x�(x)N |  2
�N and k(t1, t2)k1 

p
2(d+ 1)k(t1, t2)k2  2

3d1023

for large values of d, it suffices to prove that for large enough values of d,1024

P

0

@
[

t2T ,ktk222d

(�����

d+1X

i=1

�i(t1)i +

d+1X

i=1

�iz̃i(t2)i

�����  2
4d
/2

N

)1

A  exp(�⌦(d)).

Notice that by using the equations (27) it holds1025

d+1X

i=1

�i(t1)i +

d+1X

i=1

�iz̃i(t2)i

=

d+1X

i=1

�i(t1)i +

d+1X

i=1

�i(✏i�hw, xii � ✏iKi + ✏i⇠
0
i)(t2)i

=

d+1X

i=1

�i (✏ih�w, xii(t2)i � ✏iKi(t2)i + ✏i⇠i(t2)i + (t1)i)

=

d+1X

i=1

�i (h�w, xiiCi + C
0
i) +

dX

i=1

�i⇠
0
iCi,

for the integers Ci = ✏i(t2)i and C
0
i = �✏iKi(t2)i + (t1)i. Since t 2 T some elementary alge-1026

bra considerations imply that either not all (Ci)i=1,...,d+1 are equal to each other or one of the1027

(C
0
i)i=1,2,...,d+1 is not equal to zero. Let us call this region of permissible pairs (C,C 0

) as C. Fur-1028

thermore, given that all t satisfy ktk2  2
2d
, and that for all Ki satisfy |Ki|  d

Q it holds that any1029

(C,C
0
) defined through the above equations with respect to t1, t2, ✏i,Ki satisfies the crude bound1030

that1031

k(C,C 0
)k22  kt2k22 + 2(d

2Qkt2k22 + kt1k22)  2
6d
.

Hence, using this refined notation it suffices to show1032

P

0

@
[

(C,C0)2C,k(C,C0)k223d

(�����

d+1X

i=1

�i (h�w, xiiCi + C
0
i) +

dX

i=1

�i⇠iCi

�����  2
4d
/2

N

)1

A  exp(�⌦(d)).

Now notice that from our exponential-in-d norm upper bound assumptions on C, the part 4 of Lemma1033

D.7 , and since N = o((d log d)
3
) with probability 1� exp(�⌦(d)) it holds1034

dX

i=1

|�i⇠iCi| = O(2
4dk⇠k1) = O(exp(�(d log d)3)) = O(2

�N
).

Hence it suffices to show that for large enough values of d,1035

P

0

@
[

(C,C0)2C,k(C,C0)k223d

(�����

d+1X

i=1

�i (h�w, xiiCi + C
0
i)

�����  2
5d
/2

N

)1

A  exp(�⌦(d)).
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Using the polynomial notation of Lemma D.9 and specifically notation (33), as well as the fact that1036

by Cramer’s rule �i are rational functions of the coordinates of xi satisfying �idet(x2, . . . , xd+1) =1037

det(. . . , xi�1,�x1, xi+1, . . .) it suffices to show1038

P

0

@
[

(C,C0)2C,k(C,C0)k223d

{|PC,C0(x1, . . . , xd+1)|  |det(x2, . . . , xd+1)|25d/2N}

1

A  exp(�⌦(d)).

Using the fifth part of the Lemma D.7 there exists some constant D > 0 for which it suffices to show1039

P

0

@
[

(C,C0)2C,k(C,C0)k223d

{|PC,C0(x1, . . . , xd+1)|  2
Dd log d

/2
N}

1

A  exp(�⌦(d)).

Now since N = ⇥(d
3
(log d)

2
) we have N = !(d log d). Hence, for sufficiently large d it suffices to1040

show1041

P

0

@
[

(C,C0)2C,k(C,C0)k223d

{|PC,C0(x1, . . . , xd+1)|  2
�N

2 }

1

A  exp(�⌦(d)).

By a union bound, it suffices1042
X

(C,C0)2C,k(C,C0)k223d

P
⇣
|PC,C0(x1, . . . , xd+1)|  2

�N
2

⌘
 2

�⌦(d)
. (35)

Now the integer points (C,C 0
) with `2 norm at most 23d are at most 23d

2+d as they have at most1043

2
3d+1 choices per coordinate. Furthermore, using the anticoncentration inequality (34) of Lemma1044

D.9, we have for any (C,C
0
) 2 C that it holds for some universal constant B > 0,1045

P
⇣
|PC,C0(x1, . . . , xd+1)|  2

�N
2

⌘
 B(d+ 1)2

� N
2(d+1) .

