
A Omitted Proofs Section 2596

PropositionA.1. Given any convex-concave min-max game with dependent strategy sets (X,Y, f, g),597

a Stackelberg equilibrium always exists.598

Proof of Proposition A.1. By Berge’s maximum theorem [5], the outer player’s value function599

V (x) = maxy2Y :g(x,y)�0 f(x,y) is continuous, and the inner solution correspondence Y ⇤(x) =600

argmaxy2Y(x) f(x,y) is non-empty, for all x 2 X . Since V is continuous and X is compact and601

non-empty, by the extreme value theorem [50], there exists a minimizerx⇤ of V . Hence (x⇤
,y⇤(x⇤))602

where y⇤(x⇤) 2 Y
⇤(x⇤) is well-de�ned and is a Stackelberg equilibrium of (X,Y, f, g).603

B Envelope Theorem604

Danskin’s theorem [15] o�ers insights into optimization problems of the form:605

max
y2Y

f(x,y) , (4)

where Y ⇢ Rm is compact and non-empty. Among other things, Danskin’s theorem allows us to606

compute the gradient of the objective function of this optimization problem with respect to x.607

Theorem B.1 (Danskin’s Theorem). Consider Equation (4). Suppose that Y is convex and that608

f is concave in y. Let V (x) = maxy2Y f(x,y) and Y
⇤(x) = argmaxy2Y f(x,y). Then, V is609

di�erentiable at bx if Y ⇤(bx) is a singleton. Additionally, the gradient at bx is given by V
0(bx) =610

rxf(bx,y⇤(bx)), where y⇤(bx) 2 Y
⇤(bx).611

Unfortunately, Danskin’s theorem does not hold when Y is replaced by even a non-empty compact-612

valued correspondence Y : X ◆ Y , in which case the inner problem becomes maxy2Y(x) f(x,y).613

Example B.2 (Danskin’s theorem does not apply to min-max games with dependent strategy sets).614

Consider the optimization problem:615

max
y2R:y+x�0

�y
2 + y + 2x + 2 (5)

The solution function y
⇤(x) = argmaxy2R:y+x�0 �y

2 + y + 2x + 2 for this problem is well de�ned616

since the solution is singleton-valued and is given by:617

y
⇤(x) =

⇢
1/2 if x � �1/2

�x if x < �1/2
(6)

The value function V (x) = maxy2R:y+x�0 �y
2 + y + 2x + 2 is given by:618

V (x) = f(x, y⇤(x)) (7)
= �y

⇤(x)2 + y
⇤(x) + 2x + 2 (8)

=

⇢
�1/4 + 1/2 + 2x + 2 if x � �1/2

�x
2
� x + 2x + 2 if x < �1/2

(9)

=

⇢
9/4 + 2x if x � �1/2

�x
2 + x + 2 if x < �1/2

(10)

The derivative of the value function is given by:619

@V

@x
=

⇢
2 if x � �1/2

1� 2x if x < �1/2
(11)

However, the derivative predicted by Danskin’s theorem is 2, for all x. Hence, Danskin’s theorem does not620

hold when the constraints are parameterized, i.e., when the problem is of the form miny2Y(x) f(x,y)621

rather than miny2Y f(x,y) where X ⇢ Rn, Y ⇢ Rm, and Y : X ◆ Y .622

N.B. For simplicity, we do not assume the constraint set is compact in this example; however, the623

conclusion still applies, since compactness of the constraint set is used to guarantee existence of a624

solution for all x, but as a solution to this particular problem exists we can do away with the assumption.625

14

An answer to Dankin’s theorem not holding when the constraints are parameterized can be found626

in the mathematical economics literature. In particular the following theorem due to Milgrom and627

Segal [41] generalizes Danskin’s theorem (Theorem B.1).628

Theorem B.3 (Envelope Theorem [41]). Consider the maximization problem629

V (x) = max
y2Rm

f(x,y) subject to gk(x,y) � 0 for all k = 1, . . . ,K . (12)

De�ne the solution correspondence Y
⇤(x) = argmaxy2Rm:g(x,y)�0 f(x,y). Now suppose that630

