
A Reproducibility580

In this section, we provide the information required to reproduce our results reported in the main581

text. And we commit to making the code implementation and evaluating checkpoints public. Our582

experiments are run on a machine with AMD Ryzen Threadripper 3970X 32-Core Processor and583

GeForce RTX 3090 GPU.584

Contrastive Learning implementation For the implementation details of contrastive learning,585

please refer to Appendix A.1. The model architecture, training setups, and dataset preprocessing are586

all explained in detail. Our implementations are based some public and official implementations of587

MoCo/MoCov2 2, BYOL/ SimSiam 3 and Barlow Twins 4.588

VAE methods implementation For evaluation on synthetic datasets, i.e., dSprites, Cars3D, Small-589

NORB, and Shapes3D, the disentanglement score is from the original logs of DisLib Locatello et al. 5.590

In the released logs, each method has different training configurations, and our reported result is591

from the configuration with the highest average performance overall provided random seeds. For592

evaluation on CelebA dataset, we follow an open-sourced implementation in Pytorch 6 and align the593

encoder architecture of all methods to be the same as described in Appendix A.1. For the results on594

Shapes3D, because DisLib does not release the pretrained checkpoints, we use the same open-sourced595

implementation to reproduce with the configuration indicated by DisLib. Parameters are kept as596

the default well-tuned version in the provided implementation. When the latent dimension is 1000,597

training of BetaTC VAE will collapse with the default hyperparameters, we have to decrease the � to598

3.0 to work it around.599

GAN methods implementation Limited by the text length, we do not include the performance600

of GAN methods in the main text, but we will report some in the following appendix content. It is601

hard to include GAN methods’ performance in the benchmark as the training is not always stable and602

the discriminator weights are usually not provided in many public codebases. When evaluating on603

synthetic datasets, the FactorVAE scores of InforGAN, IB-GAN, and InfoGAN-CR are provided in604

the paper of Lin et al.. But the evaluation of other metrics in Lin et al. uses a not aligned settings605

with Locatello et al., so we check its officially release 7 to reevaluate the provided implementation606

and model weights under the unified evaluation setup. We perform the same evaluation process for607

results on the CelebA dataset.608

Energy-based Model (EBM) We refer to the implementation of ICE-BeeM (22) for this method.609

We use the officially released codebase for it 8. The encoder implementation has been aligned with610

our default already. The only modification we make is to use the unconditional version instead of its611

default conditional version in loss computation to satisfy the fully unsupervised settings. Please refer612

to the runners/real_data_runner.py file of the codebase for details.613

Evaluation Protocol For MED, we first compute MI following the implementation of MIG by614

DisLib (34). Then we calculate the entropy disentanglement score in the same way as the DCI Disen-615

tanglement score in DisLib. For other disentanglement metrics evaluation, we use the implementation616

of DisLib. The settings of some important parameters rather than our proposed MED are provided in617

Appendix A.2.618

A.1 Implementation of contrastive learning model619

Architecture To make a fair comparison with previous methods, we follow the encoder architecture620

in Factor VAE (23). The pipeline details are shown in Table 2. After each convolutional layer in621

the figure, there is a ReLU activation layer and a group normalization (group number = 4) layer622

for BYOL. So, the encoder is a stack of (Conv-ReLU-GN) blocks. For other contrastive learning623

methods, we keep the default batch normalization to replace GN. By default, the final output channel624

2https://github.com/facebookresearch/moco
3https://github.com/lucidrains/byol-pytorch
4https://github.com/facebookresearch/barlowtwins
5https://github.com/google-research/disentanglement_lib
6https://github.com/AntixK/PyTorch-VAE
7https://github.com/fjxmlzn/InfoGAN-CR
8https://github.com/ilkhem/icebeem
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number is 1000, i.e, D = 1000. For other details of contrastive learning methods, we follow the625

convention in their official implementations.626

Besides the representation network (encoder), BYOL also has a projector network and a predictor627

network. Both of them consist of a pipeline “Linear �! BN �! ReLU �! Linear”. The projection628

dimension is 256, and the hidden dimension of the projector is 4096. The predictor keeps a 256-629

dimensional feature vector in its pipeline.630

Table 2: The encoder architecture for our implemented contrastive learning methods on synthetic
datasets. Besides, there is a ReLU activation layer and a possible normalization layer following each
convolutional layer to create a stack of (Conv-ReLU-Norm) blocks.