Combining the above the left hand side of (35) it at most1046

B(d+ 1)2
3d2+d

2
� N

2(d+1) = exp(O(d
2
)� ⌦(N/d)) = exp(�⌦(d)),

where we used that N/d = ⌦(d
2
log d) = ⌦(d). This completes the proof.1047

E Approximation with One-Hidden-Layer ReLU Networks1048

Members of the cosine function class F� = {cos(2⇡�hw, xi) | w 2 S
d�1} consist of a composition1049

of the univariate 2⇡-Lipschitz, 1-periodic function �(z) = cos(2⇡z), and a 1D linear projection1050

z = �hw, xi. Since x ⇠ N(0, Id), z lies within the interval [�R,R], where R = �
p
2 log(1/�),1051

with probability at least 1��. Hence, to achieve ✏-squared loss over the Gaussian input distribution, it1052

suffices for the ReLU network to uniformly approximate the univariate function �(z) = cos(2⇡z) on1053

some compact interval [�R(�, ✏), R(�, ✏)], and output 0 for all z 2 R outside the compact interval.1054

The uniform approximability of univariate Lipschitz functions by one-hidden-layer ReLU networks1055

on compact intervals is well-known. To establish our results, we will use the quantitative result1056

from [A13], which we reproduce here as Lemma E.1. We present our ReLU approximation result for1057

the cosine function class in Theorem E.2.1058

Lemma E.1 ([A13, Lemma 19]). Let �(z) = max{0, z} be the ReLU activation function, and fix1059

L, ⌘, R > 0. Let f : R! R be an L-Lipschitz function which is constant outside an interval [�R,R].1060

There exist scalars a, {↵i,�i}wi=1, where w  3
RL
⌘ , such that the function1061

h(x) = a+

wX

i=1

↵i�(x� �i)

is L-Lipschitz and satisfies1062

sup
x2R

��f(x)� h(x)
��  ⌘.

Moreover, one has |↵i|  2L.1063
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Theorem E.2. Let d 2 N, � � 1, and ✏ 2 (0, 1) be a real number. Then, the cosine function class1064

F� = {cos(2⇡�hw, xi) | w 2 S
d�1} can be ✏-approximated (in the squared loss sense) over the1065

Gaussian input distribution x ⇠ N(0, Id) by one-hidden-layer ReLU networks of width at most1066

O

✓
�

q
log(2/✏)

✏

◆
.1067

Proof. Let R = d�
p

2 log(8/✏)e � 1 and z = �hw, xi. Then, by Mill’s inequality (Lemma H.3)1068

P(|z| � R) 
r

2

⇡
exp

✓
� R

2

2�2

◆
 ✏

8
.

Let f : R ! R be a function which is equal to cos(2⇡z) on [�R � 1/2, R + 1/2] and 0 outside1069

the compact interval. We claim that f is still 2⇡-Lipschitz. First, note that cos(2⇡(R + 1/2)) =1070

cos(�2⇡(R+ 1/2)) = 0. Moreover, f is 2⇡-Lipschitz within the interval [�R� 1/2, R+ 1/2] and1071

0-Lipschitz in the region |z| > R+ 1/2. It suffices to consider the case when one point z falls inside1072

[�R�1/2, R+1/2] and another point z0 falls outside the interval. Without loss of generality, assume1073

that z 2 [�R� 1/2, R+ 1/2] and z
0
> R+ 1/2. The same argument applies for z0 < �R� 1/2.1074

Then,1075

|f(z0)� f(z)| = |f(R+ 1/2)� f(z)|  2⇡|(R+ 1/2)� z|  2⇡|z0 � z| .

Now set L = 2⇡, ⌘ =
p
✏/2, R = d�

p
2 log(8/✏)e + 1/2  2�

p
2 log(8/✏) in the statement of1076

Lemma E.1, and approximate f with a one-hidden-layer ReLU network g(z), which has width at1077

most 24⇡ · �
q

log(2/✏)
✏ . Then,1078

E
z⇠N(0,�)

[(cos(2⇡z)� g(z))
2
] =

1

�
p
2⇡

Z
(cos(2⇡z)� g(z))

2
exp(�z2/(2�2

))dz

=
1

�
p
2⇡

Z

|z|R+1/2
(cos(2⇡z)� g(z))

2
exp(�z2/(2�2

))dz

+
1

�
p
2⇡

Z

|z|>R+1/2
(cos(2⇡z)� g(z))

2
exp(�z2/(2�2

))dz

 ⌘
2
+

4

�
p
2⇡

Z

|z|>R+1/2
exp(�z2/(2�2

))dz

 ⌘
2
+ 4(✏/8)

