
A In-depth Analysis of BC loss529

A.1 Visualization of A Toy Experiment530

Here we visualize a toy example on the Yelp2018 [25] dataset to showcase the effect of BC loss.531

Specifically, we train a two-layer LightGCN whose embedding size is three, and illustrate the 3-532

dimensional normalized representations on a 3D unit sphere in Figure 1 (See the magnified view533

in Figure 4). We train the identical LightGCN backbone with different loss functions: BPR loss,534

softmax loss, BC loss, and IPS-CN [15]. For the same head/tail user (i.e., green stars), we plot 500535

items in the unit sphere covering all positive items (i.e., red dots) and randomly-selected negative536

items (i.e., blue dots) from both the training and testing sets. Moreover, the angle distribution (the537

second row of each subfigure) of positive and negative items for a certain user quantitatively shows538

the discriminative power of each loss. We observe that:539

• BC loss learns more discriminative representations in both head and tail user cases. Moreover,540

BC loss learns a more reasonable representation distribution that is locally clustered and541

globally separated. As Figures 4d and 4h show, for head and tail users, BC loss encourages around542

40% and 55% of positive items to fall into the group closest to user representations, respectively.543

In other words, these item representations are almost clustered to a small region. BC loss also544

achieves the smallest distance w.r.t. mean positive angle. This verifies that BC loss tends to learn a545

high similar item/user compactness. Moreover, Figure 4h presents a clear margin between positive546

and negative items, reflecting a highly-discriminative power. Compared to softmax loss in Figures547

4b and 4f, the compactness and dispersion properties of BC loss come from the incorporation of548

interaction-wise bias-aware margin.549

• The representations learned by standard CF losses - BPR loss and softmax loss - are not550

discriminative enough. Under the supervision of BPR and softmax losses, item representations551

are separably allocated in a wide range of the unit sphere, where blue and red points occupy552

almost the same space area, as Figures 4a and 4b demonstrate. Furthermore, Figure 4e shows553

only a negligible overlap between positive and negative items’ angle distributions. However, as554

the negative items are much more than the positive items for the tail user, a small overlap will555

make many irrelevant items rank higher than the relevant items, thus significantly hindering the556

recommendation accuracy. Hence, directly optimizing BPR or softmax loss might be suboptimal557

for the personalized recommendation tasks.558

• IPS-CN, a well-known popularity debiasing method in CF, is prone to lift the tail performance559

by sacrificing the representation learning for the head. Compared with BPR loss in Figure 4e,560

IPS-CN learns better item representations for the tail user, which achieves smaller mean positive561

angle as illustrated in Figure 4g. However, for the head user in Figure 4c, the positive and negative562

item representations are mixed and cannot be easily distinguished. Worse still, the representations563

learned by IPS-CN has a larger mean positive angle for head user compared to BPR loss. This564

results in a dramatic performance drop for head evaluations.565

A.2 Hard Example Mining Mechanism - one desirable property of BC loss:566

We argue that the mechanism of adaptively mining hard interactions is inherent in BC loss, which567

improves the efficiency and effectiveness of training. Distinct from softmax loss that relies on the568

predictive scores to mine hard negative samples [56] and leaves the popularity bias untouched, our569

BC loss considers the interaction-wise biases and adaptively locates hard informative interactions.570

Specifically, the popularity bias extractor ŷb in Equation (3) can be viewed as a hard sample detector.571

Considering an interaction (u, i) with a high bias degree cos(ξ̂ui), we can only use its popularity572

information to predict user preference and attain a vanishing bias-aware angular margin Mui. Hence,573

interaction (u, i) will plausibly serve as the biased and easy sample, if it involves the active users574

and popular items. Its close-to-zero margin makes (u, i)’s BC loss approach softmax loss, thus575

downgrading the ranking criteria to match the basic assumption of softmax loss.576