Assumption 3.1 holds. Then, the value function V is absolutely continuous, and at any point bx where631

it is di�erentiable:632

rxV (bx) = rxL(y
⇤(bx),�(bx,y⇤(bx))), bx) = rxf (bx,y⇤(bx)) +

KX

k=1

�k(bx,y⇤(bx))rxgk (bx,y⇤(bx)) ,

(13)

where �(bx,y⇤(bx)) = (�1(bx,y⇤(bx)), . . . ,�K(bx,y⇤(bx)))T 2 ⇤(bx,y⇤(bx)) are the Lagrange multi-633

pliers associated associated with y⇤(bx) 2 Y
⇤(bx).634

C Omitted Proofs Section 3635

Proof of Theorem 3.2. Let V (x) = maxy2Y :g(x,y)�0 f(x,y). Reformulating the problem as a La-636

grangian saddle point problem, for all, bx 2 X , it holds that:637

V (bx) = max
y2Y :g(bx,y)�0

f(bx,y) (14)

= max
y2Y

min
�2RK

++

(
f(bx,y) +

KX

k=1

�kgk(bx,y)
)

(15)

Since an interior point exists by the assumptions, the Karush-Kuhn-Tucker Theorem [36] applies,638

so for all bx 2 X , there exists � 2 RK that solves the above optimization problem Equation (15).639

Let Y
⇤(x) = argmaxy2Y :g(x,y)�0 f(x,y) and ⇤(x,y) =640

argmin�2RK
++

n
f(x,y) +

PK
k=1 �kgk(x,y)

o
. We can then re-express the value function641

as:642

V (bx) = f(bx,y⇤(bx)) +
KX

k=1

�k(bx,y⇤(bx))gk(bx,y⇤(bx)), 8y⇤(bx) 2 Y
⇤(bx),�k(bx,y⇤(bx)) 2 ⇤(bx,y⇤(bx)) .

Alternatively, we can take the maximum over �’s and y’s to obtain:643

V (bx) = max
y⇤(bx)2Y ⇤(bx)

max
�k(bx,y⇤(bx))2⇤(bx,y⇤(bx))

(
f(bx,y) +

KX

k=1

�k(bx,y⇤(bx))gk(bx,y)
)

.

Note that for �xed y⇤(bx) 2 Y
⇤(bx) and corresponding �k(bx,y⇤(bx)) 2 ⇤(bx,y⇤(bx)),644

f(bx,y) +
PK

k=1 �k(bx,y⇤(bx))gk(bx,y⇤(bx)) is di�erentiable, since f, g1, . . . , gK are di�erentiable.645

Additionally, recall the pointwise maximum subdi�erential property, i.e., if f(x) = max↵2A f↵(x)646

for a family of functions {f↵}↵2A, then @xf(a) = conv
�S

↵2A {@xf↵2A(a) | f↵(a) = f(x)}
�

647

15

(see, for example, [7]), which then gives:648

@xV (bx) = @x

max

y⇤(bx)2Y ⇤(bx)
max

�k(bx,y⇤(bx))2⇤(bx,y⇤(bx))

(
f(bx,y⇤(bx)) +

KX

k=1

�k(bx,y⇤(bx))gk(bx,y⇤(bx))
)!

(16)

= conv

0

@
[

y⇤(bx)2Y ⇤(bx)

[

�k(bx,y⇤(bx))2⇤(bx,y⇤(bx))

@x

(
f(bx,y⇤(bx)) +

KX

k=1

�k(bx,y⇤(bx))gk(bx,y⇤(bx))
)1

A

(17)

= conv

0

@
[

y⇤(bx)2Y ⇤(bx)

[

�k(bx,y⇤(bx))2⇤(bx,y⇤(bx))

(
rxf (bx,y⇤(bx)) +

KX

k=1

�k(bx,y⇤(bx))rxgk (bx,y⇤(bx))
)1

A .

(18)
649

D Algorithms650

The algorithms studied in our paper and described in Section 3 are presented below. We note that651

⇧Y is the projection operator on the set Y which is de�ned as ⇧Y (y) = argminz2Y ky � zk2.652

Algorithm 1 Max-Oracle Gradient Descent
Inputs: X,Y, f, g, ⌘, T,x(0)

Output: (x?
,y?)

1: for t = 1, . . . , T do
2: Find by 2 Y such that f(x(t�1)

, by) � maxy2Y :g(x(t�1),y)�0 f(x(t�1)
,y) � � and

g(x(t�1)
, by) � 0

3: Set y(t�1) = by
4: Set �(t�1) = �(x(t�1)

,y(t�1))

5: Setx(t) = ⇧X

⇣
x(t�1)

� ⌘t

h
rxf(x(t�1)

,y(t�1)) +
PK

k=1 �
(t�1)
k rxgk(x(t�1)

,y(t�1))
i⌘

6: end for
7: Find by 2 Y such that f(x(T)

, by) � maxy2Y :g(x(T),y)�0 f(x(T)
,y)� � and g(x(T)

, by) � 0

8: y(T) = by
9: return (x(T)

,y(T))

Algorithm 2 Nested Gradient Descent
Inputs: X,Y, f, g, ⌘x, ⌘y, Tx, Ty,x(0)

,y(0)

Output: x?
,y?