< ✏ ,

where the first inequality follows from the fact that the squared loss is bounded by 4 for all z /21079

[�R,R] since cos(2⇡z) 2 [�1, 1] and g(z) 2 [�⌘, ⌘] ⇢ [�1, 1]. This completes the proof.1080

F Covering Algorithm for the Unit Sphere1081

The (randomized) exponential-time algorithm for constructing an ✏-cover of the d-dimensional unit1082

sphere S
d�1 is presented in Algorithm 6. We prove the algorithm’s correctness in the following1083

claim.1084

Claim F.1. Let d 2 N be a number, let ✏ 2 (0, 1) be a real number, and let N = d(1 + 4/✏)
de.1085

Then, d2N logNe vectors sampled from S
d�1 uniformly at random forms an ✏-cover of Sd�1 with1086

probability at least 1� exp(�⌦(d)).1087

Proof. By Lemma B.2, we know that there exists an ✏/2-cover of Sd�1 with size less than N =1088

d(1 + 4/✏)
de. Let us assume for simplicity that it’s size equals to N without loss of generality, by1089

adding additional arbitrary points if necessary. We denote this ✏/2-cover by K. Of course, K ✓ S
d�11090

by the definition of an ✏-cover in [A6, Section 4.2].1091

Now, observe that any family W of M vectors on the sphere, say W = {w1, . . . , wM}, with the1092

property that for any v 2 K there exist i 2 [M ] such that kv � wik2  ✏/2 is an ✏-cover of Sd�1
.1093
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Algorithm 6: Exponential-time algorithm for constructing an ✏-cover of the unit sphere
Input: A real number ✏ 2 (0, 1), and natural number d 2 N.
Output: An ✏-cover of the unit sphere S

d�1 containing 2N logN points, where
N = (1 + 4/✏)

d with probability 1� exp(�⌦(d)).
Initialize the cover C = ;, and set m = 2N logN .
for i = 1 to m do

Sample x ⇠ N(0, 1)

v  x/kxk2
Add v 2 S

d�1 to C
return C.

Indeed, let x 2 S
d�1

. Since K is an ✏/2-cover, there exist v 2 K with kx� vk2  ✏/2. Moreover,1094

using the property of the family W , there exists some i 2 [M ] for which kv � wik2  ✏/2, by1095

triangle inequality we have kwi � xk2  ✏.1096

Now, by definition of the ✏/2-cover it holds1097

[

v2K
B(v, ✏/2) \ S

d�1
= S

d�1
,

where by B(x, r) we denote the Euclidean ball in Rd with center x 2 Rd and radius r. Hence,1098

denoting by µ the uniform probability measure on the sphere it holds by a union bound that for all1099

v 2 K it holds Nµ(B(v, ✏/2) \ S
d�1

) � 1 or1100

µ(B(v, ✏/2) \ S
d�1

) � 1

N
. (36)

In other words, if we fix some v 2 K and sample a uniform point w on the sphere, it holds that with1101

probability at least 1/N we have kw � vk2  ✏/2.1102

Hence, the probability that M random unit vectors w1, . . . , wM are all at distance more than ✏/21103

from a fixed v 2 K is upper bounded by1104

P
 

M\

i=1

{kui � vk2 > ✏/2}
!
 (1� 1/N)

m  exp(�m/N) .

Now let M = 2N logN . By the union bound, the probability that there exists some v 2 K not1105

covered by m random unit vectors w1, . . . , wM is upper bounded by1106

P
 
[

v2K
{kui � vk2 > ✏/2 for all i = 1, . . . ,M}

!
 |K| · exp(�M/N)  1/N .

Since N = exp(⌦(d)), we conclude that M = 2N logN random unit vectors form an ✏-cover of1107

S
d�1 with probability 1� exp(�⌦(d)). The proof is complete.1108

G The Population Loss and Parameter Estimation1109

Let f = cos(2⇡�hw, xi) be the target function we wish to (weakly) learn from Gaussian inputs1110

x ⇠ N(0, Id). In this section, we consider the proper learning setup, where we wish to learn a unit1111

vector w0 such that the hypothesis gw0 = cos(2⇡�hw0
, xi) achieves small squared loss with respect1112

to the target function f . Towards this goal, we define the squared loss associated with some other1113

unit vector w0 2 S
d�1.1114

Definition G.1. Let d 2 N and w 2 S
d�1 be some fixed hidden direction. For any w

