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Abstract

Modern deep learning applications require increasingly more compute to train1

state-of-the-art models. To address this demand, large corporations and institutions2

use dedicated High-Performance Computing clusters, whose construction and3

maintenance are both environmentally costly and well beyond the budget of most4

organizations. As a result, some research directions become the exclusive domain5

of a few large industrial and even fewer academic actors. To alleviate this disparity,6

smaller groups may pool their computational resources and run collaborative7

experiments that benefit all participants. This paradigm, known as grid- or volunteer8

computing, has seen successful applications in numerous scientific areas. However,9

using this approach for machine learning is difficult due to high latency, asymmetric10

bandwidth, and several challenges unique to volunteer computing. In this work,11

we carefully analyze these constraints and propose a novel algorithmic framework12

designed specifically for collaborative training. We demonstrate the effectiveness13

of our approach for SwAV and ALBERT pretraining in realistic conditions and14

achieve performance comparable to traditional setups at a fraction of the cost.15

Finally, we provide a detailed report of successful collaborative language model16

pretraining with nearly 50 participants.17

1 Introduction18

The deep learning community is becoming increasingly more reliant on transfer learning. In computer19

vision, pretraining convolutional networks on large image collections such as ImageNet [1] is the20

de facto standard for a wide range of applications, ranging from object detection [2] and semantic21

segmentation [3] to image classification [4] and even learning perceptual similarity [5]. A growing22

number of natural language processing systems capitalize on language models with billions of23

parameters [6, 7, 8, 9, 10, 11] trained on vast unlabeled corpora. Similar trends have emerged in areas24

such as speech processing [12, 13], reinforcement learning[14], and computational biology [15, 16].25

Training these models is a notoriously difficult and time-consuming task: it often requires hundreds of26

high-end GPU servers [10, 17] and would take multiple years on a single device [18]. Most academic27

and independent researchers simply cannot afford to train state-of-the-art models from scratch, which28

slows down scientific progress and practical adoption of deep learning.29

Historically, the deep learning community has addressed this problem via “model hubs” or “model30

zoos” — public repositories for pretrained model checkpoints [19, 20, 21, 22]. These repositories31

have played a significant role in the democratization of deep learning, allowing everyone to reap32

the benefits of large-scale training runs conducted by corporations and universities with sufficient33

resources. However, model hubs are limited to a narrow subset of datasets and tasks that match the34

interests of model creators. For instance, in natural language processing, it is often difficult to find35

up-to-date models for more than a handful of languages [23]. In turn, computer vision hubs rarely36

feature models trained on drawings, satellite images, 3D renders, microscopy or any other data that37
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does not resemble ImageNet. As a result, many researchers in these areas can only work on problems38

for which there are available pretrained models, rather than the problems that most need solving.39

However, there might be an alternative way to obtain pretrained models: to train these models40

collaboratively. This approach, known as volunteer (or grid) computing, allows many independent41

parties to combine their computational resources and collectively perform large-scale experiments [24,42

25, 26]. The raw compute performance of such collaborations often exceeds that of the fastest43

supercomputers [27]; however, fully utilizing it can be challenging due to several reasons. First,44

devices that contribute to collaborative experiments can range from GPU servers and high-end45

workstations to consumer-grade computers and even smartphones [28]. Second, most of these devices46

use household internet connection with limited bandwidth and low reliability. Third, participants in47

such projects often donate their hardware part-time, joining and leaving the experiment at will.48

While it is theoretically possible to train neural networks on this kind of infrastructure, modern49

distributed training strategies are only efficient in a narrow range of conditions. For instance, training50

with Ring All-Reduce [29] works well for identical servers but suffers significant performance51

penalties from network latency or bandwidth variation [30]. Another technique known as Parameter52

Server can handle heterogeneous devices at the cost of being less scalable [31]. Applying any of these53

strategies outside their preferred conditions may significantly reduce the training throughput [32],54

which makes them difficult to apply in the volatile infrastructure of volunteer computing. This55

issue is further complicated by the unique limitations of volunteer devices, such as network address56

translation (NAT), regional access restrictions or variations in performance.57

In this study, we carefully analyze the above challenges and come up with a practical solution for58

Distributed Deep Learning in Open Collaborations (DeDLOC). DeDLOC is based on a novel algo-59

rithm that adapts to the available hardware in order to maximize the training throughput. Depending60

on the infrastructure, DeDLOC can recover parameter servers [33], All-Reduce SGD [34], decen-61

tralized SGD [35], BytePS [36], or an intermediate strategy that combines all of them. Using this62

algorithm, we propose a system for collaborative training, designed to accommodate a large number63

of heterogeneous devices with uneven compute, bandwidth, reliability and network capabilities.64

The contributions of our work can be summarized as follows:65

• We analyze the unique challenges of distributed training in open collaborations and propose a66

practical recipe for training in these conditions.67

• We formulate a novel distributed training algorithm that interpolates between traditional strategies68

to directly maximize the training performance for the available hardware.69

• We verify the effectiveness of the proposed algorithm and system design for unsupervised pretrain-70

ing of ALBERT-Large and SwAV under realistic conditions.71

• We run collaborative training with actual volunteers, achieving competitive results to models trained72

on hundreds of data center GPUs. We also report insights on the collaborator activity and share the73

codebase for running similar experiments in the future1.74

2 Related work75

2.1 Distributed training76

In this work, we focus on distributed data-parallel training, where each device runs forward and77

backward pass of the entire model on a subset of training examples. While there are many alternative78

techniques [37, 38, 39], data-parallel is still the most popular strategy. Even the model-parallel79

approaches for extremely large models rely on data parallelism at the top level [39, 17, 40].80

Training on multiple nodes was first implemented with parameter server (PS) [33]. This training81

strategy relies on a dedicated node that stores model parameters and executes optimization steps using82

the gradients sent by workers. In turn, worker nodes iteratively download the latest version of model83

parameters from the server, compute gradients and submit them back to the PS. This strategy is easy84

to implement and use, but it has an unavoidable bottleneck: the entire system performance is limited85

by the network throughput of a single server. Since then, the scientific community proposed numerous86

1Code and training configurations are available at github.com/neurips-submit/DeDLOC
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extensions to PS that alleviate the bottleneck by reducing the communication load [41, 42, 43, 44, 45],87

introducing asynchronous updates [46, 47] or training with multiple servers [48, 36].88

The issue of uneven communication load has also inspired the development and widespread adoption89

of another group of methods that rely on All-Reduce for gradient averaging [49, 50, 51]. All-Reduce90

is a family of collective operations that allow nodes to efficiently aggregate (e.g. sum) their local91

vectors and distribute the result across all devices [52, 53, 54]. Unlike parameter servers, All-Reduce92

assigns equal roles to all devices, making it easier to scale to a large number of homogeneous workers.93

The popularity of AR-SGD sparked many practical applications for different scenarios. One par-94

ticularly relevant application is elastic training [55, 56], which allows the user to add or remove95

workers at any point without interrupting the training run. While this bears a lot of similarity with96

collaborative training, we have found that elastic training systems are designed around global state97

synchronization, which makes them are highly dependent on the homogeneity of the workers and their98

network connectivity. The overall efficiency is bounded by the performance of the lowest-performing99

node; as a result, introducing even a single low-bandwidth participant to such systems reduces the100

training speed by orders of magnitude.101

Seeking to avoid the need for synchronization and centralized orchestration, the research community102

has developed decentralized training algorithms. These algorithms can be broadly divided into two103

categories: directly passing updates between peers [57, 58] or running All-Reduce in small alternating104

groups [59, 30]. Compared to PS and All-Reduce, both categories provide a greater degree of fault105

tolerance but often require more steps to converge due to delayed updates [35, 30].106