Encoder

input: 64⇥ 64 images
pipeline:

4⇥4 conv, stride 2, 32-channel
4⇥4 conv, stride 2, 32-channel
4⇥4 conv, stride 2, 64-channel
4⇥4 conv, stride 2, 64-channel
4⇥4 conv, stride 2, 128-channel
1⇥1 conv, stride 1, D-channel

Training settings We make minor modifications to the training setting of default BYOL to apply to631

contrastive learning methods without negative samples. For training on all datasets, the images are632

resized to 64x64. For data preprocessing, we copy 1-channel images of dSprites and SmallNORB to633

3-channel. During the training stage, we use such a pipeline of augmentation (in PyTorch-style):634

1. RandomApply(transforms.ColorJitter(0.8, 0.8, 0.8, 0.2), p=0.3)635

2. RandomHorizontalFlip()636

3. RandomApply(transforms.GaussianBlur((3,3), (1.0, 2.0)), p=0.2)637

4. RandomResizeCrop(size=(64, 64), scale=(0.6,1.0))638

5. normalization.639

For the normalization, the pixel value of images from dSprites and SmallNORB is uniformly nor-640

malized from [0,255] to [0,1.0]. For Cars3D, Shapes3D, and CelebA, we adopt the commonly used641

Imagenet-statistic normalization for preprocessing the image values.642

During training, we use Adam optimizer by default, whose learning rate is 3e� 4 without weight643

decay. The batch size is set to be 512 without exceptional notation. For evaluation on dSprites,644

Shapes3D, and CelebA, we select the weights after training for 15 epochs for evaluation. We select645

the weights after training for 140 epochs for evaluation on Cars3D and the weights of the 200th epoch646

on SmallNORB considering the small scale of these two datasets.647

To decrease the influence of randomness, we train each model configuration multiple times with648

different random seeds (seed=0, 1, 2). We report the average and standard deviation. To be precise,649

as our implementation is based on Pytorch, we initialize the libraries of numpy, torch, torch.cuda,650

and random with the same random seeds.651

A.2 Evaluation Metrics652

In the main text, we compare the evaluation metrics provided in the DisLib protocol with our proposed653

MED metric. Here we provide more details about them. Moreover, we would conduct evaluations654

under all of them in the next section.655

BetaVAE Metrics Introduced in Higgins et al. (16), BetaVAE score assumes each dimension656

corresponds to one category in a linear classifier. Representations are obtained after the generated657

samples with only one factor fixed. Calculating the summation of the divergence between different658
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Table 3: The factors on all the datasets we investigate the disentanglement on.

dSprites Shapes3D Cars3D SmallNORB CelebA

Factors
(# of values)

Shape (3) Floor hue (10) Elevation (4) category (10) 40 attributes
Scale (6) Wall hue (10) Azimuth (24) Elevation (9) (2 for each)
Orientation (40) Object hue (10) Object id (183) Azimuth (18)
Position X (32) Scale (8) Lighting (6)
Position Y (32) Orientation (15)

Shape (4)

representations and putting this result into a linear classifier, we train a model that possibly outputs659

the corresponding k. The accuracy of this linear model is the value of BetaVAE metric.660

FactorVAE Metrics Kim and Mnih (23) argues the BetaVAE score has the tendency to fail into661

a spurious disentanglement and proposes a new metric based on a majority vote classifier. Rep-662

resentations are obtained after the generated samples with only factor k fixed. Normalizing each663

dimension in representations in terms of standard deviation. Index of dimension with lowest variances664

of normalized representation and the factor index k is the input/output of the linear classifier. The665

accuracy of the classification is the FactorVAE score.666

Mutual Information Gap Chen et al. (7) assumes the disentanglement model has the property that667

most information of one specific factor is contained in one dimension or a group of certain dimensions.668

