
Appendix18

The organization of this Appendix is given below. Appendix A presents additional details on the19

experiments. In Appendix B, we present the proofs of security and convergence guarantees of our20

method. Finally, in Appendix C, we provide the complexity analysis of the proposed DReS-FL21

framework and compare it with other secure aggregation methods.22

A Additional Experimental Details23

All experiments are performed by Pytorch on an Intel Xeon Gold 6246R CPU @ 3.40 GHz and a24

Geforce RTX 3090.25

Datasets. We select six image datasets in the experiments, including MNIST, Fashion-MNIST,26

EMNIST (Balanced), CIFAR-10, CIFAR-100, and SVHN. Specifically, we use the balanced subset27

of EMNIST to conduct experiments. The extra training samples [1] in the SVHN dataset are not28

utilized on the experiment. More details of these datasets are summarized in Table 1.29

Model structures. The neural network for MNIST, Fashion-MNIST, and EMNIST datasets is a30

two-layer multi-layer perception (MLP) with 64 hidden units each. For CIFAR-10, CIFAR-100, and31

SVHN datasets, we resize the input images from 32× 32 to 224× 224 and adopt the convolutional32

layers of a pretrained VGG model to extract 25088-dimensional features. To classify the extracted33

features, we select a two-layer MLP model with 4096 hidden units each.34

Baselines. We select algorithm-based methods as baselines, including FedAvg [2], FedAvg with35

importance sampling (FedAvg-IS) [3, 4], and SCAFFOLD [5]. These methods can be easily combined36

with secure aggregation methods [6, 7] to protect the privacy of clients’ local models. Specifically, we37

perform secure aggregation for both the local model updates and the control variates in SCAFFOLD.38

Data-centric approaches [8, 9, 10, 11, 12, 13] are not compared since some of them [8, 9, 10] cannot39

provide strong privacy guarantees while others [11, 12, 13] do not naturally extend to federated neural40

network training with multiple clients.41

Hyperparameters. We adopt mini-batch SGD with a batch size of 64 to optimize the models in42

federated training. The communication round is set to be 7× 104, and the clients perform one local43

SGD step in each round. The learning rate is initialized as 0.1, and it will decay with a factor of 0.6544

after every 1500 rounds. Other parameters in our DRes-FL framework are summarized in Table 2.45

B Proofs46

B.1 Proof of Theorem 247

According to Theorem 1, the mutual information between the local dataset of client i and the encoded48

dataset (X̃i, Ỹi) is zero for i ∈ [N ]. By the chain rule of mutual information, the conditional49

mutual information I(Xi,Yi; X̃
(I)
i , Ỹ

(I)
i ,w|w) equals zero. Due to the data processing inequality,50

the central server can infer no information about local dataset (Xi,Yi) from stochastic gradient51

g̃(X̃
(I)
i , Ỹ

(I)
i ;w)|w) beyond the global model w, i.e., I(Xi,Yi; g̃(X̃

(I)
i , Ỹ

(I)
i ;w)|w) = 0, for52

any i ∈ [N ] and index set I.53

B.2 Proof of Theorem 454

For simplicity, we denote g(t) = 1
bK

∑K
j=1 g(X̃

(It)
j , Ỹ

(It)
j ;w(t)) in this section. The server updates55

the global model by w(t+1) = w(t)−Q(ηg(t)) in each round t after receiving deg(g)(K+T−1)+156

uploads from clients. We first provide an important lemma to show that the model update Q(ηg(t))57

on the server is an unbiased estimate of ηge(w(t)).58
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Table 1: Details of the datasets
MNIST Fashon-MNIST EMNIST CIFAR-10 CIFAR-100 SVHN

No. of classes 10 10 47 10 100 10
No. of

training samples 60,000 60,000 112,800 50,000 50,000 73,257

No. of
test samples 10,000 10,000 18,800 10,000 10,000 26,032

Image size 28× 28 28× 28 28× 28 32× 32 32× 32 32× 32

License
Creative Commons
Attribution-Share
Alike 3.0 License

MIT
License

Apache
License 2.0

MIT
License

MIT
License

CC0:Public
Domain License

Table 2: Hyperparameters for our DReS-FL method

Parameters MNIST Fashion-MNIST EMNIST CIFAR-10 CIFAR-100 SVHN
Maximum L2-norm
for gradient clipping 2× 104 2× 104 5× 106 2× 104 1× 109 2× 104

Prime number p 1031 + 33 1031 + 33 1051 + 121 1031 + 33 1071 + 273 1031 + 33
Parameter l in

data transformation 4 4 4 2 2 2

Lemma 1. (Unbiased and variance-bounded model update) In the t-th round, the model update59

Q(ηg(t)) has the following properties:60

E
[
Q(ηg(t))

]
=ηge(w), (1)

E
[
∥Q(ηg(t))− ηge(w)∥2

]
≤(γ2 + 1)η2

σ2

bK
+ γ2η2

∥∥∥ge(w(t))
∥∥∥2 . (2)

Proof. According to Assumption 2-3, we directly obtain that E
[
Q(ηg(t))

]
= E

[
ηg(t)

]
= ge(w).61

Since the batch sampling and rounding operation cause independent errors, the variance is upper62

bounded as follows:63

E
[∥∥∥Q(ηg(t))− ηge(w

(t))
∥∥∥2]

= E
[∥∥∥Q(ηg(t))− ηg(t)

∥∥∥2]+ E
[∥∥∥ηg(t) − ηge(w

(t))
∥∥∥2]