In contrast, if the popularity statistics are deficient in recovering user preference via the popularity577

bias extractor, the interaction (u, i) garners the low bias degree cos(ξ̂ui) and exerts the significant578

margin Mui on its BC loss. Hence, it could work as the hard sample, which typically covers the tail579

users and items, and yields a more stringent assumption that user u prefers the tail item over the other580
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popular items by a large margin. Such a significant margin makes the losses more challenging to581

learn.582

In a nutshell, BC loss adaptively prioritizes the interaction samples based on their bias degree583

and leads the CF model to shift its attention to hard samples, thus improving both head and tail584

performance, compared with softmax loss (cf. Section 5.3).585

A.3 Proof of Theorem 1586

Theorem 1. Let vu
.
= ψ(u), vi

.
= ϕ(i), and cu = 1

|Pu|
∑

i∈Pu
vi, ci = 1

|Pi|
∑

u∈Pi
vu, where587

Pu = {i|yui = 1} and Nu = {i|yui = 0} are the sets of user u’s positive and negative items,588

respectively; Pi = {u|yui = 1} is the set of item i’s positive users. Assuming the representations of589

users and items are normalized, the minimization of BC loss is equivalent to minimizing a compactness590

part and a dispersion part simultaneously:591

LBC ≥
∑
u∈U

∥vu − cu∥2 +
∑
i∈I

∥vi − ci∥2︸ ︷︷ ︸
Compactness part

−
∑
u∈U

∑
j∈Nu

∥vu − vj∥2︸ ︷︷ ︸
Dispersion part

∝ H(V|Y )︸ ︷︷ ︸
Compactness

−H(V)︸ ︷︷ ︸
Dispersion

. (7)

Proof. Let the upper-case letter V ∈ V be the random vector of representation and V ⊆ Rd be the592

representation space. We use the normalization assumption of representations to connect cosine and593

Euclidean distances, i.e., if ∥vu∥ = 1 and ∥vi∥ = 1, vT
uvi = 1− 1

2 ∥vu − vi∥2, ∀u, i.594

Let Pu = {i|yui = 1} be the set of user u’s positive items , Pi = {u|yui = 1} to be the set of item595

i’s positive users, and Nu = {i|yui = 0} be the set of user u’s negative items. Clearly, there exists an596

upper bound m, s.t. −1 < cos(θ̂ui +Mui) ≤ vT
uvi −m < 1. Therefore, we can analyze BC loss,597

which has the following relationships:598

LBC ≥−
∑

(u,i)∈O+

log
exp ((vT

uvi −m)/τ)

exp ((vT
uvi −m)/τ) +

∑
j∈Nu

exp ((vT
uvj)/τ)

= −
∑

(u,i)∈O+

vT
uvi −m

τ
+

∑
(u,i)∈O+

log(exp
vT
uvi −m

τ
+

∑
j∈Nu

exp
vT
uvj

τ
). (8)

We now probe into the first term in Equation (8):599

−
∑

(u,i)∈O+

vT
uvi −m

τ
=

∑
(u,i)∈O+

∥vu − vi∥2

2τ
+
m− 1

τ

c
=

∑
(u,i)∈O+

∥vu − vi∥2

=
∑
u∈U

∑
i∈Pu

(∥vu∥2 − vT
uvi) +

∑
i∈I

∑
u∈Pi

(∥vi∥2 − vT
uvi)

c
=

∑
u∈U

∥vu − cu∥2 +
∑
i∈I

∥vi − ci∥2 , (9)

where the symbol c
= indicates equality up to a multiplicative and/or additive constant; cu =600

1
|Pu|

∑
i∈Pu

vi is the averaged representation of all items that u has interacted with, which de-601

scribes u’s interest; ci = 1
|Pi|

∑
u∈Pi

vu is the averaged representation of all users who have adopted602

item i, which profiles its user group. We further analyze Equation (9) from the entropy view by603

conflating the first two terms:604

−
∑

(u,i)∈O+

vT
uvi −m

τ

c
=

∑
v

∥v − cv∥2 , (10)

where v ∈ {vu|u ∈ U} ∪ {vi|i ∈ I} summarizes the representations of users and items, with the605

mean of cv. Following [57], we further interpret this term as a conditional cross-entropy between606
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V and another random variable V̄ whose conditional distribution given Y is a standard Gaussian607

