
A Supplementary Material of The Sensory Neuron as a Transformer:1

Permutation-Invariant Neural Networks for Reinforcement Learning2

A.1 Hyper-parameters3

In the table below are the hyper-parameters used for each experiment. We did not employ exhaustive4

hyper-parameter tuning, but have simply selected parameters that can appropriately size our models5

to work with training methods such as evolution strategies, where the number of parameters cannot6

be too large. As mentioned in the discussion section about the limitations, we tested a small range of7

patch sizes (1 pixel, 4 pixels, 6 pixels), and we find that a patch size of 6x6 works well across tasks.8

Table 1: Summary of hyper-parameters.
CartPole Ant CarRacing Atari Pong

ot R5 R28 R96×96×4 R84×84×4

ot[i] R1 R1 R6×6×4=144 R6×6×4=144

N 5 28 (96/6)2 = 256 (84/6)2 = 196
|A| 1 8 3 6 (one-hot encoding)
M 16 32 1024 400
Wq R8×32 R8×32 R8×16 R8×32

Wk R8×32 R8×32 R111×16 R114×32

Wv I I R144×16 R144×32

σ(·) tanh tanh softmax softmax
mt R16 R32 R1024×16 R400×32

A.2 Description of compute infrastructure used to conduct experiments9

For all ES results, we train on Google Kubernetes Engines (GKE) with 256 CPUs (N1 series) for10

each job. The approximate time, including both training and periodic tests, for the jobs are: 3 days11

(CartPole), 5 days (PyBullet Ant ES) and 10 days (CarRacing). For BC results, we train with Google12

Computing Engines (GCE) on an instance that has one V100 GPU. The approximate time, including13

both training and periodic tests, for the jobs are: 5 days (PyBullet Ant BC), 1 day (Atari Pong).14

A.3 Detailed setups for the experiments15

A.3.1 PyBullet Ant16

In the PyBullet Ant experiment, we demonstrated that a pre-trained policy can be converted into17

a permutation invariant one with behavior cloning (BC). We give detailed task description and18

experimental setups here. In AntBulletEnv-v0, the agent controls an ant robot that has 8 joints19

(|A| = 8), and gets to see an observation vector that has base and joint states as well as foot-ground20

contact information at each time step (|O|=28). The mission is to make the ant move along a pre-21

defined straight line as fast as possible. The teacher policy is a 2-layer FNN policy that has 32 hidden22

units trained with ES. We collected data from 1000 test roll-outs, each of which lasted for 500 steps.23

During training, we add zero-mean Gaussian noise (σ = 0.03) to the previous actions. For the student24

policy, We set up two networks. The first policy is a 2-layered network that has the AttentionNeuron25

with output size mt ∈ R32 as its first layer, followed by a fully-connected (FC) layer. The second,26

larger policy is similar in architecture, but we added one more FC layer and expanded all hidden27

size to 128 to increase its expressiveness. We train the students with a batch size of 64, an Adam28

optimizer of lr = 0.001 and we clip the gradient at maximum norm of 0.5.29

A.3.2 Atari Pong30

In the Atari game Pong, we append a deep CNN to the AttentionNeuron layer in our agent (student31

policy). To be concrete, we reshape the AttentionNeuron’s output message mt ∈ R400×32 to mt ∈32

R20×20×32 and pass it to the trailing CNN: [Conv(in=32, out=64, kernel=4, stride=2), Conv(in=64,33

out=64, kernel=3, stride=1), FC(in=3136, out=512), FC(in=512, out=6)]. We use ReLU as the34

activation functions in the CNN. We collect the stacked observations and the corresponding logits35

output from a pre-trained PPO agent (teacher policy) from 1000 roll-outs, and we minimize the MSE36

1

loss between the student policy’s output and the teacher policy’s logits. The learning rate and norm37

clip are the same as the previous experiment, but we use a batch size of 256.38

For the occluded Pong experiment, we randomly remove a certain percentage of the patches across39

a training batch of stacked observation patches. In tests, we sample a patch mask to determine the40

positions to occlude at the beginning of the episode, and apply this mask throughout the episode.41

A.3.3 CarRacing42

In AttentionAgent [1], the authors observed that the agent generalizes well if it is forced to make43

decisions based on only a fraction of the available observations. Concretely, [1] proposed to segment44

the input image into patches and let the patches vote for each other via a modified self-attention45

mechanism. The agent would then take into consideration only the top K = 10 patches that have the46

most votes and based on the coordinates of which an LSTM controller makes decisions. Because the47

voting process involves sorting and pruning that are not differentiable, the agent is trained with ES. In48

their experiments, the authors demonstrated that the agent could navigate well not only in the training49

environment, but also zero-shot transfer to several modified environments.50

We need only to reshape the AttentionNeuron layer’s outputs to adapt for AttentionAgent’s policy51

network. Specifically, we reshape the output message mt ∈ R1024×16 to mt ∈ R32×32×16 such that52

it can be viewed as a 32-by-32 “image” of 16 channels. Then if we make AttentionAgent’s patch53

segmentation size 1, the original patch voting becomes voting among the mt’s and thus the output54

fits perfectly into the policy network. Except for this patch size, we kept all hyper-parameters in55

AttentionAgent unchanged, we also used the same CMA-ES training hyper-parameters.56

Although the simple settings above allows our augmented agent to learn to drive and generalize57

to unseen background changes, we found the car jittered left and right through the courses. We58

suspect this is because of the frame differential operation in our fk(ot, at−1). Specifically, even59

when the car is on a straight lane, constantly steering left and right allows fk(ot, at−1) to capture60

more meaningful signals related to the changes of the road. To avoid such jittering behavior, we61

make mt a rolling average of itself: mt = (1− α)mt + αmt−1, 0 ≤ α ≤ 1. In our implementation62

α = g([ht−1, at−1]), where ht−1 is the hidden state from AttentionAgent’s LSTM controller and63

at−1 is the previous action. g(·) is a 2-layer FNN with 16 hidden units and a sigmoid output layer.64

References65

[1] Y. Tang, D. Nguyen, and D. Ha. Neuroevolution of self-interpretable agents. In Proceedings66

of the Genetic and Evolutionary Computation Conference, 2020. https://attentionagent.67

github.io.68

2

https://attentionagent.github.io
https://attentionagent.github.io
https://attentionagent.github.io

	Supplementary Material of The Sensory Neuron as a Transformer: Permutation-Invariant Neural Networks for Reinforcement Learning
	Hyper-parameters
	Description of compute infrastructure used to conduct experiments
	Detailed setups for the experiments
	PyBullet Ant
	Atari Pong
	CarRacing