The mutual information gap is the summation of the difference between the highest and second-669

highest normalized mutual information between a fixed factor and dimensions in representation. The670

formula can be illustrated as below:671

1

K

KX

k=1

1

Hzk

(I(vjk , zk)�max
j 6=jk

I(vj , zk)) (5)

Where K is the overall number of ground truth factors. v is the latent representation and zk is the672

factors of latent variables and jk = argmaxj I(vj , zk).673

DCI disentanglement As Eastwood and Williams (11) suggests, the disentanglement is measured674

by the entropy of relative importance for each dimension in predicting factors. First, we have675

to know the importance of each dimension of the representation for predicting each factor. The676

importance is determined by a regressing model such as Lasso or Random Forest in the original677

DCI implementation (11) or Gradient Boosting Tree in DisLib implementation (34). We note the678

importance matrix R where Rij is the importance of the i-th dimension in prediction the j-th factor.679

Then disentanglement score for the i-th dimension is defined as Di = (1�HK(Pi)) where HK(Pi) =680

�
PK�1

k=0 PiklogKPik denotes the entropy and Pij = Rij/
PK�1

k=0 Rik denotes the normalized681

importance of i-th dimension in prediction the j-th factor. Finally the overall disentanglement score is682

calculated as D =
P

i ⇢iDi where ⇢i =
P

j Rij/
P

ij Rij is the weighting of the each dimension’s683

informativeness in representing factors.684

SAP (27) proposes the Separated Attribute Predictability (SAP) score. A score metrics is computed685

with classification score of predicting j
th factors on i

th dimension as the ijth entry. SAP is the mean686

of the difference between the highest and second-highest scores for each column.687

We follow the implementation provided by DisLib (34) for the evaluation protocol. Despite exceptions,688

the evaluation batch size is 64, the prune_dims.threshold is 0.06. If a classifier is required to be trained689

during evaluation, num_train is 10000, and num_eval is 5000. For Mutual information computation,690

the discretizer function is the histogram discretizer, and the number of bins in the discretization is691

20. For the evaluation of MIG and SAP on dSprites, SmallNORB, Cars3D, and Shapes3D, BYOL692

representation vectors are reduced to 10 dimensions by PCA to be aligned with other methods. For693

the evaluation of MIG and SAP on CelebA, to have a fair comparison, the representation vectors694

of all methods are reduced to 40 dimensions. For the implementation of our proposed MED, the695

basic logic is the same as DCI Disentanglement, but we replace the classifier output with the mutual696

information based scores.697
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Figure 6: The importance distribution for the representation learned from BYOL on dSprites. Here,
we follow the practice of DisLib to use a Gradient Boosting Tree (GBT) regressor to determine the
importance matrix of each latent dimension in predicting each factor. Compared with the Mutual
Information distribution shown in Figure 1a, the importance distribution is significantly more sparse.
The sparsity is encouraged when constructing the GBT regressor. This makes it hard to study the true
representation pattern.

(a)

(b)

Figure 7: The mutual information distribution on SmallNORB(a) and Shapes3D(b).

(a) (b) (c)

Figure 8: The co-occurrence of factors in the mutual information relationship among BYOL repre-
sentations on Cars3D(a), SmallNORB(b) and Shapes3D(c).
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Figure 9: Some samples from SmallNORB dataset. The variance is controlled by the factor indicated
on axis. The image is from Jakab et al. (20).

B More Qualitative Study698

Limited by the main text length limitation, we provide more qualitative studies about the disentan-699

glement property shown by the contrastive learning here. We still use BYOL as an example of the700

negative-free contrastive learning methods.701

B.1 Importance Distribution by DCI702

object type

elevation

Figure 10: Samples from Cars3D. Object type and el-
evation are controlled. It show that the two factors are
not independent.