1: for t = 1, . . . , Tx do
2: y(t�1) = y(0)

3: for s = 1, . . . , Ty do
4: y(t�1) = ⇧{y2Y :g(x(t�1),y)}

�
y(t�1) + ⌘syryf(x(t�1)

,y(t�1))]
�

5: end for
6: Set �(t�1) = �(x(t�1)

,y(t�1))

7: Setx(t) = ⇧X

⇣
x(t�1)

� ⌘tx

h
rxf(x(t�1)

,y(t�1)) +
PK

k=1 �
(t�1)
k rxgk(x(t�1)

,y(t�1))
i⌘

8: end for
9: y(T) = y(0)

10: for s = 1, . . . , Ty do
11: y(T) = ⇧{y2Y :g(x(T),y)}

�
y(T) + ⌘syryf(x(T)

,y(T))]
�

12: end for
13: return (x(T)

,y(T))

16

D.1 Omitted Proofs Section 3653

Lemma D.1 (Lipschitz Objective, Lipschitz Value Function). Let f : X ⇥ Y be a continu-654

ous function, where X ⇢ Rn, Y ⇢ Rm. Suppose that rxf is continuous in (x,y), X is655

compact and non-empty, and Y : X ◆ Y is nonempty-compact-valued correspondence, then656

V (x) = maxy2Y(x) f(x,y) is `f -Lipschitz continuous, i.e., kV (x1)� V (x2)k `f kx1 � x2k,657

with `f = max(bx,by)2X⇥Y krxf(bx, by)k.658

Proof of Lemma D.1. Let `f = max(bx,by)2X⇥Y) krxf(bx, by)k. Clearly, we have 8x1,x2 2 X,y 2659

Y(x1) \ Y(x2), kf(x1,y)� f(x2,y)k `f kx1 � x2k.660

Fix x1,x2 2 X . Then, for all y 2 Y(x1) \ Y(x2), we have:661

f(x1,y) f(x1,y)� f(x2,y) + f(x2,y) (19)
 `f kx1 � x2k+ f(x2,y) (20)

Taking the max over the y’s on both sides (which is guaranteed to exist by the continuity of f , and662

compactness and non-emptyness of Y), we obtain:663

max
y2Y(x1)

f(x1,y) `f kx1 � x2k+ max
y2Y(x2)

f(x2,y) (21)

V (x1) `f kx1 � x2k+ V (x2) (22)
V (x1)� V (x2) `f kx1 � x2k (23)

Since this inequality holds for arbitrary x1,x2 2 X , we also have:664

V (x2)� V (x1) `f kx1 � x2k (24)

Combining the two inequalities, we obtain665

kV (x1)� V (x2)k `f kx1 � x2k (25)

666

Proof of Theorem 3.3. Note that by Theorem 3.2, we have rxf(x(t�1)
,y(t�1)) +667 PK

k=1 �
(t�1)
k rxgk(x(t�1)

,y(t�1)) 2 @xV (x(t�1)) = @x maxy2Y :g(x(t�1),y)�0 f(x
(t�1)

,y).668

For notational clarity, let g(t � 1) = rxf(x(t�1)
,y(t�1)) +

PK
k=1 �

(t�1)
k rxgk(x(t�1)

,y(t�1)).669

Suppose that x?
2 argminx2X maxy2Y :g(x,y) f(x,y)670

���x(T)
� x⇤

���
2
=
���⇧X

⇣
x(T�1)

� ⌘Tg(T � 1)
⌘
�⇧X (x⇤)

���
2

(26)

���x(T�1)
� ⌘Tg(T � 1)� x⇤

���
2

(27)

=
���x(T�1)

� x⇤
���
2
� 2⌘T

D
g(T � 1),

⇣
x(T�1)

� x⇤
⌘E

+ ⌘
2
T kg(T � 1)k2 (28)

���x(T�1)
� x⇤

���
2
� 2⌘T

⇣
f(x(T�1)

,y(T�1))� f(x⇤
,y(T�1))

⌘
+ ⌘

2
T kg(T � 1)k2

(29)

where the �rst line follows from de�nitions, the second from the non-expansiveness of the671

projection operator, the third from algebra, the fourth from the de�nition of subgradients, i.e.,672

g(t � 1)T
�
x(t�1)