V̄|Y ∼ N (cV, I):608

−
∑

(u,i)∈O+

vT
uvi −m

τ

c
= H(V; V̄|Y ) = H(V|Y ) +DKL(V||V̄|Y )

∝ H(V|Y ), (11)

where H(·) denotes the cross-entropy, and DKL(·) denotes the KL-divergence. As a consequence,609

the first term in Equation (8) is positive proportional to H(V|Y ). This concludes the proof for the610

first compactness part of BC loss.611

We then inspect the second term in Equation (8) to demonstrate its dispersion property:612 ∑
(u,i)∈O+

log(exp
vT
uvi −m

τ
+

∑
j∈Nu

exp
vT
uvj

τ
)

≥
∑

(u,i)∈O+

log (
∑
j∈Nu

exp
vT
uvj

τ
)

≥
∑
u∈U

∑
j∈Nu

vT
uvj

τ

c
=−

∑
u∈U

∑
j∈Nu

∥vu − vj∥2 , (12)

where we drop the redundant terms aligned with the compactness objective in the second line, and613

adopt Jensen’s inequality in the third line. As shown in prior studies [58], minimizing this term is614

equivalent to maximizing entropy H(V):615 ∑
(u,i)∈O+

log(exp
vT
uvi −m

τ
+

∑
j∈Nu

exp
vT
uvj

τ
) ∝ −H(V). (13)

As a result, the second term in Equation (8) works as the dispersion part in BC loss.616
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B Experiments617

B.1 Experimental Settings618

Datasets. We conduct experiments on five real-world benchmark datasets: Tencent [47], Amazon-619

Book [48], Alibaba-iFashion [49], Douban Movie [50], and KuaiRec [52]. All datasets are public620

and vary in terms of size, domain, and sparsity. Table 4 summarizes the dataset statistics, where the621

long-tail degree is monitored by KL-divergence between the item popularity distribution and the622

uniform distribution, i.e., DKL(P̂data||Uniform). A larger KL-divergence value indicates that the623

heavier portion of interactions concentrates on the head of distribution. In the stage of pre-processing624

data, we follow the standard 10-core setting [20, 59] to filter out the items and users with less than625

ten interactions.626

Data Splits. For comprehensive comparisons, almost all standard test distributions in CF are627

covered in the experiments: balanced test set [22, 23, 24], randomly selected imbalanced test set628

[10, 53], temporal split test set [20, 21, 12], and unbiased test set [13, 52, 51]. Three datasets (i.e.,629

Tencent, Amazon-Book, Alibaba-iFashion) are partitioned into both balanced and randomly selected630

imbalanced evaluations. As an intervention test, the balanced evaluation (i.e., uniform distribution)631

is frequently employed in recent debiasing CF approaches [22, 23, 24, 60]. Douban is split based632

on the temporal splitting strategy [61]. KuaiRec is an unbiased, fully-observed dataset in which the633

feedback of the test set’s interaction is explicitly collected.634

Evaluation Metrics. We adopt the all-ranking strategy [62], i.e., for each user, all items are ranked635

by the recommender model, except the positive ones in the training set. To evaluate the quality of636

recommendation, three widely-used metrics are used: Hit Ratio (HR@K), Recall@K, Normalized637

Discounted Cumulative Gain (NDCG@K), where K is set as 20 by default.638

Baselines. We validate our BC loss on two widely-used CF models, MF [26] and LightGCN [25],639

which are representatives of the conventional and state-of-the-art CF models. We compare BC loss640

with the popular debiasing strategies in various research lines: sample re-weighting (IPS-CN [15]),641

bias removal by causal inference (MACR [22], CausE [19]), and regularization-based framework642

(sam+reg [12]). We also compare BC loss to other standard losses used in collaborative filtering643

including most commonly used loss (BPR loss [26]) and newest proposed softmax losses (CCL [54]644

and SSM [55]).645

Parameter Settings. We conduct experiments using a Nivida-V100 GPU (32 GB memory) on a646

server with a 40-core Intel CPU (Intel(R) Xeon(R) CPU E5-2698 v4). We implement our BC loss in647

PyTorch. Our codes, datasets, and hyperparameter settings are available at https://anonymous.648