(a)

≤ γ2E
[∥∥∥ηg(t)

∥∥∥2]+ E
[∥∥∥ηg(t) − ηge(w

(t))
∥∥∥2]

= γ2η2
[
E
[∥∥∥g(t) − ge(w

(t))
∥∥∥2]+

∥∥∥ge(w(t))
∥∥∥2]+ η2E

[∥∥∥g(t) − ge(w
(t))

∥∥∥2]
(b)

≤ (γ2 + 1)η2
σ2

bK
+ γ2η2

∥∥∥ge(w(t))
∥∥∥2 ,

where (a) follows Assumption 3. (b) is due to Assumption 2 and the independence of mini-batch64

sampling noises among clients.65

With Lemma 1, we prove Theorem 4 as follows:66
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Proof. The model update in the t-th iteration can be expressed as w(t+1) = w(t) − Q(ηg(t)).67

According to the Taylor’s expansion, we have:68

E
[
ℓ(w(t+1))

]
− E

[
ℓ(w(t))

]
≤ −E

〈
ge(w

(t)), Q(ηg(t))
〉
+

L

2
E
[∥∥∥Q(ηg(t))

∥∥∥2]
(c)
= −E

〈
ge(w

(t)), ηge(w
(t))

〉
+

L

2
E
[∥∥∥Q(ηg(t))

∥∥∥2]
(d)
= −η

∥∥∥ge(w(t))
∥∥∥2 + L

2
E
[∥∥∥Q(ηg(t))− ηge(w

(t))
∥∥∥2]+

L

2
E
[∥∥∥ηge(w(t))

∥∥∥2]
(e)

≤ −
(
η − η2L

2

)∥∥∥ge(w(t))
∥∥∥2 + L

2

(
(γ2 + 1)η2

σ2

bK
+ γ2η2

∥∥∥ge(w(t))
∥∥∥2)

= −
(
η − η2L

2
− η2γ2L

2

)∥∥∥ge(w(t))
∥∥∥2 + η2Lσ2

2bK
(γ2 + 1),

where (c) follows Lemma 1, (d) holds according to the fact that69

E
〈
∇Q(ηg(t))− ηge(w

(t)), ge(w
(t))

〉
= 0, and (e) is due to Assumption 2-3. If it holds70

that η − η2L
2 − η2γ2L

2 > 0, we summarize the above inequality over t = 1, 2, . . . , τ ′ to conclude the71

proof.72

C Complexity Analysis and Comparison73

In this part, we analyze the communication and computational complexities of the proposed DReS-FL74

framework with respect to the parameters (N,T,K, τ, dw, bg). Parameter N is the number of clients,75

and T denotes the privacy threshold in Lagrange coding [14]. Parameter K denotes the number of76

shards in the local datasets. A large value of K reduces the communication overhead in secret data77

sharing and the local computation loads of clients. In the federated training, parameter τ corresponds78

to the number of communication rounds. Parameters dw and bg denotes the model size and the global79

batch size, respectively. Before training starts, each client’s computation cost for Lagrange coding and80

communication complexity for data sharing are O(N log2(K + T ) log log(K + T )) and O(N/K),81

respectively. In each round of federated training, the local computation complexity is O(dwbg/K),82

and the model uploading cost is O(dw). Besides, the communication overhead of the server for83

model distributing is O(Ndw), and the model decoding complexity by polynomial interpolation84

is O(R log2 R log logRdw), where R denotes the minimum uploads needed for gradient decoding.85

The model uploading cost of each client is O(dw) and the communication overhead of global model86

downloading is O(Ndw).87

Different from our method, secure aggregation approaches [6, 15, 16, 17, 18, 7] generate random88

masks to protect the local model parameters. In each round, clients first share random-seeds [6, 15, 16,89

18] or coded masks [7] with each other which allows for aggregating the masked models at the server.90

As some clients may drop out of the training process unexpectedly, the surviving clients upload the91

shared information belonging to the dropped clients to reconstruct the aggregated model. The main92

drawback of such approaches is that clients need to generate new masks in each round, and thus the93

extra costs are proportional to the number of training rounds. In comparison, our method introduces94

extra costs in secret data sharing before the training starts, and its communication and computational95

complexities are independent of the training round τ . In the scenario that the training round is very96

large, the proposed DReS-FL method could reduce the latency compared with the secure aggregation97

protocols. The complexities comparisons with FedAvg and the well-known LightSecAgg [7] method98

are summarized in Table 3 and 4.99
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Table 3: Computational complexity comparison

Preparation Iterative training (τ rounds)
Lagrangian

coding
Generating coded

random masks
Local model

update
Global model
aggregation

FedAvg — — O (τdwbg/N) O(τNdw)
FedAvg with
LightSecAgg — O

(
τdwN2 logN

R−T

)
O (τdwbg/N) O

(
τdwR logR

R−T

)
DReS-FL O(N2 log2(K + T )

log log(K + T ))
— O (τdwbg/K)

O(τdwR log2 R
log logR)

Table 4: Communication complexity comparison

Preparation Iterative training (τ rounds)

Data sharing
Coded masks

sharing among
clients

Local model
uploading

Coded masks
uploading

Global model
downloading

FedAvg — — O(τdw) — O(τNdw)
FedAvg with
LightSecAgg — O

(
τN2dw

R−T

)
O(τdw) O

(
τdwR
R−T

)
O(τNdw)

DReS-FL O(N2/K) — O(τdw) — O(τNdw)
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