� x⇤�
� f(x(t�1)

,y(t�1)) � f(x⇤
,y(t�1)). Applying the inequality above673

recursively, we obtain:674

���x(T)
� x⇤

���
2

���x(0)
� x⇤

���
2
�

TX

t=1

2⌘t
⇣
f(x(t�1)

,y(t�1))� f(x⇤
,y(t�1))

⌘
+

TX

t=1

⌘
2
t kg(k � 1)k2

(30)

17

Since
��x(t)

� x⇤
�� � 0, we have:675

2
TX

t=1

⌘t

⇣
f(x(t�1)

,y(t�1))� f(x⇤
,y(t�1))

⌘

���x(0)
� x⇤

���
2
+

TX

t=1

⌘
2
t kg(t� 1)k2 (31)

Let (x(t)
best,y

(t)
best) = argmin(x(k),y(k)):k2[t] f(x

(k)
,y(k)), then we have we have:676

TX

t=1

⌘t

⇣
f(x(t�1)

,y(t�1))� f(x⇤
,y(t�1))

⌘
�

TX

t=1

⌘t

✓
f(x(t�1)

,y(t�1))� max
y2Y :g(x⇤,y)�0

f(x⇤
,y)

◆

(32)

�

TX

t=1

⌘t

!
min
t2[T]

✓
f(x(t�1)

,y(t�1))� max
y2Y :g(x⇤,y)�0

f(x⇤
,y)

◆

(33)

=

TX

t=1

⌘t

!✓
f(x(T)

best,x
(T)
best)� max

y2Y :g(x⇤,y)�0
f(x⇤

,y)

◆

(34)

Hence, we get the following bound:677

f(x(T)
best,y

(T)
best)� max

y2Y :g(x⇤,y)�0
f(x⇤

,y)

��x(0)
� x⇤

��2 +
PT

t=1 ⌘
2
t ||g(t� 1)||2

2
⇣PT

t=1 ⌘t

⌘ (35)

Since f is `f -Lipschitz with `f = max(bx,by)2X⇥Y krxf(bx, by)k, then for all k 2 N we know that678

kg(k � 1)k `f .679

f(x(T)
best,x

(T)
best)� max

y2Y :g(x⇤,y)�0
f(x⇤

,y)

��x(0)
� x⇤

��2 + `
2
f

PT
t=1 ⌘

2
t

2
⇣PT

t=1 ⌘t

⌘ (36)

f(x(T)
best,x

(T)
best)� min

x2X
max

y2Y :g(x,y)�0
f(x,y)

��x(0)
� x⇤

��2 + `
2
f

PT
t=1 ⌘

2
t

2
⇣PT

t=1 ⌘t

⌘ (37)

Under the assumption of the theorem:680

TX

k=1

⌘
2
k 1

TX

k=1

⌘k = 1 (38)

as t ! 1, limk!1 f(x(k)
best,y

(k)) minx2X maxy2Y :g(x,y)�0 f(x,y), and since for all k 2 N,681

y(k)
best satis�es f(x

(k)
best,y

(k)
best) � maxy2Y :g(x,y)�0 f(x

(k)
best,y) � �, as the number of iterations682

increases, the best iterate converges to a (0, �)-Stackelberg equilibrium. Additionally, setting683

⌘t =
kx

(0)�x⇤
k

`f
p
T

for all t = 1, . . . , T , we get:684

f(x(T)
best,x

(T)
best)� min

x2X
max

y2Y :g(x,y)�0
f(x⇤

,y)
`f

��x(0)
� x⇤

��2
p
T

(39)

Hence, the best iterate converges to a (", �)-Stackelberg equilibrium in O("�2) iterations.685

Theorem D.2. Suppose that Algorithm 1 is run on a convex-concave min-max game with de-686

pendent strategy sets given by (X,Y, f, g) where X is convex. Suppose that Assumption 3.1687

holds and that additionally f is µ-strongly convex in x, i.e., 8x1,x2 2 X,y 2 Y, f(x1,y) �688

f(x2,y) + hg, (x1 � x2)i +
µ
2 kx1 � x2k

2 where g 2 @xf(x2,y). Then, if (x(t)
best,y

(t)
best) 2689

18

argmin(x(k),y(k)):k2[t] f(x
(k)

,y(k)), for " 2 (0, 1), and ⌘t =
2

µ(t+1) , if we choose T large enough690

such that:691

T � NT (")
.
= O("�1)

then there exists an iteration T
?
 T such that (x(T?)