4open.science/r/BC-Loss-8764/model.py to guarantee reproducibility. For a fair comparison,649

all methods are optimized by Adam [63] optimizer with the batch size as 2048, embedding size as 64,650

learning rate as 1e-3, and the coefficient of regularization as 1e-5 in all experiments. Following the651

default setting in [25], the number of embedding layers for LightGCN is set to 2. We adopt the early652

stop strategy that stops training if Recall@20 on the validation set does not increase for 10 successive653

epochs. A grid search is conducted to tune the critical hyperparameters of each strategy to choose the654

best models w.r.t. Recall@20 on the validation set. For softmax, SSM, and BC loss, we search τ in655

[0.06, 0.14] with a step size of 0.02. For CausE, 10% of training data with balanced distribution are656

used as intervened set, and cf_pen is tuned in [0.01, 0.1] with a step size of 0.02. For MACR, we657

Table 4: Dataset statistics.
KuaiRec Douban Movie Tencent Amazon-Book Alibaba-iFashion Yahoo!R3 Coat

#Users 7175 36,644 95,709 52,643 300,000 14382 290
#Items 10611 22,226 41,602 91,599 81,614 1000 295
#Interactions 1062969 5,397,926 2,937,228 2,984,108 1,607,813 129,748 2,776
Sparsity 0.01396 0.00663 0.00074 0.00062 0.00007 0.00902 0.03245

DKL-Train 1.075 1.471 1.425 0.572 1.678 0.854 0.356
DKL-Validation 1.006 1.642 1.423 0.572 1.705 0.822 0.350
DKL-Balanced - - 0.003 0.000 0.323 - -
DKL-Imbalanced - - 1.424 0.571 1.703 - -
DKL-Temporal - 1.428 - - - - -
DKL-Unbiased 1.666 - - - - 0.100 0.109
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Table 5: Training cost on Tencent (seconds per epoch/in total).
Backbone +IPS-CN +CausE +sam+reg +MACR +BC loss

MF 15.5 / 17887 17.8 / 10662 16.6 / 1859 18.2 / 3458 160 / 17600 36.1 / 12815
LightGCN 78.6 / 4147 108 / 23652 47.2 / 3376 49.8 / 10458 135 / 20250 283 / 7075

Table 6: The performance comparison on KuaiRec dataset.
Validation Unbiased Test

HR Recall NDCG HR Recall NDCG

LightGCN 0.299 0.069 0.051 0.104 0.0038 0.0064
+ IPS-CN 0.255 0.056 0.042 0.109 0.0073 0.0083
+ CausE 0.292 0.067 0.050 0.101 0.0056 0.0077
+ sam+reg 0.274 0.060 0.047 0.107 0.0069 0.0080
+ BC loss 0.343 0.076 0.062 0.139* 0.0077* 0.0115*

Imp.% - - - 27.5% 4.05% 38.6%

follow the original settings to set weights for user branch α = 1e− 3 and item branch β = 1e− 3,658

respectively. We further tune hyperparameter c = [0, 50] with a step size of 5. For CCL loss, we659

search w in {1, 2, 5, 10, 50, 100, 200}, m in the range [0.2, 1] with a step size of 0.2. When it come660

to the number of negative samples, the softmax, SSM, CCL, and BC loss set 128 for MF backbone661

and in-batch negative sampling for LightGCN models.662

B.2 Training Cost663

In terms of time complexity, as shown in Table 5, we report the time cost per epoch and in total of664

each baselines on Tencent. Compared with backbone methods (i.e., MF and LightGCN), BC loss665

adds very little computing complexity to the training process.666

B.3 Evaluations on Unbiased Test Set667

Motivation. Because of the missing-not-at-random condition in a real recommender system, offline668

evaluation on collaborative filtering and recommender system is commonly acknowledged as a669

challenge. To close the gap, Yahoo!R3 [51] and Coat [13] are widely used, which offer unbiased test670

sets that are collected using the missing-complete-at-random (MCAR) concept. Additionaly, newly671

proposed KuaiRec [52] also provides a fully-observed unbiased test set with 1,411 users over 3,327672

videos. We conduct experiments on all these datasets for comprehensive comparison, and KuaiRec673

is also included as one of our unbiased evaluations for two key reasons: 1) It is significantly larger674

than existing MCAR datasets (e.g., Yahoo! and Coat); 2) It overcomes the missing values problem,675

making it as effective as an online A/B test.676

Parameter Settings. For BC loss on Yahoo!R3 and Coat, we search τ1 in [0.05, 0.21] with a step677

size of 0.01, and τ2 in [0.1, 0.6] with a step size of 0.1, and search the number of negative samples in678