0 2 S
d�1, we1115

define the population loss L(w0
) of the hypothesis gw0(x) = cos(2⇡�hw0

, xi) with respect to w by1116

L(w
0
) = Ex⇠N(0,Id)[(cos(2⇡�hw, xi)� cos(2⇡�hw0

, xi))2] . (37)
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Notice that because the cosine function is even, the population loss inherits the sign symmetry and1117

satisfies that L(w0
) = L(�w0

) for all w0 2 S
d�1. Reflecting that symmetry, we obtain a Lipschitz1118

relation between the population loss and the squared `2 difference between w and w
0 (or �w0 if1119

kw + w
0k2  kw � w

0k2). In particular, when � is diverging, we can rigorously show that recovery1120

of w with O(1/�) `2-error is sufficient for (properly) learning the associated cosine function with1121

constant edge. This is formally stated in Corollary G.3. We start with the following useful proposition.1122

Proposition G.2. For every w
0 2 S

d�1 it holds1123

L(w
0
) = 2

X

k22Z�0

(2⇡�)
2k

k!
exp(�4⇡2

�
2
)
�
1� hw,w0ik

�
. (38)

In particular,1124

L(w
0
)  4⇡

2
�
2
min{kw � w

0k22, kw + w
0k22}. (39)

Proof. Let {hk}k2Z�0
be the (probabilist’s) normalized Hermite polynomials. We have that the pair1125

Z = hw, xi, Z⇢ = hw0
, xi is a bivariate pair of standard Gaussian random variables with correlation1126

⇢ = hw,w0i. Using the fact that hk’s form an orthonormal basis in Gaussian space (See item (1) of1127

Lemma H.10), we have by Parseval’s identity that1128

L(w
0
) = 2(E[cos(2⇡�Z)

2
]� E[cos(2⇡�Z) cos(2⇡�Z⇢)])

= 2

X

k2Z

�
E[cos(2⇡�Z)hk(Z)]

2 � E[cos(2⇡�Z)hk(Z)]E[cos(2⇡�Z⇢)hk(Z)]
�
.

Using now item (2) of Lemma H.10 for ⇢ = 1 and for ⇢ = hw,w0i, we have1129

L(w
0
) = 2

X

k2Z

✓
(2⇡�)

2k

k!
exp(�4⇡2

�
2
)� hw,w0ik (2⇡�)

2k

k!
exp(�4⇡2

�
2
)

◆

= 2

X

k22Z�0

(2⇡�)
2k

k!
exp(�4⇡2

�
2
)
�
1� hw,w0ik

�
,

as we wanted for the first part.1130

For the second part, notice that since the summation on the right hand from Eq. (38) is only containing1131

an even power of hw,w0i it suffices to establish the upper bound in terms of kw � w
0k22. The exact1132

same argument can be used to obtain the upper bound in terms of kw + w
0k22, due to the observed1133

sign symmetry of the population loss with respect to w
0.1134

Now notice that using the elementary inequality that for ↵ 2 (0, 1), x � 1 we have (1�a)x � 1�ax,1135

we conclude that for all k � 0 (the case k = 0 is trivial) it holds1136

1� hw,w0ik = 1� (1� 1

2
kw � w

0k22)k 
k

2
kw � w

0k22 .

Hence, combining with the first part, we have1137

L(w
0
) 

X

k22Z�0

k
(2⇡�)

2k

k!
exp(�4⇡2

�
2
)kw � w

0k22


X

k2Z�0

k
(2⇡�)

2k

k!
exp(�4⇡2

�
2
)kw � w

0k22 .

Now notice that
P

k2Z�0
k
(2⇡�)2k

k! exp(�4⇡2
�
2
) is just the mean of a Poisson random variable with1138

parameter (and mean) equal to 4⇡
2
�
2
. Hence, the proof of the second part of the proposition is1139

complete.1140

The following Corollary is immediate given the above result and the item (3) of Lemma H.10.1141

Corollary G.3. Let d 2 N and � = �(d) = !(1). For any w
0 2 S

d�1 which satisfies min{kw �1142

w
0k22, kw + w

0k22}  1
16⇡2�2 and sufficiently large d,1143

L(w
0
)  Var(cos(2⇡�hw, xi))� 1/12 .
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Proof. Using our condition and w
0 and the second part of the Proposition G.2 we conclude1144

L(w
0
)  1

4
.

Now using item (3) of Lemma H.10 we have that for large values of d (since � = !(1)), it holds1145

1

3
 Var(cos(2⇡�hw, xi)) .

The result follows from combining the last two displayed inequalities.1146

H Auxiliary Results1147

H.1 The Periodic Gaussian1148

Definition H.1. Let  s(z) : [�1/2, 1/2)! R+ be the periodic Gaussian defined by1149

 s(z) :=

1X

k=�1

1

s
p
2⇡

exp

 
� 1

2

⇣
z � k

s

⌘2
!