best ,y
(T?)
best) is an (", �)-Stackelberg equilibrium.692

Proof of Theorem D.2. Note that by Theorem 3.2, we have rxf(x(t�1)
,y(t�1)) +693 PK

k=1 �
(t�1)
k rxgk(x(t�1)

,y(t�1)) 2 @xV (x(t�1)) = @x maxy2Y :g(x(t�1),y)�0 f(x
(t�1)

,y).694

For notational clarity, let g(t � 1) = rxf(x(t�1)
,y(t�1)) +

PK
k=1 �

(t�1)
k rxgk(x(t�1)

,y(t�1)).695

Suppose that x?
2 argminx2X maxy2Y :g(x,y) f(x,y). For any t 2 N such that t � 1, we have:696

���x(t)
� x⇤

���
2
=
���⇧X

⇣
x(t�1)

� ⌘tg(t� 1)
⌘
�⇧X (x⇤)

���
2

(40)

���x(t�1)
� ⌘tg(t� 1)� x⇤

���
2

(41)

=
���x(t�1)

� x⇤
���
2
� 2⌘t

D
g(t� 1),

⇣
x(t�1)

� x⇤
⌘E

+ ⌘
2
t kg(t� 1)k2 (42)

���x(t�1)
� x⇤

���
2
� 2⌘t

µ

2

���x(t�1)
� x⇤

���
2
+ f(x(t�1)

,y(t))� f(x⇤
,y(t))

�
+ ⌘

2
t kg(t� 1)k2

(43)

=
���x(t�1)

� x⇤
���
2
� ⌘tµ

���x(t�1)
� x⇤

���
2
� 2⌘t

⇣
f(x(t�1)

,y(t�1))� f(x⇤
,y(t�1))

⌘
+ ⌘

2
t kg(t� 1)k2

(44)

= (1� ⌘tµ)
���x(t�1)

� x⇤
���
2
� 2⌘t

⇣
f(x(t�1)

,y(t�1))� f(x⇤
,y(t�1))

⌘
+ ⌘

2
t kg(t� 1)k2

(45)

where the �rst line follows from de�nitions, the second from the non-expansiveness of the projection697

operator, the third from algebra, the fourth from the de�nition of strong convexity, i.e., g(t �698

1)T
�
x(t�1)

� x⇤�
�

µ
2

��x(t�1)
� x⇤

��2 + f(x(t�1)
,y(t�1))� f(x⇤

,y(t�1)).699

Re-organizing expressions, we get:700

f(x(t�1)
,y(t�1))� f(x⇤

,y(t�1))
1� ⌘tµ

2⌘t

���x(t�1)
� x⇤

���
2
�

1

2⌘t

���x(t)
� x⇤

���
2
+

⌘t

2
kg(t� 1)k2

(46)

Setting ⌘t = 2
µ(t+1) , we get:701

f(x(t�1)
,y(t�1))� f(x⇤

,y(t�1))
µ(t� 1)

4

���x(t�1)
� x⇤

���
2
�

µ(t+ 1)

4

���x(t)
� x⇤

���
2
+

1

µ(t+ 1)
kg(t� 1)k2

(47)

t

⇣
f(x(t�1)

,y(t�1))� f(x⇤
,y(t�1))

⌘

µt(t� 1)

4

���x(t�1)
� x⇤

���
2
�

µt(t+ 1)

4

���x(t)
� x⇤

���
2
+

1

µ
kg(t� 1)k2

(48)

where the last line was obtained by multiplying by t on both sides.702

19

Summing up across all iterations on both sides:703

TX

t=0

t

⇣
f(x(t)

,y(t))� f(x⇤
,y(t))

⌘

TX

t=0

µt(t� 1)

4

���x(t�1)
� x⇤

���
2
�

TX

t=0

µt(t+ 1)

4

���x(t)
� x⇤

���
2
+

TX

t=0

1

µ
kg(t� 1)k2

(49)

=
TX

t=0

µt(t� 1)

4

���x(t�1)
� x⇤

���
2
�

T+1X

t=1

µ(t� 1)t

4

���x(t�1)
� x⇤

���
2
+

TX

t=0

1

µ
kg(t� 1)k2

(50)

= �
µt(t+ 1)

4

���x(t)
� x⇤

���
2
+

TX

t=0

1

µ
kg(t� 1)k2 (51)

TX

t=0

1

µ
kg(t� 1)k2 (52)

T

µ
`f (53)

where the last line was obtained by noticing that f is `f -Lipschitz with `f =704

max(bx,by)2X⇥Y krxf(bx, by)k, which implies that for all k 2 N we know that kg(k � 1)k `f .705