Most practical use cases of the above techniques take place in HPC or cloud conditions, but there is107

one notable exception. In Federated Learning, multiple parties train a shared model on decentralized108

privacy-sensitive data that cannot be shared between devices [60]. For that reason, federated learning109

algorithms prioritize data privacy over training efficiency, often leaving most of the compute resources110

unused [61, 62]. For a more detailed overview of Federated Learning, refer to Appendix A.111

2.2 Volunteer Computing112

Volunteer computing (VC) is a paradigm of distributed computing where people donate idle time113

of their desktops, smartphones and other personal devices to collectively solve a computationally114

hard problem. This approach has seen successful applications in bioinformatics, physics and other115

scientific areas [63, 64, 65, 24, 66, 67, 68].116

In all these applications, volunteer computing allows researchers to access vast computational re-117

sources. In Folding@home, over 700,000 volunteers have collectively contributed 2.43 exaFLOPs118

of compute to COVID-19 research in April of 2020 [27]. Another project named BOINC (Berkeley119

Open Infrastructure for Network Computing) brings together 41.548 petaFLOPs from over 790,000120

active computers as of 17 March 2020 [26]. Volunteer computing systems were also the first “super-121

computers” to reach 1 petaFLOP and 1 exaFLOP barriers [27, 69]. These results became possible122

due to the contributions of a broad range of devices from high-end workstations to smartphones and123

even gaming consoles[70].124

Unfortunately, this compute diversity is also the main limitation of VC. Any volunteer computing125

system should be able to run on a wide range of available hardware and to maintain integrity even if126

some participants disconnect. Furthermore, the resources available to a project can vary over time,127

as most volunteers are only sharing their hardware when it is unused. Finally, volunteer devices are128

interconnected with a shared high latency network at typical home internet connection speeds.129

As a result, there were only a few successful attempts to apply volunteer computing to machine130

learning workloads. One such project is MLC@Home [71], which relies on volunteers to train131

many small independent models.This specific problem can be solved with no direct communication132

between participants. By contrast, distributed training of a single model requires significantly133

more communication and does not allow a natural way to “restart” failed jobs. When it comes134

to distributed training of neural networks, most volunteer computing projects rely on parameter135

server architectures [72, 73, 74]. As a result, these systems are bounded by the throughput of136

parameter servers and the memory available on the weakest GPU. The only notable exception137

is Learning@home [75], which uses expert parallelism to train larger models spanning multiple138

computers; however, this approach has only been tested in simulated conditions.139
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3 Distributed Deep Learning in Open Collaborations140

There are two unsolved challenges that stand in the way of practical collaborative training. The first141

challenge is algorithmic: how to maintain optimal training performance with dynamically changing142

hardware and network conditions? Another major challenge is ensuring consistent training outcomes143

with inconsistent composition of participants. Thus, we organize this section around these two issues:144

• Section 3.1 provides a general overview of DeDLOC and explains how it maintains consistency in145

a dynamic environment.146

• In Section 3.2, we describe the generalized communication strategy that maximizes training147

throughput by adapting to the currently available devices.148

• In Section 3.3, we address system design challenges, such as circumventing NAT and firewalls,149

training on large datasets and managing collaborator access.150

3.1 Ensuring training consistency151

Many state-of-the-art models, notably GANs [76] and Transformers [77], require a strict training152

regimen. Deviating from the recommended batch size or introducing stale gradients may significantly153

affect the training outcome [78, 79, 80]. Since in a collaborative setting one has little control over the154

devices that participate in the experiment, it is almost guaranteed that the specific hardware setup will155

vary between runs and even during a single run. Without special precautions, these runs may result in156

models with vastly different final accuracy.157

To avoid this pitfall, DeDLOC follows synchronous data-parallel training with fixed hyperparameters158

regardless of the number of collaborators. In order to compensate for relatively slow communication,159

we adopt training with extremely large batches [81, 82], which allows peers to communicate less160

frequently. This strategy also provides a natural way to deal with heterogeneous hardware [83]:161

each device accumulates gradients at its own pace until the collaboration reaches the target batch162

size. Once ready, the collaborators exchange their gradients and perform one optimizer step. Using163

synchronous updates makes DeDLOC mathematically equivalent to large-batch training on a regular164

HPC cluster. Figure 1 gives a high-level visual explanation of this algorithm.165

3.2 Adaptive averaging algorithm166

As we discussed in Section 2.1, each distributed training algorithm has a narrow range of conditions167

where it can reach optimal performance. For instance, Ring All-Reduce works best on homogeneous168

hardware with low-latency communication, while Parameter Server strategy requires dedicated169

high-bandwidth devices that communicate with a large number of “workers”. Since all devices are170

provided by volunteers, our training infrastructure is in a constant state of flux.171

For instance, a collaboration can start with several homogeneous nodes that could be trained optimally172

with All-Reduce. If new participants bring devices with less bandwidth, it may be more efficient to173

use the original nodes as parameter servers. As more peers join, these servers will eventually become174

unable to handle the network load and the collaboration will need to switch to a different strategy.175

Running efficient training on this kind of infrastructure requires a protocol that can dynamically176

assign roles to every peer given their hardware and network capabilities:177

• Compute performance: Each peer i ∈ 1, . . . , n can compute gradients over si samples per178

second. A peer that is unable to compute gradients (i.e. that has no GPU) will have si=0.179

• Bandwidth: Peers communicate with a limited throughput: di for download and ui for upload.180

• Geographical limitations: In addition to individual bandwidth, the communication throughput181

between two peers i, j is also restricted by tij and tji in each direction.182

Peer

Microbatch

State averaging

Peer failure

P1

P2

P3

P4
P5

Figure 1: Two DeDLOC training iterations with example collaborator dynamics.
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Given these constraints, our objective is to find a communication strategy that has the highest training183

throughput, that is, the one that makes the most SGD steps with a target batch size B per unit of184

time. In turn, the training throughput of a collaboration depends on how we split the load among185

the participants. Each peer can be assigned to compute gradients over a subset of training examples,186

aggregate a part of those gradients from all peers, or both.187

For simplicity and efficiency, we use delayed parameter updates (DPU) [84] — a technique that188

allows gradient computation and communication to run in parallel, at the cost of exactly one round189

of staleness. This strategy can improve time to convergence for a wide range of models, including190

Transformers [84, 85]. That said, our approach can be easily adapted to non-concurrent updates.191

With DPU, the frequency of training updates is determined by either the time to compute gradients or192

the time to aggregate them, whichever takes longer. In total, a collaboration processes
∑n

i=1 si · ci193

samples per second, where ci is the binary indicator denoting whether i-th peer is assigned to194

contribute gradients. Assuming the target batch size B, the frequency of the computation phase can195

be expressed as Fcompute =
∑n

i=1 si · ci /B.196

During the communication phase, each peer is first assigned to accumulate gradients over a fraction197

of model parameters. After that, everyone partitions their local gradients and sends each partition198

to the corresponding peer. On the other end, receiver nodes accumulate the gradients from all199

senders and return the average. In modern distributed training systems, this procedure is highly200

parallelized [36, 86]: a reducer can aggregate one chunk of gradients while downloading the next201

chunk and distributing the previous one back to the same senders.202

In order to properly optimize the training throughput, we must account for this parallelism. As such,203

we explicitly define the speed aij at which peer i peer sends gradients to peer j for aggregation. In204

turn, j-th peer aggregates gradients from all peers at the rate of the slowest sender aj = mini:ci=1 aij .205