In the main text, we concisely talked about703

the potential variables introduced by the704

learnable model under some metrics. Here705

we show an example for the widely used706

DCI Disentanglement metric. We fol-707

low DisLib to use Gradient Boosting Tree708

to produce the Importance estimation be-709

tween each factor and each latent dimen-710

sion. All parameters are set the same as711

its default protocol. The visualization is712

shown in Figure 6. Compared with the713

mutual information distribution shown in714

Figure 1a, the importance distribution is715

obviously much more sparse. Sparsity is716

encouraged during constructing the GBT717

regressor. However, the observation can718

lead to the misunderstanding that the cor-719

relation between factors and latent dimen-720

sions is sparse which is not true. By using the pure measurement without involving additional721

adaptive models, such problem will not be raised in the proposed MED metric.722

B.2 Mutual Information Heatmaps723

We compute MI between each latent dimension and each generative factor and visualize them by724

heatmaps, which offer us an intuitive picture of the learned representation space. For completeness,725

we show the MI heatmaps of SmallNORB and Shapes3D in Figure 7a and Figure 7b respectively.726

We can see that the disentangled pattern described in the main text still emerges. There is a group of727

columns brighter than others in each row, and these groups do not overlap for most rows. However,728

we find that some latent dimensions may emphasize more than one factor. We provide a more detailed729

analysis from the perspective of factor co-occurrence on this phenomenon in sectionB.3 below.730

B.3 Co-occurrence of Factors731

To understand to what extent one dimension of the learned representation would respond to more732

than one factor, we make the co-occurrence of mutual information to factors on more datasets here.733

The visualizations are shown in Figure ,8b, Figure 8a and Figure 8c on SmallNORB, Cars3D, and734

Shapes3D respectively.735
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SmallNORB Though most non-diagonal entries have very low co-occurrence of mutual information,736

two pairs of factors show slightly higher co-occurrence. They are “azimuth-elevation” and “instance737

category-lighting”. After investigating the dataset, we find the two pairs of factors are not fully738

independent. Figure 9 show some samples with corresponding factors manipulated. We could see739

that the elevation and azimuth are not fully independent. And the correlation between the instance740

category and the lighting factor is even more obvious because the lighting condition is sensibly related741

to the shadow around the object, whose distribution and shape is highly determined by the instance742

category.743

Cars3D Only one pair of factors show some co-occurrence, i.e. “elevation-object type”. We744

randomly selected samples from Cars3D by different object types and elevations, as shown in745

Figure 10. It shows that with the same value of elevation, samples of different object types have746

different visual elevation. So these two factors are not fully independent. This might explain the747

slightly higher co-occurrence of mutual information between this pair of factors.748

Shapes3D The result shows relatively bad disentanglement. To be precise, some factor pairs show749

low mutual information co-occurrence as expected, such as the color factors of floor, wall, and object750

and the pair of “object color - azimuth”. But the MI co-occurrence of “wall color - object size” and751

“object color - object size;” are higher than we expected as we did not recognize their high dependence.752

This result might relate to our model’s relatively poor performance on Shapes3D.753

B.4 Manipulating Factors754

D E FD E

Figure 11: Representation variation when manipulating one factor only in the dimension-reduced
version. In (a) and (b), position_x and position_y are manipulated respectively and only cause one
dimension significantly variate. While, in (c), when manipulating the ill-defined factor orientation,
two dimensions variate.

In the main paper, we studied the influence to representation by manipulating the factors, where755

the representation is reduced by selecting dimensions as in calculating Top-k MED. Here, we do756

the qualitative study of the influence on representation by manipulating factors in another way but757

still on dSprites. To make the original high-dimensional representation space more compact, we758

use the unsupervised dimension reduction by PCA instead, which is more general when the factor759

pattern is unknown. Here, we reduce the representation dimension by PCA to 10. Note that since760

the PCA operation mixes the original latent space with a linear combination, it might destroy the761

existing disentanglement property in the high dimensional space, or enhance the disentanglement762

if the original high dimensional space is a linear combination of the ground truth factors. But such763

influence is usually considered secondary to the disentanglement learned by a model. No matter764

which case, if the dimension-reduced representation shows disentangled properties, the original space765

at least captures linearly transformed ground truth factors, and the dimension reduction techniques766

such as PCA can make the representation more compact in a qualitative study.767

Figure 11 shows the result of representation vector variation when changing only one factor at once.768