Let (x(t)
best,y

(t)
best) = argmin(x(k),y(k)):k2[t] f(x

(k)
,y(k)):706

TX

t=0

t

⇣
f(x(t)

,y(t))� f(x⇤
,y(t))

⌘

T

µ
`f (54)

TX

t=0

t

✓
f(x(t)

,y(t))� max
y2Y :g(x⇤,y)�0

f(x⇤
,y)

◆

T

µ
`f (55)

TX

t=0

t

!
min
t2[T]

✓
f(x(t)

,y(t))� max
y2Y :g(x⇤,y)�0

f(x⇤
,y)

◆

T

µ
`f (56)

f(x(T)
best,y

(T)
best)� max

y2Y :g(x⇤,y)�0
f(x⇤

,y)
`f

µ(T + 1)
(57)

(58)

That is, as the number of iterations increases, the best iterate converges to a (0, �)-Stackelberg707

equilibirium. Additionally, the best iterate converges to a (", �)-Stackelberg equilibrium in O("�1)708

iterations.709

We present the following theorem which proves one of the cases given in Theorem 3.4. The proof710

for the other cases is the same as the proof below. We note that gradient ascent converges in711

O("�1) iterations to a "-maximum for a Lipschitz smooth objective, and in O(log(")) iterations to712

a "-maximum for a Lipschitz smooth and strongly concave objective [6].713

Theorem D.3. Suppose that Algorithm 2 is run on a convex-concave min-max game with de-714

pendent strategy sets given by (X,Y, f, g) where X,Y are convex. Suppose that Assumption 3.1715

holds and f is `rf -smooth, i.e., 8(x1,y1), (x2,y2) 2 X ⇥ Y, krf(x1,y1)�rf(x2,y2)k 716

`rf k(x1,y1)� (x2,y2)k.717

Let (x(t)
best,y

(t)
best) 2 argmin(x(k),y(k)):k2[t] f(x

(k)
,y(k)). For " 2 (0, 1), if we choose Tx and Ty718

large enough such that:719

Tx � NTx(") := O("�2) (59)
Tx � NTy (") := O("�1) (60)

then there exists an iteration T
?
 TxTy = O("�3) such that (x(T?)

best ,y
(T?)
best) is an (", ")-Stackelberg720

equilibrium.721

20

Proof of Theorem 3.3. Since f is `f -smooth, it is well known that the inner gradient descent pro-722

cedure will compute an "-maximum of f(x(t)
, ·) for each iterate x(t) in O("�2) iterations [6].723

Combining the iteration complexity of the outer and inner loops using this result and Theorem 3.3,724

we obtain an iteration complexity of O("�2)O("�1) = O("�3).725

E An Economic Application: Details726

E.1 Experimental details727

E.1.1 General Experiment Setup728

Our experimental goals were two-folds. First, we wanted to understand the convergence complexity729

of our algorithms for di�erent Fisher markets under which the objective function Equation (3)730

satis�es di�erent smoothness properties. Secondly, we wanted to understand the approximate731

optimal y(t) computed by the max-oracle in Algorithm 1 or by the inner loop in Algorithm 2 a�ected732

the preciseness of Stackelberg equilibrium outputed.733

To answer these questions, we have collected data on the prices and allocations computed by734

Algorithm 1 with an exact max-oracle on each iteration and by Algorithm 2 on each iteration of735

the outer loop algorithms by running them on randomly initialized markets. We have initialized736

500 di�erent linear, Cobb-Douglas, Leontief Fisher markets with 5 buyers and 8 goods. For each of737

these markets, we have run Algorithm 1 and Algorithm 2 twice, one time with high starting prices738

and one time with low starting prices to understand the impact of initialization conditions on the739

algorithm. We have run Algorithm 1 and Algorithm 2’s outer loop for 500, 300, and 700 iterations740

for linear, Cobb-Douglas, and Leontief Fisher markets respectively.741

We have opted for a learning rate of 5 for both algorithms after manual hyper-parameter tuning742

and picked a decay rate of t�1/2 for the learning rate based on our theory. For each run of the743

algorithm, we then computed the objective functions value for the iterates calculated by the744

algorithm throughout it to obtain Figure 1. Finally, to understand how much precision was lost745

in the accuracy of the Stackelberg equilibrium outputed by Algorithm 2 from not being able to746

compute a maximum of f(x, ·) for given x 2 X , we have run a �rst order James’ test to see if the747

equilibrium strategies outputed by Algorithm 1 and Algorithm 2 were statistically distinguishable.748