The senders can then get the aggregated results from j-th reducer at gji ≤ aj . Finally, the total aij206

and gij for each peer cannot exceed their maximum download/upload speed. The only exception is207

that transfer within one node (aii, gii) does not count towards network throughput.208

The frequency of the gradient aggregation phase is simply the rate at which the slowest peer can209

aggregate the full gradient vector: Fagg = mini
∑

j gji / P , where P is the number of model210

parameters. The final optimization problem can be formulated as follows:211

max
a,g,c

min

(∑n
i=1 si·ci

B ,
mini

∑
j gji

P

)
s.t. gij ≤ mink:ck=1 aki ∀i, j∑

j 6=i (aji + gji) ≤ di ∀i∑
j 6=i (aij + gij) ≤ ui ∀i

aij + gij ≤ tij ∀i, j

(1)

This problem must be solved regularly as participants are joining and leaving. Thus, we must ensure212

that the benefits of the optimal strategy outweigh the overhead of computing it. For that reason, we213

formulate optimal strategy search as a linear program that can be solved efficiently2. A more formal214

definition of problem (1) with the detailed LP reduction can be found in Appendix B.215

After this problem is solved, we assign each peer to aggregate a fraction of gradients proportional216

to minj gji. Peers with ci=1 are also tasked with computing the gradients, while peers with ci=0217

remain idle and only participate in communication. This results in a natural division of labor. In the218

presence of many compute-heavy peers, some participants without accelerators will dedicate all their219

bandwidth to gradient aggregation instead of sending their local gradients.220

Node failures. The resulting procedure can find the optimal communication strategy for averaging221

gradients across all participants. However, as the number of participants grows, it might be impractical222

to compute the global average due to node failures. Based on our experiments with several hundred223

active volunteers, most training iterations will have at least one participant with network issues. This224

implies that without necessary precautions, the entire averaging round will fail more often than it will225

succeed. To combat this issue, we use techniques [59, 30] that replace global averaging with several226

consecutive iterations in alternating groups of size m. The groups are chosen in such a way that the227

collaboration can obtain the exact average in logm n steps. Furthermore, if any single participant228

fails, it will only affect his immediate group rather than the entire collaboration.229

2In our experiments, the LP solver consistently converges in < 50ms and is called ≈ 2 times per minute.

5
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Figure 2: Example collaboration setups and corresponding strategies for optimal averaging.

We adaptively choose the optimal group size m based on the number of peers and their failure rates.230

This optimization problem is independent of Equation (1) and aims to maximize the rate at which231

collaborators can compute the global average. We elaborate on this procedure in Appendix C.232

Comparison with existing techniques. Our method was designed as a generalization of existing233

data-parallel strategies that recovers them in special cases. To illustrate this idea, we provide example234

configurations for which DeDLOC recovers specific well-known strategies:235

1. AR-SGD: a homogeneous collaboration with reliable peers will use Butterfly All-Reduce [87];236

2. Parameter Server: adding a single participant with a very high bandwidth and low compute237

performance will turn the previous collaboration into a parameter server [33];238

3. BytePS: participants with the same bandwidth as AR-SGD nodes, but without compute accelera-239

tors, will behave as auxiliary summation services from BytePS [36];240

4. Decentralized SGD: any collaboration with a sufficiently high failure rate will converge to m=2.241

In this mode, all communication is performed between pairs of nodes, similarly to D-PSGD [35].242

However, when training with actual volunteer devices, DeDLOC typically follows a hybrid communi-243

cation scheme that differs from each of the above options. We display several examples of schemes244

that can arise as a solution for the optimal strategy search problem in Figure 2.245

3.3 System Design246

Training with volunteer hardware requires specialized system architecture that can dynamically247

scale with collaboration size and recover from node failures. DeDLOC achieves these properties by248

operating as a swarm, similarly in spirit to BitTorrent [88] and I2P [89]. Individual peers coordinate249

by forming a Distributed Hash Table — a fully decentralized fault-tolerant key-value storage [90, 91].250

Collaborators use this shared “dictionary” to count the number of accumulated gradients, find groups251

for averaging and keep track of the training progress.252

In order to ensure the integrity of DHT throughout the training run, DeDLOC requires a few peers253

with stable internet access. These “backbone” peers are responsible for welcoming new collaborators254

and performing auxiliary functions, such as storing checkpoints and tracking learning curves. The255

only requirement for those peers is that at least one of them is available at all times. As such, the256

backbone peers can be hosted on inexpensive servers without GPU (see Appendix F for cost analysis).257

All other devices are treated as regular collaborators. Depending on their hardware and network258

bandwidth, these devices can be assigned to (i) compute gradients, (ii) aggregate gradients computed259

by other peers or (iii) do both, according to the adaptive averaging algorithm. However, performing260

these steps with actual volunteer devices requires solving another set of challenges described below.261

Training under NAT and firewalls. In addition to having uneven compute and network capabil-262

ities, volunteer devices also deviate from traditional servers in network configuration. One major263

difference is the use of Network Address Translation (NAT) [92] — the technology that allows multi-264

ple devices to share the same IP address. In practice, the majority of household and organizational265

computers around the world use one or multiple layers of NAT (see Appendix D for more details).266

Unfortunately for distributed training, NAT makes it harder to establish peer-to-peer connections [93].267

When operating under NAT, DeDLOC participants use one of the following techniques:268

1. Hole punching: use a third peer to temporarily open access to both devices. Once both peers are269

accessible, they can establish a direct connection and transfer data as usual [94];270

2. Circuit relays: both devices connect to a relay (another peer that is mutually accessible), then271

forward all communication through that relay [95];272

3. Client mode: if everything else fails, a peer can still send gradients to others without the need for273

incoming connections. This imposes an additional constraint ai = 0 for Equation (1).274
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A similar set of strategies can be found in a wide range of distributed systems that rely on peer-to-peer275

communication, such as WebRTC, VoIP (IP telephony), and BitTorrent. Most of these systems rely on276

dedicated servers to establish connections between peers. However, in our case it is more appealing to277

use a fully decentralized NAT traversal where the regular peers perform hole punching and relaying278

by themselves. We describe this approach in more detail in Appendix E.279

Training on large datasets. Many prospective applications of DeDLOC require training on large280

datasets that can take multiple hours to download. We circumvent this problem by allowing par-281

ticipants to download the data progressively during training. To support this behavior, we split the282

dataset into shards; upon joining the collaboration, a peer begins downloading examples shard by283

shard in a streaming fashion. Once the first several examples are obtained, a collaborator can begin284

training right away while downloading the rest of data in background.285

To ensure that the training examples are independent and identically distributed, each participant286

loads shards in a different random order and uses a buffer to shuffle the data within each shard. Each287

participant loads the first S = 10, 000 examples into a buffer, then randomly picks a training batch288

from this buffer and replaces the chosen examples with newly downloaded ones. In our experiments,289

we stream the training data from a dedicated storage service. However, this service can be replaced290

with a peer-to-peer data sharing protocol akin to BitTorrent; see Appendix G for details.291

Collaborator authentication. Many prospective applications of DeDLOC need a way to keep292

track of individual peer contributions and protect against malicious peers. In our experiments, we293

achieve this using an allowlist authentication system that we describe in Appendix H.4.294