[16, 32, 64, 128]. We adopt the batch size of 1024 and learning rate of 5e-4.679

Results. Table 6 and 8 illustrate the unbiased evaluations on KuaiRec, Yahoo!R3, and Coat dataset680

using LightGCN and MF as backbone models, respectively. The best performing methods are bold681

and starred, while the strongest baselines are underlined; Imp.% measures the relative improvements682

of BC loss over the strongest baselines. BC loss is consistently superior to all baselines w.r.t. all683

metrics. It indicates that BC loss truly improves the generalization ability of recommender.684

B.4 Performance Comparison with Standard Loss Functions in CF685

Motivation. To verify the effectiveness of BC loss as a standard learning strategy in collaborative686

filtering, we further conduct the experiments over various datasets between BC loss, BPR loss, CCL687

loss [54], and SSM loss [55]. We choose these three losses as baselines for two main reasons: 1)688

BPR loss is the most commonly applied in recommender system; 2) SSM and CCL are most recent689

proposed losses, where SSM is also a softmax loss and CCL employs a global margin.690
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Table 7: The performance comparison on Tecent, Amazon-book and Alibaba-iFashion datasets.

Tencent Amazon-book Alibaba-iFashion
Balanced Imbalanced Balanced Imbalanced Balanced Imbalanced

Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG

BPR 0.0052 0.0040 0.0982 0.0643 0.0109 0.0103 0.0850 0.0638 0.0056 0.0028 0.0843 0.0411
SSM 0.0055 0.0045 0.1297 0.0872 0.0156 0.0157 0.1125 0.0873 0.0079 0.0040 0.0963 0.0436
CCL 0.0057 0.0047 0.1216 0.0818 0.0175 0.0167 0.1162 0.0927 0.0075 0.0038 0.0954 0.0428
BC Loss 0.0087* 0.0068* 0.1298* 0.0904* 0.0221* 0.0202* 0.1198* 0.0948* 0.0095* 0.0048* 0.0967* 0.0487*

Imp. % 52.6% 44.7% 0.1% 3.7% 26.3% 21.0% 3.1% 2.3% 20.3% 20.0% 0.4% 11.7%

Table 8: The performance comparison on Yahoo!R3 and Coat dataset.

Yahoo!R3 Coat
Recall NDCG Recall NDCG

IPS-CN 0.1081 0.0487 0.1700 0.1377
CausE 0.1252 0.0537 0.2329 0.1635
sam+reg 0.1198 0.0548 0.2303 0.1869
MACR 0.1243 0.0539 0.0798 0.0358

BPR 0.1063 0.0476 0.0741 0.0361
SSM 0.1470 0.0688 0.2022 0.1832
CCL 0.1428 0.0676 0.2150 0.1885
BC loss 0.1487* 0.0706* 0.2385* 0.1969*

Imp.% 1.2% 2.6% 2.4% 4.5%

Results. Table 7 reports the performance on both balanced and imbalanced test sets on various691

datasets among different losses. We have two main observations: (1) Clearly, our BC loss consistently692

outperforms CCL and SSM; (2) CCL and SSM achieve comparable performance to BC loss in the693

imbalanced evaluation settings, while performing much worse than BC loss in the balanced evaluation694

settings. This indicates the superiority of BC loss in alleviating the popularity bias, and further695

justifies the effectiveness of the bias-aware margins.696

Table 8 shows the unbiased evaluations on Yahoo!R3 and Coat dataset. With regard to all criteria, BC697

loss constantly outperforms all other losses. It verifies the effectiveness of instance-wise bias margin698