Given three images with only one factor’s value being different, we generate the 10-dim representation769

vectors from them. Then, we compute the variance across the three vectors, leading to 10 scalars.770

The larger the variance is, the more that dimension responds to the factor change. Figure 11(a) and771

(b) show how reduced representation vector changes when manipulating position_x and position_y772
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factor respectively. It shows good disentanglement that only one representation dimension has high773

variation. However, in Figure 11(c) we show a failure mode of the ill-defined factor orientation that774

change of factor causes both the 6th and the 9th dimensions of reduced representation to have large775

variations. From the results, we observe that manipulating one well-defined independent factor causes776

evident variance in only one dimension. And it shows that we could make the learned representation777

vector more compact by unsupervised dimension reduction.778

Table 4: Evaluation results on multiple datasets with different disentanglement metrics.

Model BetaVAE FactorVAE MIG SAP DCI MED

dS
pr

ite
s

�-VAE 82.3 (7.6) 65.8 (9.2) 26.3 (11.0) 5.2 (2.7) 39.3 (13.2) 32.6 (10.0)
�-TCVAE 86.7 (2.4) 76.6 (7.8) 23.8 (6.8) 6.9 (0.9) 36.3 (7.1) 31.8 (7.4)
FactorVAE 84.9 (2.8) 75.3 (7.4) 18.4 (9.0) 6.8 (0.8) 28.8 (10.6) 32.5 (10.1)
DIP-VAE-I 82.7 (3.3) 59.1 (4.8) 9.6 (5.1) 5.2 (2.6) 14.4 (4.6) 18.8 (5.6)
DIP-VAE-II 81.5 (4.9) 58.6 (7.6) 7.4 (3.4) 3.6 (2.2) 12.3 (5.2) 14.7 (5.5)
AnnealedVAE 86.5 (0.1) 60.1 (0.0) 35.2 (1.3) 7.6 (0.5) 37.9 (2.1) 35.8 (0.8)
Ada-GVAE 88.0 (2.7) 73.1 (3.9) 17.3 (4.7) 6.6 (2.0) 32.3 (4.6) –
SlowVAE 87.0 (5.1) 75.2 (11.1) 28.3 (11.5) 4.4 (2.0) 47.7 (8.5) –
EBM 82.3 (2.0) 65.7 (12.5) 1.7 (0.5) 3.0 (1.2) 19.1 (1.8) 6.8 (4.0)
InfoGAN-CR 85.5 (1.0) 88.0 (1.0) 19.8 (3.2) 6.0 (1.0) 14.0 (5.2) –
BYOL 93.2 (0.4) 91.6 (0.8) 29.3 (0.4) 8.0 (0.4) 66.9 (0.2) 31.3 (0.4)

C
ar

s3
D

�-VAE 100.0 (0.0) 89.3 (1.2) 11.7 (1.1) 1.4 (0.9) 38.7 (4.6) 29.0 (2.2)
�-TCVAE 100.0 (0.0) 92.2 (2.7) 15.5 (2.9) 1.7 (0.3) 42.7 (3.5) 33.0 (3.8)
FactorVAE 100.0 (0.0) 91.7 (4.1) 10.6 (2.2) 2.0 (0.5) 29.0 (6.7) 29.1 (3.0)
DIP-VAE-I 100.0 (0.0) 90.5 (5.0) 5.9 (2.8) 1.9 (1.4) 22.6 (5.6) 19.4 (3.3)
DIP-VAE-II 100.0 (0.0) 85.0 (6.1) 5.1 (2.7) 1.3 (0.8) 20.8 (5.4) 16.7 (4.1)
AnnealedVAE 100.0 (0.0) 85.0 (4.3) 7.6 (1.0) 1.5 (0.5) 18.5 (4.3) 15.5 (2.5)
SlowVAE 100.0 (0.0) 90.4 (0.5) 15.4 (2.2) 1.6 (0.5) 48.0 (2.4) –
BYOL 100.0 (0.0) 95.8 (1.2) 7.6 (0.9) 1.8 (0.7) 48.5 (2.3) 9.7 (0.5)