4 Experiments295

In this section, we evaluate the performance of DeDLOC in realistic collaborative training conditions.296

Our primary focus is on training models that are useful for a wide range of downstream tasks and thus297

would attract a large number of collaborators. One area that fits this description is self-supervised298

learning, i.e. learning reusable feature representations on large unlabeled datasets. First, we conduct299

controlled experiments on two popular self-supervised learning tasks in Sections 4.1 and 4.2. Then,300

we set up a real-world collaborative training run with volunteers and report our findings in Section 4.3.301

4.1 Self-supervised learning of visual representations302

Our first set of experiments uses SwAV [96] — a self-supervised learning technique that learns303

image representations by contrasting cluster assignments. Similarly to the original paper, we train304

the ResNet-50 [97] model on the ImageNet dataset [1] without labels. Our experiments follow the305

recommended training configuration [96, 98]: 2+6 random crops, early prototype freezing and a306

queue with 3,840 samples for each worker, LARS [81] optimizer and 32,768 samples per batch307

across all workers. We train with three hardware setups: SERVER, WORKSTATION and HYBRID. The308

SERVER setup contains 8 workers, each with a single V100 GPU and 1 Gb/s symmetric bandwidth. In309

turn, the WORKSTATION setup consists of 16 nodes with 1080 Ti and 200 Mb/s bandwidth per worker.310

Finally, the HYBRID setup combines both previous configurations for a total of 24 nodes. Unlike311

servers, workstation GPUs train in full precision because they do not support float16 acceleration [99].312

We report learning curves for each hardware configuration in Figure 3. As expected, the HYBRID313

setup converges the fastest, beating SERVER and WORKSTATION setups by 40% and 52% accordingly.314

Another important observation is that the workstation-only experiment achieves a reasonable training315

throughput despite using dated hardware. To provide more insight into the performance of DeDLOC,316

we also measure the time it takes to run averaging in different configurations. We report the mean317

over 100 averaging rounds; the standard deviation was below 1% in all setups. As demonstrated in318

Figure 1, adaptive averaging does not affect the performance for homogeneous setups but runs 1.9319

times faster on the hybrid infrastructure.320
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Figure 3: SwAV pretraining.
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ing performance.

Table 1: ResNet-50 averaging perfor-
mance.

Setup Algorithm
AR PS Ours

A: 8x1Gb/s 1.19 4.73 1.20
B: 16x0.2Gb/s 5.3 39.6 5.3
C: A ∪ B 5.69 14.1 2.96
D: B with PS 5.3 3.22 3.18(1x2.5Gb/s)

321
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4.2 Self-supervised pretraining for language understanding322

Next, we investigate how collaborative training performs for more complex models. In this experiment,323

we pretrain the ALBERT-large [7] masked language model on the WikiText-103 dataset [100]. We324

chose this setup for two reasons: first, ALBERT is very sensitive to the choice of hyperparameters325

and specifically batch size, even more so than regular transformers [78]. This makes it easier to verify326

that DeDLOC can reproduce the training conditions of regular data-parallel training. Second, because327

of weight sharing, training ALBERT is relatively more compute- and less communication-intensive328

than regular BERT [6], which makes it possible to train with lower bandwidth.329

As before, we follow the exact training configuration from the original paper, but use GPUs instead330

of TPUs. We use the implementation of ALBERT from the transformers library [103]. We run all331

experiments on cloud instances with Tesla T4 GPUs and report the training loss as a function of time,332

similarly to [18, 40]. In order to evaluate how DeDLOC performs with different network speeds, we333

consider the following setups on the same platform with controlled conditions:334

• High-bandwidth: 16 workers, each with Tesla T4 and 25 Gb/s symmetric bandwidth;335

• Heterogeneous: same, but with 4x 200 Mb/s, 8x 100 Mb/s and 4x 50 Mb/s bandwidths;336

• Heterogeneous + load balancing: like Heterogeneous, but with adaptive averaging (Section 3.2);337

• Auxiliary peers: the previous setup with 4 additional CPU-only peers at 1 Gb/s bandwidth.338

• Time-varying: same as previous, but with 8 additional peers at 100 Mb/s. The extra peers are339

training part-time, jointly alternating between 8 hours of training and 8 hours of downtime.340

As one can see in Figure 4, naïve training with low-bandwidth peers results in an ≈ 2.5x slowdown341

compared to high-bandwidth ones. Enabling load balancing accelerates that setup by ≈ 47%. This342

effect grows to over 60% when adding 4 auxiliary peers. Finally, adding 8 part-time peers allows the343

collaboration to train at 74% the speed of the high-bandwidth setup without sacrificing the training344

stability. This turns the latter setup into a viable alternative to traditional distributed training without345

the need for expensive infrastructure (see the cost analysis in Appendix F).346

4.3 Real-world collaborative training347

For our final evaluation, we organized an actual collaborative training run with volunteer participants.348

In this experiment, we asked collaborators to pretrain a Transformer [77] model for the Bengali349

language. This task was chosen deliberately to showcase the benefits of collaborative training:350

Bengali has over 230M native speakers that can benefit from recent advances in NLP, but there are351

few pretrained models available for this language. We recruited 38 Bengali-speaking volunteers and352

11 outside collaborators. All participants received instructions for contributing with local computers353

and free cloud platforms. To avoid bias, we did not encourage any specific form of participation:354

volunteers were free to choose what hardware they contribute and for how long.355

Specifically, we trained the ALBERT-large architecture on Wikipedia and the Bengali part of the356

OSCAR [104] multilingual corpus. The model was named sahajBERT after conducting a poll among357

the participants. We adapted our preprocessing by following the best practices for the Bengali358

language described in Appendix H.2. To stream from a mix of Wikipedia and OSCAR, the training359

process iteratively samples examples from one or the other dataset, as described in Section 3.3. We360

accounted for uneven size and quality of data by oversampling Wikipedia by a factor of 2, which361

resulted in mixing probabilities of 0.23 for Wikipedia and 0.77 for OSCAR. Other hyperparameters362

were set to the same values as in Section 4.2.363
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Figure 6: Training progress of sahajBERT.

Table 2: Downstream task performance of pre-
trained models on Bengali language benchmarks.

Model Wikiann F1 NCC Accuracy

sahajBERT 95.45 ± 0.53 91.97 ± 0.47
XLM-R 96.48 ± 0.22 90.05 ± 0.38
IndicBERT 92.52 ± 0.45 74.46 ± 1.91
bnRoBERTa 82.32 ± 0.67 80.94 ± 0.45

364

In total, the 49 volunteers contributed compute time from 91 unique devices, most of which were365

running episodically. Figure 5b shows that although the median GPU time contributed by volunteers366

across all devices was ≈ 1.5 days, some participants ran the training script on several devices,367

attaining more than 200 hours over the duration of the experiment. With the exception of the start and368

the end of the collaborative run, the number of simultaneously active devices mostly varied between369

15 and 35 depending on the local time. There was less activity in the last 3 days, likely because the370

volunteers could see that the model has converged on a public Weights & Biases [105] dashboard.371

As depicted in Figure 5c, individual device performance varied significantly among the collaborators.372

Along with the resources provided by participants, we also used 16 preemptible single-GPU cloud T4373

instances for training. Regarding the network utilization, we have estimated that the average volunteer374

device consumed 6.95 GB of network traffic per hour of training. While this bandwidth usage by no375

means insignificant, it is comparable with cloud gaming [106] or high-quality video streaming [107].376