E.1.2 Computational Requirements, Packages, and Algorithmic Details749

The experiments were run on MacOS machine with 8GB ram and an apple M1 chip and experiments750

took about 2 hours to run. Only CPU ressources were used.751

We have run our experiments in Python 3.7 [64] and have used the NumPy [28], Pandas [60], and752

CVXPY [19]. The data from our experiments can be found on our code repository as well (https:753

//anonymous.4open.science/r/min-max-fisher-CEFA/). Figure 1 was graphed via Matplotlib754

[31]. To run the �rst order James test, we transfer the data generated by our Python code to an755

R script [51], which we manipulate using the Tidyverse environment [67], and �nally obtain the756

desired p-values via the STests package in R [30].757

Licensing R as a package is licensed under GPL-2 | GPL-3. Python software and documentation758

are licensed under the PSF License Agreement. Numpy is distributed under a liberal BSD license.759

Pandas is distributed under a new BSD license. Matplotlib only uses BSD compatible code, and760

its license is based on the PSF license. CVXPY is licensed under an APACHE license. Tidyverse is761

distributed under an MIT license.762

For our execution of algorithm Algorithm 1 for linear, Cobb-Douglas and Leontief Fisher markets,763

we used an exact Max-Oracle since the demand has a closed form solution for these markets [25].764

As the computational overhead of the projection operation in the inner loop of Algorithm 2 can be765

high for most projection methods, we have opted to use CVXPY �rst order for the inner loop of766

Algorithm 2. In particular, we have opted for the ECOS solver and in case if any runtime exception767

occurred. Note that these solvers compute "-optimal points as a result we believe that they present768

an accurate view of how Algorithm 2 would behave.769

21

https://anonymous.4open.science/r/min-max-fisher-CEFA/
https://anonymous.4open.science/r/min-max-fisher-CEFA/
https://anonymous.4open.science/r/min-max-fisher-CEFA/

E.2 Fisher Market Algorithms770

Algorithm 3 �-Approximate Tâtonnement for Fisher Markets
Inputs: U, b, ⌘, T,p(0)

, �

Output: (X⇤
,p⇤)

1: for t = 1, . . . , T do
2: For all i 2 [n], �nd x(t)

i s.t. ui(x
(t)
i) � maxxi:xi·p(t�1)bi ui(xi)� � and x(t)

i ·p(t�1)
 bi

3: Set p(t) = max
n
p(t�1)

� ⌘t(1�
P

i2[n] x
(t)
i)), 0

o

4: end for
5: return (X(T)

,p(T))

Algorithm 4 �-Approximate Nested Tâtonnement for Fisher Markets
Inputs: U, b, ⌘, Tp, TX ,p(0)

Output: (X⇤
,p⇤)

1: for t = 1, . . . , Tp do
2: for s = 1, . . . , TX do

3: For all i 2 [n], x(t)
i = ⇧

{x:x·p(t�1)bi}

✓
x(t)
i + bi

ui(x
(t)
i)

rxiui(x
(t)
i)

◆

4: end for
5: Set p(t) = max

n
p(t�1)

� ⌘t(1�
P

i2[n] x
(t)
i)), 0

o

6: end for
7: return (X(T)

,p(T))

F Additional Related Work771

Much progress has been made recently in solving min-max games with independent strategy sets,772

both in the convex-concave case and in non-convex-concave case. For the former case, when773

f is µx-strongly-convex-µy-strongly-concave, Tseng [63], Yurii Nesterov [69], and Gidel et al.774

[24] proposed variational inequality methods and Mokhtari, Ozdaglar, and Pattathil [42] gradient-775

descent-ascent (GDA)-based methods that compute a solution in Õ(µy + µx) iterations.. These776

upper bounds were recently complemented by the lower bound of ⌦̃(pµyµx), shown by Ibrahim777

et al. [32] and Zhang, Hong, and Zhang [70]. Subsequently, Lin, Jin, and Jordan [38] and Alkousa et778

al. [3] analyzed algorithms that converge in Õ(
p
µyµx) and Õ(min

�
µx

p
µy, µy

p
µx

) iterations,779

respectively. For the special case where f is µx-strongly-convex-linear, Juditsky, Nemirovski,780

et al. [35], Hamedani and Aybat [27], and Zhao [72] all present methods that converge to an "-781

approximate solution in O(
p

µx/"). When assumptions on f(x, ·) are dropped and it is assumed to782

be µx-strongly-convex-concave, Thekumparampil et al. [61] provide an algorithm that converges to783

an approximate solution in Õ(µx/"), and Ouyang and Xu [49] provide a lower bound of ⌦̃
⇣p