Sm
al

lN
O

R
B

�-VAE 84.1 (2.7) 60.1 (2.4) 25.0 (1.1) 11.4 (1.1) 32.6 (0.6) 24.4 (0.7)
�-TCVAE 84.5 (2.7) 60.3 (2.3) 25.4 (0.9) 11.7 (1.1) 35.2 (0.7) 25.0 (0.9)
FactorVAE 80.8 (3.8) 62.5 (3.6) 23.9 (2.0) 10.2 (0.9) 33.4 (1.1) 25.9 (1.2)
DIP-VAE-I 84.2 (3.2) 69.8 (4.6) 24.3 (2.7) 10.2 (1.4) 30.0 (2.1) 24.5 (2.1)
DIP-VAE-II 85.2 (1.3) 58.4 (2.1) 25.5 (1.5) 14.4 (0.4) 32.3 (0.7) 24.4 (0.7)
AnnealedVAE 60.8 (6.2) 50.0 (9.9) 9.1 (2.2) 6.8 (0.8) 15.7 (6.4) 5.5 (3.7)
SlowVAE 78.2 (3.8) 47.0 (2.9) 23.8 (1.8) 7.8 (1.1) 28.7 (0.7) 21.8 (1.3)
EBM 79.0 (4.4) 57.9 (3.5) 1.7 (0.5) 1.9 (0.1) 13.9 (2.2) 2.3 (1.7)
BYOL 97.0 (0.8) 81.0 (0.5) 3.3 (0.9) 2.2 (0.3) 51.0 (1.0) 7.7 (0.2)

Sh
ap

es
3D

�-VAE 98.6 83.9 22.0 6.2 58.8 12.9 (3.5)
�-TCVAE 99.8 86.8 27.1 7.9 70.9 13.7 (0.9)
FactorVAE 94.2 82.5 27.0 6.1 67.2 0.7 (0.9)
DIP-VAE-I 95.6 79.7 15.2 4.0 55.9 10.3 (0.9)
DIP-VAE-II 97.8 88.4 18.1 6.3 41.9 –
AnneledVAE 86.1 80.9 35.9 6.2 47.4 –
Ada-ML-VAE 100.0 100.0 50.9 12.7 94.0 –
Ada-GVAE 100.0 100.0 56.2 15.3 94.6 –
SlowVAE 100.0 (0.1) 97.3 (4.0) 64.4 (8.4) 5.8 (0.9) 82.6 (4.4) –
EBM 75.9 (11.2) 53.2 (8.7) 5.2 (2.2) 2.8 (1.1) 21.8 (11.0) 2.1 (2.6)
BYOL 91.5 (3.9) 82.5 (2.4) 5.2 (1.7) 2.8 (0.3) 53.1 (1.5) 6.0 (0.5)

C
el

eb
A

VAE 21.5 (3.2) 6.1 (3.8) 0.8 (0.1) 0.9 (0.2) 11.2 (2.3) 3.8 (0.2)
�-VAE 19.1 (1.9) 5.8 (1.8) 0.1 (0.1) 0.6 (0.2) 8.7 (1.9) 3.3 (0.1)
�-TCVAE 19.9 (2.3) 9.8 (2.4) 0.6 (0.2) 1.2 (0.3) 3.5 (1.1) 4.7 (0.1)
FactorVAE 25.3 (3.0) 12.0 (2.1) 0.4 (0.1) 0.6 (0.2) 7.1 (0.7) 0.6 (0.6)
DIP-VAE-I 21.0 (1.9) 9.3 (1.1) 0.2 (0.1) 0.9 (0.3) 13.8 (2.2) 3.6 (0.2)
InfoGAN-CR 16.8 11.3 1.6 2.8 22.0 –
BYOL 35.7 (2.1) 11.5 (1.1) 2.6 (0.7) 8.2 (0.9) 41.0 (1.3) 4.8 (0.4)
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C More Quantitative Results779