.

We refer to the parameter s, the standard deviation of the Gaussian before periodicization, as the1150

“width” of the periodic Gaussian  s.1151

Remark H.2. For intuition, we can consider two extreme settings of the width s. If s⌧ 1, then  s1152

is close in total variation distance to the Gaussian of standard deviation s since the tails outside1153

[�1/2, 1/2) will be very light. On the other hand, if s � 1, then  s is close in total variation1154

distance to the uniform distribution on [0, 1). This intuition is formalized in Claim H.6.1155

The Gaussian distribution on R satisfies the following tail bound called Mill’s inequality.1156

Lemma H.3 (Mill’s inequality [A6, Proposition 2.1.2]). Let z ⇠ N(0, 1). Then for all t > 0, we1157

have1158

P(|z| � t) =

r
2

⇡

Z 1

t
e
�x2/2

dx  1

t
·
r

2

⇡
e
�t2/2

.

The Poisson summation formula, stated in Lemma H.5 below, will be useful in our calculations. We1159

first define the dual of a lattice ⇤ to make the formula easier to state.1160

Definition H.4. The dual lattice of a lattice ⇤, denoted by ⇤⇤, is defined as1161

⇤
⇤
= {y 2 Rd | hx, yi 2 Z for all x 2 ⇤} .

If B is a basis of ⇤ then (B
T
)
�1 is a basis of ⇤⇤; in particular, det(⇤⇤

) = det(⇤)
�1.1162

Lemma H.5 (Poisson summation formula). For any lattice ⇤ ⇢ Rd and any Schwarz function1163

f : Rd ! R,1164
X

x2⇤

f(x) = det(⇤
⇤
) ·
X

y2⇤⇤

bf(y) ,

where bf(y) =
R
Rd f(x)e

�2⇡ihy,xi
dx, and ⇤⇤ is the dual lattice of ⇤.1165

Note that by the properties of the Fourier transform, for a fixed c 2 Rd1166
X

x2⇤+c

f(x) =

X

x2⇤

f(x+ c) = det(⇤
⇤
)

X

y2⇤⇤

exp(2⇡ihc, yi) · bf(y) .

Claim H.6 (Adapted from [A14, Claim 2.8.1]). For any s > 0 and any z 2 [�1/2, 1/2) the periodic1167

Gaussian density function  s(z) satisfies1168

 s(z) 
1

s
p
2⇡

⇣
1 + 2(1 + s

2
)e

�1/(2s2)
⌘

.

and1169

| s(z)� 1|  2(1 + 1/(4⇡s)
2
)e

�2⇡2s2
.
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Proof. We first observe that  s(z)   s(0) for any z 2 [�1/2, 1/2) (this can be seen from the1170

Poisson summation formula). Hence, it suffices to upper bound  s(0) and show a lower bound for1171

 s(z) for all z 2 [�1/2, 1/2). For the first upper bound, we use Mill’s inequality to obtain1172

 s(0) =
1

s
p
2⇡

X

y2(1/s)Z
exp(�y2/2)

 1

s
p
2⇡

✓
1 + 2 exp(�1/(2s2)) + 2

Z 1

1
exp(�x2

/(2s
2
))dx

◆

 1

s
p
2⇡

�
1 + 2(1 + s

2
) exp(�1/(2s2))

�
.

For the second upper bound, we use the Poisson summation formula to obtain1173

 s(0) =

X

u2sZ
exp(�2⇡2

u
2
)

= 1 + 2

1X

k=1

exp(�2⇡2
s
2
k
2
)

 1 + 2 exp(�2⇡2
s
2
) + 2

Z 1

1
exp(�2⇡2

s
2
x
2
)dx

 1 + 2(1 + 1/(4⇡s)
2
) exp(�2⇡2

s
2
) .

For the lower bound on  s(z), we use the Poisson summation formula again and obtain1174

 s(z) =

X

u2sZ
exp(�2⇡izu) · exp(�2⇡2

u
2
)

� 1� 2

1X

k=1

| exp(�⇡iz(sk))| · exp(�2⇡2
s
2
k
2
)

� 1� 2

✓
exp(�2⇡2

s
2
) +

Z 1

1
exp(�2⇡2

s
2
x
2
)dx

◆

� 1� 2(1 + 1/(4⇡s)
2
) exp(�2⇡2

s
2
) .

1175

H.2 Auxiliary Lemmas for the Constant Noise Regime1176

Lemma H.7. Fix some ⌧ 2 (0, 1]. Then, for arccos : [�1, 1]! [0,⇡] it holds that1177

sup

x,y2[�1,1],|x�y|⌧
| arccos(x)� arccos(y)|  arccos(1� ⌧).