µx/"

⌘
.784

Lin, Jin, and Jordan then went on to develop a faster algorithm, with iteration complexity of785

Õ

⇣p
µx/"

⌘
. When f is simply assumed to be convex-concave, Nemirovski [43], Nesterov [44], and786

Tseng [62] describe an algorithm with Õ
�
"
�1
�
and Ouyang and Xu [49] prove a lower bound of787

⌦("�1). We include a detailed summary table of these results in Table 4788

When f is assumed to be non-convex-µy-strongly-concave, and the goal is to compute a �rst-order789

Nash or “local” Stackelberg equilibrium, Sanjabi et al. [54] provide an algorithm that converges790

to "-an approximate solution in O("�2) iterations. Jin, Netrapalli, and Jordan [34], Ra�que et al.791

[52], Lin, Jin, and Jordan [37], and Lu, Tsaknakis, and Hong [39] provide algorithms that converge792

in Õ
�
µ
2
y"

�2
�
, while Lin, Jin, and Jordan [38] provide an even faster algorithm, with an iteration793

complexity of Õ
�p

µy"
�2
�
. When f is non-convex-non-concave and the goal to compute is an794

approximate �rst-order Nash equilibrium, Lu, Tsaknakis, and Hong [39] provide an algorithm795

with iteration complexity Õ("�4), while Nouiehed et al. [47] provide an algorithm with iteration796

22

complexity Õ("�3.5). More recently, Ostrovskii, Lowy, and Razaviyayn [48] and Lin, Jin, and797

Jordan [38] proposed an algorithm with iteration complexity Õ
�
"
�2.5

�
. When f is non-convex-798

non-concave and the desired solution concept is a “local” Stackelberg equilibrium, Jin, Netrapalli,799

and Jordan [34], Ra�que et al. [52], and Lin, Jin, and Jordan [37] provide algorithms with a Õ
�
"
�6
�

800

complexity. More recently, Thekumparampil et al. [61], Zhao [71], and Lin, Jin, and Jordan [38]801

have proposed algorithms that converge to an "-approximate solution in Õ
�
"
�3
�
iterations. We802

include a detailed summary table of these results in Table 5803

Table 4: Iteration complexities for min-max games with independent strategy sets in convex-concave
settings. Note that these results assume that the objective function is Lipschitz-smooth.

Setting Reference Iteration Complexity

µx-Strongly-Convex-µy-Strongly-Concave

[63]

Õ (µx + µy)
[69]

[24]

[42]

[3] Õ
�
min

�
µx

p
µy, µy

p
µx

 �

[38] Õ(
p
µxµy)

[32] ⌦̃(
p
µxµy)

[70]

µx-Strongly-Convex-Linear
[35]

O

⇣p
µx/"

⌘
[27]

[72]

µx-Strongly-Convex-Concave
[61] Õ (µx/

p
")

[38] Õ(
p

µx/")

[49] ⌦̃
⇣p

µx/"

⌘

Convex-Concave

[43]
O
�
"
�1
�

[44]

[62]

[38] Õ
�
"
�1
�

[49] ⌦("�1)

23

Table 5: Iteration complexities for min-max games with independent strategy sets in non-convex-
concave settings. Note that although all these results assume that the objective function is Lipschitz
smooth, some authors make more assumptions, e.g., [47] prove their result for objective functions
that satisfy the Lojasiwicz condition.

Setting Reference Iteration Complexity

Nonconvex-µy-Strongly-Concave,
First Order Nash Equilibrium

or Local Stackelberg Equilibrium

[34]

Õ(µ2
y"

�2)
[52]

[37]

[39]

[38] Õ
�p

µy"
�2
�

Nonconvex-Concave,
First Order Nash Equilibrium

[39] Õ
�
"
�4
�

[47] Õ
�
"
�3.5

�

[48]
Õ
�
"
�2.5

�
[38]

Nonconvex-Concave
Local Stackelberg Equilibrium

[34]
Õ("�6)[47]

[38]

[61]
Õ("�3)[71]

[38]

24

	Introduction
	Preliminaries
	First-Order Methods via an Envelope Theorem
	An Economic Application: Fisher Markets
	Conclusion
	Omitted Proofs sec:prelim
	Envelope Theorem
	Omitted Proofs sec:envelope
	Algorithms
	Omitted Proofs sec:envelope

	An Economic Application: Details
	Experimental details
	General Experiment Setup
	Computational Requirements, Packages, and Algorithmic Details

	Fisher Market Algorithms

	Additional Related Work