The model converged after 8 days of training, which is 1.8x as fast as regular distributed training with377

8 V100 GPUs that we ran as a baseline (see Figure 6). At the same time, the stepwise learning curves378

of the two runs were virtually identical, which supports our hypothesis that training with DeDLOC is379

equivalent to a regular large-batch SGD.380

In addition, we compare the Bengali language representations of sahajBERT with other pretrained381

models on several downstream tasks. The first model is XLM-R Large [9] — a Transformer network382

pretrained on 100 languages, which remains a strong baseline for multilingual representation learning.383

The second model, IndicBERT [108], is also based on the ALBERT architecture and pretrained on 12384

languages including Bengali and Indian English. The third model, bnRoBERTa [109], is a RoBERTa385

architecture trained on monolingual Bengali. We evaluate the model quality on two downstream tasks386

in Bengali: Wikiann [110] named entity recognition dataset and Soham News Category Classification387

benchmark from IndicGLUE [108]. As shown in Table 2, sahajBERT performs comparably to three388

recent strong baselines despite being pretrained in a heterogeneous and highly unstable setting. For389

more details regarding the downstream evaluation, refer to Appendix H.6.390

5 Conclusion & Broader Impact391

In this work, we proposed DeDLOC — a collaborative deep learning approach that enables large-392

scale collective distributed training on whichever computers available to participants, regardless of393

hardware and network limitations. We demonstrated with several experiments that this is a viable394

approach that maintains its efficiency in a broad range of conditions. Finally, we report the first real395

collaborative training run of such scale and share our findings on volunteer activity to pave the road396

for similar experiments in the future.397

An important aspect of collaborative training is its environmental impact. While all distributed398

training experiments have negative impact due to carbon emissions [111], DeDLOC has one unique399

advantage. Due to its ability to utilize low-end heterogeneous devices, collaborative training can400

prolong the effective lifespan of existing computers, reducing the waste from hardware overhaul. We401

discuss this in Appendix I.402

One issue that needs to be addressed before starting collaborative experiments is the need to gather a403

community of volunteers. DeDLOC is equally suitable for artificial “communities” composed of in-404

expensive preemptible cloud instances, existing groups of people or communities created specifically405

for the experiment (as described in Section 4.3). Although our proposed authentication mechanism406

(see Appendix H.4) allows to acknowledge participants for their contribution, the development of407

the best approach to recruit volunteers is an open question: one needs to take into account both the408

available resources of community members and their motivation for training a specific model.409
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Supplementary Material872

A Federated learning873

Federated learning (FL) is an approach that trains the model on decentralized data stored on many874

devices without sharing private training data [60]. This scenario is currently gaining more popularity875

with the rising awareness of data privacy and emerging legal constraints, such as GDPR. Similarly to876

our setting, FL systems must deal with unreliable heterogeneous hardware. However, their main goal877

is to ensure the data privacy, which often leads to sacrifices in terms of efficiency.878

Most practical FL systems utilize a central parameter server that aggregates local gradients from879

workers and updates the global model. As we increase the number of workers, the total system880

performance becomes bounded by the throughput of this server. The problem is exacerbated by881

secure aggregation protocols [112, 113] that further increase the communication overhead to ensure882

data privacy. To account for these limitations, production FL systems perform each update using883

only a small random subset of peers, while the rest remain idle [114]. Contrary to this, our goal is to884

maximize the training performance by running computations on all peers.885

Another recent line of work explores federated learning algorithms with a decentralized communi-886

cation topology. Maintaining data privacy in these conditions also requires specialized techniques887

that introduce communication overhead. For instance, [62] proposes a system where workers cannot888

share parameters directly, relying on a secure peer-to-peer knowledge distillation instead.889

The above discussion makes it clear that the purpose of the federated learning is orthogonal to ours:890

we aim to train the global model on publicly available data and achieve the best possible performance.891

B Optimal averaging strategy via linear programming892

Recall that DeDLOC finds the optimal communication strategy by solving the following problem:893

max
a,g,c

min

(∑n
i=1 si·ci

B ,
mini

∑
j gji

P

)
s.t. gij ≤ mink:ck=1 aki ∀i, j∑

j 6=i (aji + gji) ≤ di ∀i∑
j 6=i (aij + gij) ≤ ui ∀i

aij + gij ≤ tij ∀i, j
aij ≥ 0 & gij ≥ 0 & ci. ∈ {0, 1} ∀i, j

(2)

Here, aij denotes the fraction of network throughput allocated to sending gradients from peer i to894

peer j for aggregation, gji is the corresponding fraction for returning the averaged tensors back to895

sender, and ci is a binary indicator that represents whether or not peer i computes gradients. The896

remaining variables are parameters that denote peer compute performance si, maximum download897

and upload speeds (di and ui respectively) and regional limitations of peer-to-peer throughput (tij).898

Finally, B denotes the global target batch size per step and P is the number of model parameters.899

As stated earlier in Section 3.2, the DeDLOC peers need to find the optimal strategy during each900

averaging round. As such, we must ensure that the procedure for solving (2) does not introduce any901

significant overhead. To that end, we reformulate the problem as a linear program by means of several902

consecutive reductions, which are described below.903

Max-min LP reduction. First, we replace the original max-min objective with a linear one by904

following the technique described in [115]: we maximize a new surrogate variable ξ and replace the905

inner min by two additional constraints:906

max
a,g,c

ξ

s.t. ξ ≤
∑n

i=1 si·ci
B

ξ ≤
∑

j gji

P ∀i
(3)
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Binary to LP relaxation. Second, we must account for the binary variable ci. From a formal907

perspective, using these indicators transforms our problem into a binary mixed-integer program with908

a combinatorial worst-case complexity. However, for this specific problem, it is possible to rewrite909

the constraints in such a way that ci can be treated as a continuous variable 0 ≤ ci ≤ 1:910

∀i, j, k ∈ 1 . . . n gij ≤ aki + (1− ck) · di (4)

For ck = 1, the above equation (4) is exactly equivalent to the original constraint gij ≤ mink:ck=1 aki.911

In turn, setting ck < 1 for some k effectively removes the corresponding peer k from the min operator,912

allowing participant i to aggregate tensors with up to its maximum download speed di instead of913

waiting for peer k. The di factor in (4) can be replaced with any large positive number as long as914

the constraint (4) is not saturated for ck=0. In practice, ck 6= 1 corresponds to peer k not computing915

gradients, but still assisting in gradient aggregation.916

Applying the two above reductions, we get the following linear program:917

max
a,g,c

ξ

s.t. ξ ≤
∑n

i=1 si · ci / B
ξ ≤

∑
j gji / P ∀i

gij ≤ aki + (1− ck) · di ∀i, j, k∑
j 6=i (aji + gji) ≤ di ∀i∑
j 6=i (aij + gij) ≤ ui ∀i

aij + gij ≤ tij ∀i, j
aij ≥ 0 ∀i, j
gij ≥ 0 ∀i, j
0 ≤ ci ≤ 1 ∀i

(5)

To avoid additional synchronization steps, each peer within DeDLOC solves the above problem (5)918

independently using the interior point solver [116]. Based on the obtained solution, peer i will919

aggregate a fraction of gradients proportional to its effective throughput:920

fractioni ∝
minj gij∑
k minj gkj

. (6)