In the main text, we evaluate the disentanglement under our proposed MED metric on multiple780

datasets. In this section, to provide a more complete understanding of the disentanglement property781

of contrastive learning without negatives, we report the disentanglement scores with other metrics,782

such as FactorVAE score, BetaVAE score, MIG, SAP, and DCI Disentanglement, here.783

For the results of VAE-based methods, as the large-scale benchmark of Locatello et al. (34) provides784

the original logs on dSprites, Cars3D, and SmallNORB datasets, we simply report the performance785

of the best configuration. The original logs on Shapes3D are not available, so we train and evaluate786

on Shapes3D by ourselves for the MED scores. For scores under other metrics, we report the median787

disentanglement scores. Some results are from Locatello et al. (35) but the std error is not available.788

The median performance of SlowVAE is from its original paper (25). For the results of CelebA,789

the result of InfoGAN-CR is from its officially released checkpoint without availability to the std790

error. For other methods, we report the mean value of our trained weights over three random seeds as791

default. Because the evaluation of DCI is extremely time-consuming, around 14 hours for a 1000-d792

model, we only take BYOL as an example here for negative-free contrastive learning methods. All793

results are combined and shown in Table 4.794

Same as the analysis we provide in the main text, the results show significant disagreement among795

the existing metrics. To be precise, for those metrics (BetaVAE score, FactorVAE score, SAP, DCI796

Disentanglement) using a learnable model such as a regressor or classifier, the high-dimensional797

BYOL model achieves a significant advantage. However, for the metrics relying on only one or798

two dimensions to reveal the connection between a latent dimension and a factor (MIG and MED),799

BYOL’s performance is not that impressive anymore.800

Finally, the result on CelebA shows the great robustness of BYOL’s learned representations to show801

disentanglement on real-world datasets. Yet, the large gap between the score of those on synthetic802

datasets emphasizes the difficulty of learning disentangled factors on real-world images. It is hard803

to empirically study whether it is the high dimension that gives BYOL advantages on some metrics804

because the nature of BYOL makes it hard to be trained with a small latent dimension to make a805

comparison.806

D Ablation Study807

Limited by the main content page length, we put some additional ablation studies here to help808

better understand the influence of important inductive bias of BYOL when studying representation809

disentanglement.810

Table 5: Results of using different normalization strategies on dSprites.

normalization w/o norm BN GN LN IN

MED 23.8 (0.6) 29.4 (0.5) 31.3 (0.4) 31.3 (0.8) 0.0 (0.0)

D.1 Normalization811

We experiment with five normalization layers configuration in the encoder network on the dSprites812

dataset. The results are shown in Table 5. For group normalization, we set the group number to 4. On813

dSprites, we find the commonly used BN decreases the disentanglement performances. By keeping the814

batch norm in the projector and the predictor, removing the batch norm in the encoder will not cause815

the model to collapse, which agrees with the observation in previous works (40). On the contrary,816

replacing batch norm in encoder with group norm or layer norm will increase the representation817

disentanglement while achieving similar accuracy in downstream factor prediction. We notice that a818

similar phenomenon has been discovered before in supervised representation disentanglement. For819

example, Bau et al. (3) discovered that a network trained with batch normalization layers has less820

interpretable (disentangled) neurons. On the other hand, instance norm (47) completely breaks the821

contrastive learning process. We still do not fully understand this behavior, but we hypothesize that it822

may be caused by the shared batch statistics that make it hard for a feature to be aligned to the ground823

truth factor.824
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E Limitations825

Our work still has some limitations, especially considering the design of contrastive learning methods826

still depends on heavy empirical practice. For the fair comparison in the benchmark, we use a shared827

encoder architecture for all methods but they may still have other inductive bias potentially influencing828

the results such as the hyperparameters in VAE-based methods and contrastive learning methods.829

We select the normalization in BYOL as an example in the ablation study above showing that such830

inductive bias can make influence over the evaluation results. But we can do an ablation study on all831

possible inductive bias. We basically inherit the available best settings from DisLib (34) if possible832

and the settings from the public official implementations of other methods. All hyperparameters and833

details we customize have been indicated in the Section of Reproducibility.834
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