Proof. Let us fix some arbitrary ⇠ 2 [0, ⌧ ] and consider the function G(x) = arccos(x)�arccos(x+1178

⇠). Given the fact that arccos is decreasing, it suffices to show that |G(x)|  arccos(1� ⌧) for all1179

x 2 [�1, 1� ⇠]. By direct computation it holds1180

G
0
(x) = � 1p

1� x2
+

1p
1� (x+ ⇠)2

=
⇠(2x+ ⇠)p

1� x2
p
1� (x+ ⇠)2(

p
1� x2 +

p
1� (x+ ⇠)2)

.

Hence, the function G decreases until x = �⇠/2 and increases beyond this point. Consequently, G1181

obtains its global maximum at one the endpoints of [�1, 1� ⇠]. But since cos(⇡ � a) = � cos(a)1182

for all a 2 R it also holds for all b 2 [�1, 1] arccos(�b) + arccos(b) = ⇡. Hence,1183

G(�1) = ⇡ � arccos(�1 + ⇠) = arccos(1� ⇠) = G(1� ⇠).

Therefore,1184

G(x)  arccos(1� ⇠)  arccos(1� ⌧).

The proof is complete.1185
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H.3 Auxiliary Lemmas for the Exponentially Small Noise Regime1186

Lemma H.8. [Restated Lemma D.6] Suppose n  C0d for some constant C0 > 0 and s 2 Rn1187

satisfies for some m 2 Zn that |hm, si| = exp(�⌦((d log d)3)). Then for some sufficiently large1188

constant C > 0, if N = dd3(log d)2e there is an m
0 2 Zn+1 which is equal with m in the first n1189

coordinates, satisfies km0k2  Cd
1
2 kmk2 and is an integer relation for the (s1)N , . . . , (sn)N , 2

�N
.1190

Proof. We start with noticing that since N = o((d log d)
3
) we have1191

|hm, si|  exp(�⌦((d log d)3)) = O(2
�N

) .

Hence, since for any real number x we have |x� (x)N |  2
�N

, it holds1192

nX

i=1

mi(si)N =

nX

i=1

misi +O(

nX

i=1

mi2
�N

)

= O(2
�N

) +O(

nX

i=1

|mi|2�N
)

= O(

nX

i=1

|mi|2�N
).

Now observe that the number
Pn

i=1 mi(si)N is a rational number of the form a/2
N
, a 2 Z. Hence1193

using the last displayed equation we can choose some integer m0
n+1 with1194

nX

i=1

mi(si)N = m
0
n+12

�N
.

for which using Cauchy-Schwartz and n = O(d) it holds1195

|m0
n+1| = O(kmk1) = O(

p
nkmk2) = O(

p
dkmk2).

Hence m0
= (m1, . . . ,mn,�m0

n+1) is an integer relation for (s1)N , . . . (sn)N , 2
�N . On top of that1196

km0k22  kmk22 +O(dkmk22) = O(dkmk22).

This completes the proof.1197

Lemma H.9 (Restated Lemma D.7). Suppose that �  d
Q for some Q > 0. For some hidden1198

direction w 2 S
d�1 we observe d+1 samples of the form (xi, zi), i = 1, . . . , d+1 where for each i,1199

xi is a sample from N(0, Id) samples, and1200

zi = cos(2⇡(�hw, xii)) + ⇠i,

for some unknown and arbitrary ⇠i 2 R satisfying |⇠i|  exp(�(d log d)3). Denote by X 2 Rd⇥d the1201

random matrix with columns given by the d vectors x2, . . . , xd+1. With probability 1� exp(�⌦(d))1202

the following properties hold.1203

(1)

max
i=1,...,d+1

kxik2  10

p
d.

(2)

min
i=1,...,d+1

| sin(2⇡�hxi, wi)| � 2
�d

.

(3) For all i = 1, . . . , d+ 1 it holds zi 2 [�1, 1] and1204

zi = cos(2⇡(�hxi, wi+ ⇠
0
i)),

for some ⇠
0
i 2 R with |⇠0i| = exp(�⌦((d log d)3)).1205
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(4) The matrix X is invertible. Furthermore,1206

kX�1
x1k1 = O(2

d
2

p
d).

(5)

0 < |det(X)| = O(exp(d log d)).

Proof. For the first part, notice that for each i = 1, 2, . . . , d + 1, the quantity kxik22 is distributed1207

like a �
2
(d) distribution with d degrees of freedome. Using standard results on the tail of the �

21208

distribution (see e.g. [A15, Chapter 2]) we have for each i,1209

P
⇣
kx1k2 � 10

p
d

⌘
= exp(�⌦(d)).