Furthermore, if ci 6= 1, the corresponding participant will disregard its local gradients. In the future,921

it may be possible to allow such peers to contribute partial gradients akin to [41]. However, we leave922

this investigation to future work.923

For certain collaboration compositions, there can be multiple optimal strategies with equal training924

throughputs. To ensure that all participants act according to the same strategy, we require each peer to925

solve (5) using a deterministic interior point algorithm with globally consistent hyperparameters [117].926

Another practical consideration is that some peers are unable to compute gradients or perform927

aggregation (for instance, due to networking issues described in Section 3.3). To account for these928

limitations, we exclude such peers from aggregation in
∑n

i=1 si·ci
B and

∑
j gji

P terms for compute and929

network resources respectively.930

C Fault tolerance931

In practice, using DeDLOC with large collaborations will eventually require dealing with node932

failures. If the failures are rare, it is possible restart the failed steps until they succeed. However, if933

the collaboration size increases, this strategy will eventually become impractical.934

One possible solution is to replace the global (collaboration-wide) All-Reduce with several parallel935

operations, which is known as Group All-Reduce [30] or Moshpit All-Reduce [59]. Each operation936

involves a small independent group of m peers, whereas the groups themselves are formed in such a937

way that the collaboration can obtain the global average in a logarithmic number of rounds.938

Under this strategy, any failed device will only affect its local group instead of the entire collaboration.939

Furthermore, each individual group will have a higher success rate, since it contains m� n peers.940
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5011 71 71 71 71 18 18 18 18 18 18 18 18 18 18 9 9 9 9 9 9 9 9 9 9 9

7079 85 85 85 20 20 20 20 20 20 20 20 20 20 10 10 10 10 6 6 6 6 6 6 6 6

10000 100 100 22 22 22 22 22 22 22 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

Figure 7: Optimal group size for different collaboration sizes and failure rates.

In turn, the drawback of using group-based All-Reduce is that the collaboration will need dlogm ne941

steps to obtain the global average.942

We can select the optimal group size by minimizing the expected number of iterations required to943

compute the global average, including both restarts from node failures and the overhead from using944

Group All-Reduce. For reference, we include the optimal group sizes for typical collaborations and945

failure rates in Figure 7. In all our experiments, the optimal group size was m=n due to a small946

number of participants and very rare significant network failures.947

D Network address translation948

Collaborative training, similarly to any other application incorporating peer-to-peer communication,949

is susceptible to a number of networking issues, among which the most common is the inability950

to accept incoming connections due to Network Address Translation, or NAT [92]. The primary951

function of NAT is to separate the address space of the local network from the global address space952

by dynamically translating addresses and port numbers of outgoing sessions into public endpoints.953

Therefore, NAT helps deter the rapid depletion of IPv4 addresses and provides additional security954

by hiding the local network structure from external parties. However, this also means that NAT955

devices only authorize outgoing connections, since the dynamic mapping of local endpoints makes it956

impossible to forward incoming packets to the proper internal host.957

For the purposes of the current work, NAT devices can be categorized into two groups — cone and958

symmetric. A cone NAT translates an internal IP address and port to the same globally routable959

endpoint regardless of the destination host, whereas a symmetric NAT allocates different address960

mapping for each destination host. In case of UDP traffic, the cone NAT can be traversed using961

the mechanism of UDP Hole Punching. Briefly put, this technique consists of two stages. During962
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the first phase, peers A and B connect to the same globally accessible rendezvous server using the963

STUN protocol [118] and exchange their public and private endpoints. The rendezvous server is964

often called the STUN server by the name of the protocol. At the next step, both peers start sending965

UDP data packets to each other’s endpoints. If A’s packet reaches NAT B before B’s packet “punches966

a hole”, then it is dropped by the NAT B, but when the B’s packet reaches NAT A shortly after this,967

the outgoing session has already been initiated by A, so the B’s request is successfully forwarded to968

A. If both peers happen to "punch a hole" in their NATs before the arrival of the counterpart’s packet,969

then the connection is established immediately. This can be illustrated by the following diagram.970

For the TCP traffic, hole punching is also possible, though it has to overcome additional API issues971

that arise because of the client-server paradigm around which TCP was designed. However, peer-972

to-peer communication over TCP connections is more robust than over UDP, since NAT usually973

timeouts UDP port mapping, thus periodical keep-alive messages must be transmitted. As reported974

in [119], currently almost two thirds of all NAT vendors provide devices which are compatible975

with TCP hole punching, that is, consistently map private endpoints and do not send back Reset976

packets to unsolicited requests. More precise figures are not available because of the lack of NAT977

standardization.978

As for the symmetric NAT, only relaying through a third-party proxy can help establish the connection979

between peers. This is supported with the TURN protocol [95]. If two peers fail to connect via hole980

punching, they appeal to the TURN server for an interaction through it.981

E Peer-to-peer network infrastructure982

To enable peer-to-peer interactions that can bypass NAT, we can use the libp2p framework [120]. Each983

peer has a set of multiaddresses that allow other participants to establish a connection. Multiaddress984

comprises an IP address, an L4 protocol (TCP/UDP) with a port, an optional high-level protocol985

(QUIC), and a peer identifier. A peer can listen to several transport protocols, but it may have only986

one identifier.987

After peers connect to the network, they can interact with each other via their respective identifiers.988

There are no dedicated STUN and TURN servers in the libp2p network: their role is played by989

public participants. The network must contain at least 4 publicly accessible peers to be able to990

recognize public addresses of newly connected peers. Optimally, these are well-known peers with991

multiaddresses known to all participants. Upon joining, a new node synchronizes with the DHT used992

for routing and receives information about other available peers. After that, a peer can interact with993

other participants using their peer id. If the network can get the public address of the peer, then other994

participants will be able to connect to it.995

If a public address of the peer is not available or two peers are using different transport, the com-996

munication can be started by relaying requests via an intermediate participant. Libp2p supports the997

autorelay feature that allows finding the best relay automatically. When autorelay is enabled, a public998

peer can serve as a relay for other participants, and a private peer will find the best relay.999

F Cost analysis1000

In this section, we provide a detailed cost analysis of several hardware and networking setups that1001

can be used for both tasks described in Section 4, namely, SwAV and ALBERT pretraining.1002

For simplicity, we only consider temporary resource ownership, i.e., renting GPU-enabled servers1003

instead of building it on-premise. The latter option can be more cost-efficient in the long term, but1004

might be impractical if only a few training runs are required. For the same reason, we do not consider1005

discounts available for committed usage of the same resource over multiple years.1006

As for the rented resources, there are several general hardware categories that we consider:1007

1. High-performance cloud GPU — dedicated instances with multiple high-end compute1008

accelerators and extremely fast device interconnect.1009

2. Low-end cloud GPU — single-GPU instances with NVIDIA M60, T4 or P40, linked with a1010

fast (preferably intra-datacenter) network of 10–50 Gb/s.1011
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3. Commodity GPUs — regular desktop-like machines with consumer-grade GPUs, like1012