of BC loss.699

B.5 Study on BC Loss (RQ3) - Effect of Popularity Bias Extractor700

Motivation. To check the effectiveness of popularity bias extractor, we need to answer two main701

questions: 1) what kinds of interactions will be learned well by the bias extractor? What does the702

learned bias-angle distribution look like? 2) can BC loss benefit from the bias margin extracted703

according to the popularity bias extractor in various groups of interactions? We devise two distinct704

experiments to tackle these two problems.705

Experiment Setting A. Users can be divided into three parts: head, mid, and tail, based on their706

popularity scores. Analogously, items can be partitioned into the head, mid, and tail parts. As such,707

we can categorize all user-item interactions into nine subgroups. We have visualized the learned708

angles for various types of interactions in the following table 5.709

Results A. The table 5 shows the learned angles over all subgroups. We find that interactions between710

head users and head items tend to hold small angles. Moreover, as evidenced by the high standard711

deviation, the interactions stemming from the same subgroup types are prone to receive a wide range712

of angular values. This demonstrates the variability and validity of instance-wise angular margins.713

Experiment Setting B. We partition interactions into disjoint subgroups on Tencent dataset, based on714

the bias degree estimated by our popularity bias extractor. These subgraphs are composed of (1) hard715

interactions with low bias degrees (40% of total interactions, Popularity rank > 1000), and (2) easy716

interactions with high bias degrees (15% of total interactions, Popularity rank < 100), respectively.717

Then, we use four losses (BPR, CCL, SSM, and BC losses) to train the same MF backbone.718
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Figure 5: Visualization of popularity bias angle for different types of interactions on Tencent.

Results B. Figure 4 depicts the performance of each loss in the hard-interaction subgroup, easy-719

interaction subgraph, and all-interaction group, during the training phase. With the increase of training720

epochs, the performance of BPR drops dramatically in the hard-interaction subgroup, while increasing721

in the all-interaction group. Possible reasons are BPR is easily influenced by the interaction-wise bias:722

BPR focuses largely on the majority subgroups of easy interactions, while sacrificing the performance723

of the minority subgroups of hard interactions. In contrast, the performance of BC loss consistently724

increases over every subgroup during training. This indicates that BC loss is able to mitigate the725

negative influences of popularity bias, thus further justifying that the popularity bias extract captures726

the interaction-wise bias well.727

(a) Hard interactions (b) Easy interactions (c) All interactions

Figure 6: (a) The performance of BPR loss on hard interactions consistently drops; (b)- (c). BC loss
shows the promise to mitigate the popularity bias by utilizing the popularity bias extractor.
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(a) Bias degree w.r.t. Item popularity bias (b) Bias degree w.r.t. User popularity bias

Figure 7: Visualizations of relationships between interaction bias degree estimated by our popularity
bias extractor and item/user popularity statistics. Pearson correlation coefficients are provided.

B.6 Visualization of interaction bias degree728

Figures 7a and 7b illustrate the relations between popularity scores and bias degree extracted by729

popularity bias extractor w.r.t. user and item sides, respectively. Specifically, positive trends are shown,730

where their relations are also quantitatively supported by Pearson correlation coefficients. (0.7703731

and 0.662 for item and user sides, respectively). It verifies the power of popularity embeddings to732

predict the popularity scores — that is, user popularity embeddings derived from the popularity bias733

extractor are strongly correlated and sufficiently predictive to user popularity scores; analogously to734

the item side.735

Table 9: Model architectures and hyper-parameters
BC loss hyper-parameters

τ1 τ2 lr batch size No. negative samples

MF
Tencent 0.06 0.1 1e-3 2048 128

iFashion 0.08 0.1 1e-3 2048 128

Amazon 0.08 0.1 1e-3 2048 128

Douban 0.08 0.1 1e-3 2048 128

Yahoo!R3 0.15 0.2 5e-4 1024 128

Coat 0.09 0.4 5e-4 1024 64

LightGCN
Tencent 0.12 0.1 1e-3 2048 in-batch

iFashion 0.14 0.1 1e-3 2048 in-batch

Amazon 0.08 0.1 1e-3 2048 in-batch

Douban 0.14 0.1 1e-3 2048 in-batch
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