Hence,1210

P
 

d+1[

i=1

kxik2 � 10

p
d

!
 (d+ 1)P

⇣
kx1k2 � 10

p
d

⌘
= O(d exp

�⌦(d)
) = exp(�⌦(d)),

For the second part, first notice that for large d the following holds: if for some ↵ 2 R we have1211

| sin(↵)|  2
�d then for some integer k it holds |↵ � k⇡|  2

�d+1
. Indeed, by substracting an1212

appropriate integer multiple of ⇡ we have ↵� k⇡ 2 [�⇡/2,⇡/2]. Now by applying the mean value1213

theorem for the branch of arcsin defined with range [�⇡/2,⇡/2] we have that1214

|↵� k⇡| = | arcsin(sin↵)� arcsin(0)|  1p
1� ⇠2

| sin↵|  1

1� ⇠2
2
�d

for some ⇠ with |⇠|  | sin↵|  2
�d

. Hence, using the bound on ⇠ we have1215

|↵� k⇡|  1

1� 2�2d
2
�d  2

�d+1
.

Using the above observation, we have that if for some i it holds | sin(2⇡�hxi, wi)|  2
�d then for1216

some integer k 2 Z it holds |hxi, wi � k
2� | 

1
� 2

�d
. Furthermore, since by Cauchy-Schwartz and1217

the first part with probability 1� exp(�⌦(d)) we have1218

|hxi, wi|  kxik  10

p
d,

it suffices to consider only the integers k satisfying |k|  10�
p
d, with probability 1� exp(�⌦(d)).1219

Hence,1220

P
 

d+1[

i=1

| sin(2⇡�hxi, wi)|  2
�d

!
 P

0

@
d+1[

i=1

[

k:|k|10�
p
d

|hxi, wi �
k

2�
|  1

�
2
�d

1

A

 20d

p
d� sup

k2Z
P
✓
|hx1, wi � k/2�|  1

�
2
�d

◆

 40d

p
d2

�d

= exp(�⌦(d)),

where we used the fact that hx1, wi is distributed as a standard Gaussian, and that for a standard1221

Gaussian Z and for any interval I of any interval of length t it holds P(Z 2 I)  1p
2⇡

t  t.1222

For the third part, notice that from the second part for all i = 1, . . . , d+ 1 it holds1223

1� cos
2
(2⇡�hxi, wi) = sin

2
(2⇡�hxi, wi) = ⌦(2�2d

)

with probability 1 � exp(�⌦(d)). Hence, since k⇠k1  exp(�(d log d)3) we have that for all1224

i = 1, . . . , d+ 1 it holds1225

zi = cos(2⇡�hxi, wi)) + ⇠i 2 [�1, 1],
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with probability 1� exp(�⌦(d)). Hence, the existence of ⇠0i follows by the fact that image of the1226

cosine is the interval [�1, 1]. Now by mean value theorem we have1227

⇠i = cos(2⇡(�hxi, wi+ ⇠
0
i))� cos(2⇡�hxi, wi)) = 2⇡�⇠

0
i sin(2⇡�t)

for some t 2 (hxi, wi � |⇠i|, hxi, wi+ |⇠i|). By the 1-Lipschitzness of the sine function, the second1228

part and the exponential upper bound on the noise we can immediately conclude1229

| sin(2⇡�t)| � sin(2⇡�hxi, wi)� |⇠i| = ⌦(2�d
),

with probability 1� exp(�⌦(d)). Hence it holds |⇠0i|⌦(2�d
)  |⇠i| and therefore1230

|⇠0i|  2
d|⇠i| = exp(�⌦((d log d))3)

with probability 1� exp(�⌦(d)).1231

For the fourth part, for the fact that X is invertible, consider its determinant, that is the random1232

variable det(X). The determinant is non-zero almost surely, i.e. det(X) 6= 0 almost surely. This1233

follows from the fact that the determinant is a non-zero polynomial of the entries of X , e.g. for1234

X = Id it equals one, hence, using standard results as all entries of X are i.i.d. standard Gaussian1235

it is almost surely non-zero [A16]. Now, using standard results on the extreme singular values of1236

X , such as [A11, Equation (3.2)], we have that �max(X
�1

) = 1/�min(X)  2
d
, with probability1237

1� exp(�⌦(d)). In particular, using also the first part, it holds1238

kX�1
x1k1  kX�1

x1k2 
p
�max(X

�1)kx1k2  2
d
2

p
d,

with probability 1� exp(�⌦(d)).1239

For the fifth part, notice that the determinant is non-zero from the fourth part.1240