NVIDIA RTX 2070, 2080 Ti, 3070. On average, they can have higher performance than1013

low-end cloud devices, but lower network throughput (50–200 Mb/s).1014

4. Volunteer hardware — almost the same class of devices as in the previous section, with the1015

same advantages and disadvantages, but “free” for the experiment organizers.1016

For a fair comparison, we consider three types of GPU instances: cloud V100, cloud T4 and1017

commodity GPUs from peer-to-peer marketplaces, such as vast.ai or golem.ai. While several1018

cloud providers offer newer generation GPUs (NVIDIA Ampere), this GPU lineup is still in an active1019

rollout phase, which causes significant price fluctuations. Thus, we base our conclusions on more1020

established generations of GPUs.1021

In addition to GPU instances, DeDLOC can also benefit from non-GPU servers that act as auxiliary1022

parameter aggregators. The only real requirement for such servers is high network bandwidth. As1023

such, we consider additional resource types:1024

1. Premium cloud VMs — low-end instances from premium cloud providers. We consider1025

instances with 2 cores, 16GB RAM and 25 Gb/s maximum bandwidth (symmetric).1026

2. Economy cloud VMs — similar cloud instances (or dedicated servers) from economy cloud1027

providers. For this run, we consider instances with the same 2 cores / 16GB RAM, but only1028

300–1000 Mb/s symmetric bandwidth (depending on the provider).1029

3. Volunteer non-GPU devices — in theory, it is possible to run collaborative training entirely1030

on volunteer devices with zero hardware expenses for the organizer. However, we omit this1031

option as it trivializes our cost analysis.1032

On top of that, all cloud and marketplace instances can be rented in a guaranteed (“on-demand”) or a1033

non-guaranteed option. In the latter scenario, the resources are offered at a significant discount, but1034

the resource provider can terminate such instances at any time.1035

Based on the available resource types and ownership models, we assemble six server fleets with1036

approximately equal training performance in our two experimental setups. For convenience, we order1037

these setups by how difficult they are to operate (easiest-first):1038

• Single high-end node — 8 x NVIDIA Tesla V100: easiest to operate, but the most expensive1039

option.1040

• Preemptible high-end node has the same hardware but costs less due to irregular availability,1041

which creates a need for regularly saved checkpoints.1042

• Distributed nodes — 16 x NVIDIA Tesla T4: homogeneous, require distributed optimization.1043

• Distributed + preemptible — same but preemptible, can be used with a framework that1044

supports elastic training, such as TorchElastic[55] or Elastic Horovod[56].1045

• Distributed + heterogeneous — 5x NVIDIA GTX 1080 Ti, 3x RTX 2070, 1x 2070S, 2x 2080,1046

4x 2080 Ti, 1x 3070. This configuration has lower bandwidth, thus additional CPU-only1047

peers are needed for efficient averaging.1048

• Collaborative training — for this setup, we assume that the GPUs from the previous setup1049

are available from volunteers. In that case, the only sources of expenses for the organizer1050

are networking and CPU-only nodes.1051

Table 3: Costs of training setups
Cloud on-demand Cloud preemptible Marketplace Volunteer

Instance types 8xV100 16xT4 8xV100 16xT4 4xCPU+16xGPU 4xCPU
Monthly price $16898 $5299 $5133 $2074 $5148 $257

As one can see in Table 3, using a single high-end node is the most expensive alternative. Switching1052

to multiple lower-end nodes and using non-guaranteed instances reduces the cost by a factor of1053

≈ 3x each. Finally, the volunteer infrastructure is two orders of magnitude cheaper than the high-1054

performance setup. However, some of this price difference is effectively shifted to volunteers. Based1055
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on average electricity and networking costs of household Internet connections, we estimate the1056

expense at $9-30 per volunteer per month, assuming 16 volunteers with equivalent GPUs. However,1057

actual costs can vary based on the region, time duration and the exact hardware used by each volunteer.1058

Finally, we want to reiterate that the above setups require different amounts of effort (and expertise).1059

Training on a single high-end node can be done with virtually no code changes in major deep learning1060

frameworks, such as TensorFlow [121] or PyTorch [101]. In contrast, multi-node (and especially1061

elastic) setups require specialized distributed training frameworks and careful performance tuning.1062

Finally, working with volunteer or marketplace instances introduces a new layer of complexity that1063

we address in this paper.1064

Networking costs. When done naïvely, training with geographically distributed participants can1065

incur significant networking expenses. For instance, when using preemptible cloud GPUs from a1066

major provider, allocating these GPUs in different regions can incur additional costs of more than1067

$3000 per month, compared to a total hardware cost of $2074 for the same period.1068

More importantly, using premium non-GPU instances for collaborative training will also incur1069

additional networking costs. Based on our preliminary experiments, a collaborative training setup1070

equivalent to Table 3 would lead to an average networking bill of $5000-6000 per month. Fortunately,1071

it is possible to circumvent this expense by using cloud providers that do not charge additional costs1072

for network traffic. These providers typically offer less reliable instances with lower maximum1073

bandwidth, which is not a significant issue for DeDLOC.1074

As a general recipe for reproducing our experiments, we recommend using one of the two setups.1075

When running experiments internally, one can use any major cloud provider as long as all instances1076

are configured to avoid cross-regional networking costs (e.g. use internal address space). In contrast,1077

when training with actual volunteer devices, we recommend using cloud providers without additional1078

networking charges or existing server infrastructure.1079

G Decentralized data streaming1080

In this section, we propose a generalization of our data streaming approach described in Section 3.31081

to a setting without any central data storage. Namely, we offer a way to to distribute large datasets1082

across all participants by sharding the examples in the same manner that was used previously.1083

Specifically, this approach is based on the notion of a local buffer combined with the decentralized1084

metadata storage enabled by the DHT. When a peer joins the experiment, the training process allocates1085

a buffer for several chunks on a local high-capacity storage device (HDD/SSD) available to that peer;1086

the number of chunks is determined by the participant and depends on the hardware capabilities of1087

their computer. Then, in order to procure training data, the peer queries the DHT to find the shards1088

that are stored on the least number of other peers. Assuming that the number of shards does not1089

exceed several thousand, this search can be done by a simple linear-time lookup of all keys without1090

any significant performance drawbacks. After finding such shards, the training process randomly1091

chooses one shard from this set and downloads it from another peer. When the download is complete,1092

the participating node trains on batches from this shard and stores it for later use by other members1093

of the network. The training process repeats such iterations; if the local buffer becomes full at any1094

point, the shards with the highest replication factor are evicted in favor of new data.1095

The decentralized approach to data streaming has two immediate benefits. First, similarly to dis-1096

tributed training, this approach reduces the load on a single server (or the content delivery network),1097

which might result in significant savings for large-scale experiments that use datasets hosted by cloud1098

providers. Second, even when the data is hosted by organizers of the collaborative experiment, its1099

size might be too large to prevent efficient storage and sharing without investments in specialized1100

infrastructure, which is often quite expensive as well. Storing small portions of the dataset on the1101

computers of participants allows circumventing both issues by distributing the load among all peers.1102

However, we note that the above approach was not implemented for our current experiments; this1103

section is intended to serve as a description of future work.1104
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H Collaborative experiment setup1105

H.1 Instructions for participants1106

All communication with volunteer contributors took place on a group instant messaging platform.1107

Prior to launching the experiment itself, we used this platform to communicate with Bengali speakers1108

in order to validate the language-specific elements of the model, such as the normalization component1109

of the tokenizer and the sentence splitter tool.1110

Then, for the collaborative training, we first sent several introductory messages before the event to1111

explain what the event will consist of. Then, we sent a message the day before and a message on the1112

event’s launch day with instructions on how to join the training run. Lastly, we sent daily messages to1113

report the current status of the event. An anonymized version of the event’s launch day message can1114

be found in Figure 8. In this message, the volunteers were invited to:1115

1. Submit their account names on the digital identity provider we used for validation;1116

2. Once added to the allow-list, join the training via notebooks provided by the organizers. After1117

checking that the connection was established and that the GPU was available, participants1118

had to run the notebook and fill in the necessary credentials for the identity platform.1119

Hi @everyone! We’re starting the Collaborative Training Experiment now! Here is some important
information:

How to participate?
1. As a reminder, you need to provide your digital identity provider username to be able to participate.
For the current participants, name1 already gathered this list (thank you name1!). For new partici-
pants, please join #albert-allowlist and add your username. Someone from the team will add you to
the allowlist. If you see a reaction, we’re on it! If you see a , you should be added by then. Feel
free to reach out to name2, name3, name4, name5, name6 or me if you don’t have access.
2. You can join the training with:

• Colab: notebook access link

• Kaggle: notebook access link
This option provides you a P100 and lasts longer than Colab. This requires a Kaggle account.
You must enable Internet access and switch kernel to GPU mode explicitly. If it is stuck
at “installing dependencies” for over 5 minutes, it means you changed the session type too
late. Simply restart with GPU/Internet enabled and it should work just fine.