For the upper bound on the determinant, we apply Hadamard’s inequality [A17] and part 1 of the1241

Lemma to get that1242

|det(x2, . . . , xd+1)| 
d+1Y

i=2

kxik2  (10

p
d)

d
= O(exp(d log d)),

with probability 1� exp(�⌦(d)).1243

1244

H.4 Auxiliary Lemmas for the Population Loss1245

Fix some hidden direction w 2 S
d�1

. Recall that for any w
0 2 S

d�1, we denote by1246

L(w
0
) = Ex⇠N(0,Id)[(cos(2⇡�hw, xi)� cos(2⇡�hw0

, xi))2] .

Lemma H.10. Let us consider the (probabilist’s) normalized Hermite polynomials on the real line1247

{hk}k2Z�0
. The following identities hold for Z ⇠ N(0, 1).1248

(1) For all k, ` 2 Z�01249

E[hk(Z)h`(Z)] = [k = `] .

(2) Let Z⇢ be a standard Gaussian which is ⇢-correlated with Z. Then, for all � > 0, k 2 Z�0,1250

E[hk(Z) cos(2⇡�Z⇢)] = (�1)k/2⇢k (2⇡�)
k

p
k!

exp(�2⇡2
�
2
) · [k 2 2Z�0] .

(3) The performance of the trivial estimator, which always predicts 0, equals1251

Var(cos(2⇡�Z)) =

X

k22Z�0\{0}

(2⇡�)
2k

k!
exp(�4⇡2

�
2
) =

1

2
+O(exp(�⌦(�2

))) .

38



Proof. The first part follows from the standard property that the family of normalized Hermite1252

polynomials form a complete orthonormal basis of L2
(N(0, 1)) [A18, Proposition B.2].1253

For the second part, recall the basic fact that we can set Z⇢ = ⇢Z+
p
1� ⇢2W for some W standard1254

Gaussian independent from Z. Using [A18, Proposition 2.10], we get1255

E[hk(Z) cos(2⇡�Z⇢)] = E[hk(Z) cos(2⇡�(⇢Z +

p
1� ⇢2W )]

=
1p
k!
E

d
k

dZk
cos(2⇡�(⇢Z +

p
1� ⇢2W )

�

= (�1)k/2(2⇡⇢�)k 1p
k!
E[cos(2⇡�(⇢Z +

p
1� ⇢2W )] · (k 2 2Z�0)

+ (�1)(k+1)/2
(2⇡⇢�)

k 1p
k!
E[sin(2⇡�(⇢Z +

p
1� ⇢2W )] · (k 62 2Z�0)

= (�1)k/2(2⇡⇢�)k 1p
k!
E[cos(2⇡�(⇢Z +

p
1� ⇢2W )] · (k 2 2Z�0)

= (�1)k/2(2⇡⇢�)k 1p
k!
E[cos(2⇡�Z)] · (k 2 2Z�0)

= (�1)k/2(2⇡⇢�)k 1p
k!

exp(�2⇡2
�
2
) · (k 2 2Z�0) ,

where (a) in the third to last line we used that the sin is an odd function and therefore when k is1256

odd the corresponding term is zero, (b) in the second to last line we used that Z⇢ follows the same1257

standard Gaussian law as Z and, (c) in the last line we used the characteristic function of the standard1258

Gaussian to conclude that for any t > 0,1259

E[cos(tZ)] = Re[E[eitZ ]] = e
�t2/2

.

For the third part, notice that by applying the result from part (1) and the result from part (2) (for1260

⇢ = 1) it holds,1261

Var(cos(2⇡�Z)) =

X

k2Z�0\{0}

E[cos(2⇡�Z)hk(Z)]
2

=

X

k22Z�0\{0}

(2⇡�)
2k

k!
exp(�4⇡2

�
2
)

=

X

k22Z�0

(2⇡�)
2k

k!
exp(�4⇡2

�
2
)� exp(�4⇡2

�
2
)

=

X

k�0

1

2
· (2⇡�)

2k

k!
exp(�4⇡2

�
2
)(1 + (�1)k)� exp(�4⇡2

�
2
)

=
1

2

0

@
X

k�0

(4⇡
2
�
2
)
k

k!
exp(�4⇡2

�
2
) +

X

k�0

(�4⇡2
�
2
)
k

k!
exp(�4⇡2

�
2
)

1

A� exp(�4⇡2
�
2
)

=
1

2
+

1

2
exp(�8⇡2

�
2
)� exp(�4⇡2

�
2
)

=
1

2
+O(exp(�⌦(�2

))) .
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