Please do not run multiple GPU instances on the same service! You can use Kaggle in one tab and
Colab in another, but avoid having two Colab GPU instances at the same time.

Local run: if you have a local GPU and you’re tech-savvy. We will keep you informed when this
option is available. Stay tuned!

Feel free to ask any questions in #albert-bengali-training channel and reach out to us (at the right
you can see the list of organizers).
In the following dashboard you can track the status of training: link

Thank you all for participating and let us know if you have any questions!

Figure 8: An anonymized instructions message sent at the event launch

H.2 Tokenizer1120

For this experiment, we used the architecture of the ALBERT model [7]; the authors of the original1121

work have chosen the unigram language model [122] token segmentation algorithm that allows1122

transforming a raw text into subword units based on a fixed size vocabulary of 30k tokens.1123

In order to use the tokenizer that is adapted to the Bengali language, we created a new tokenizer using1124

the Tokenizers library [123].1125
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This tokenizer is composed of:1126

• Several normalizations adapted to the Bengali language: NMT normalization, NFKC1127

normalization, removal of multiple spaces, homogenization of some recurring unicode1128

characters in the Bengali language and lowercasing;1129

• Specific pre-tokenization rules to condense the vocabulary: we split on whitespaces and1130

replace them with an underscore character “ ” (U+2581), we also isolate all punctuation1131

and digits from any other characters;1132

• A Unigram language model as a segmentation algorithm with a 32k tokens vocabulary,1133

trained on the deduplicated Bengali subset of OSCAR [104];1134

• A template postprocessor, allowing a special token “[CLS]” to be included at the beginning1135

of the sequence, as well as a special token “[SEP]” to separate a pair of segments and to1136

denote the end of sequence.1137

H.3 Dataset streaming1138

Streaming the data to each participant allows to start training immediately, since the participants1139

do not have to download the full dataset before launching the training. More specifically, the1140

examples from the dataset can be downloaded progressively as training goes. To do so, we used the1141

datasets library [102]. It enabled streaming of Wikipedia and OSCAR, as well as shuffling, on-the-fly1142

processing and mixing of the datasets.1143

For the experiment, we use the Wikipedia and OSCAR Bengali datasets. Both datasets are split1144

in shards, respectively in the Parquet and GZIP-compressed raw text formats. Information about1145

the datasets is given in Table 4. The participants download the examples from those files during1146

training, since it is possible to iterate row group by row group from Parquet files and line by line from1147

compressed text files.1148

The Bengali Wikipedia dataset is based on the 03/20/2021 Wikipedia dump. The data was processed1149

using the Wikipedia processing script of the datasets library in early April of 2021. Each example1150

contains the content of one full article, cleaned from markup and sections such as references.1151

Table 4: Sizes of the Bengali Wikipedia and OSCAR datasets used for training
Wikipedia OSCAR

Uncompressed size 657MB 6.2 GB
Documents 167786 1114481
Shards 10 4

To shuffle the datasets, we make each participant iterate over the shards in random order. Then, a1152

shuffle buffer of size S = 10000 is used, which is compatible with the progressive download of1153

examples. We use a shuffle buffer, because we do not want the participants to download entire shards1154

in the beginning of training just for shuffling.1155

Sentence splitting, tokenization and preprocessing for next sentence prediction are applied to the1156

examples in an online manner. Since these steps are several orders of magnitude faster that forward1157

and backward passes of the model, they have no significant impact on the training performance.1158

H.4 Participant authentication1159

Since our experiment was an open collaboration, we chose to set up an authentication system allowing1160

only the people motivated by the final result of the model to join the training. Allow-listing seemed1161

to be the most suitable solution to this need. We therefore distinguish between three types of actors in1162

the distributed network:1163

• Central server’s moderators: people who start the experiment, maintain the whitelist and1164

know how to join the training. They have a pair (public_keyauth, private_keyauth) of1165

public-private keys securely hosted on the central authentication server. In this protocol, the1166

role of the central server is threefold: 1) to verify the identity of a collaborator requesting1167
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the confirmation of the identity provider website, 2) to verify that this collaborator is1168

whitelisted and 3) to distribute access passes to authorized collaborators. Peers have a secure1169

HTTPS-based communication channel with this server in order to protect the data;1170

• Digital identity provider: an entity which is able to create digital identities via a website.1171

In order to create the allowlist, moderators asked collaborators to have a digital identity1172

on an identity provider website. This has several advantages: the collaborators have the1173

feeling of belonging to a community which is a great vector of enthusiasm and motivation,1174

moderators can acknowledge each collaborators’ contribution and it prevents bots from1175

joining the training. In our setup, each identity linked to a username can be claimed by a1176

login and a password owned by one collaborator;1177

• Collaborators / Peers: people who wish to make their computing resources available for the1178

collaborative training. Each peer i in the network has a pair (public_keyi, private_keyi)1179

of public-private keys. They also have a digital identity on a identity provider website.1180

The following procedures aim to prevent 1) that a non-allow-listed collaborator can communicate with1181

members of the collaborative training and 2) that a malicious actor could claim to be a allow-listed1182

collaborator:1183

• Joining the network: To join the collaborative training, a peer i must request an access pass1184

from the authorization server. To grant the access pass, the authorization server asks the1185

digital identity provider if the peer is who he claims to be. If the entity provider confirms1186

the identity of the peer, the authorization server checks that the username appears in the1187

allow-list. If these two steps are verified, the authorization server creates an access pass1188

otherwise it rejects the peer’s request. The access pass is temporary and contains the1189

following information:1190

– the endpoint of a peer already present in the network1191

– an access token access_tokeni composed of a string containing the peer’s username,1192

its public key public_keyi and the expiration date of its access pass signed with the1193

private key private_keyauth.1194

– the public key public_keyauth1195

With this access pass, the peer can make requests and responds to requests in the decentral-1196

ized network. After expiration, the peer may repeat this procedure to get a new token.1197

• Making requests: Alice wants to make a request to Bob. In order for her request to be1198

processed by Bob, we require Alice to include several additional information in her request:1199

1) her access token access_tokenAlice, 2) receiver’s public key public_keyBob, 3) the1200

current time, 4) a set of random bytes - called a nonce - that is supposed to be unique for1201

each request and 5) a signature of the content of the request and the additional information1202

made with private_keyAlice. With this information, Bob considers that a request is not1203

legitimate and should not be processed if one of the following cases occurs:1204

– Alice’s access token access_tokenAlice is invalid or expired. To find this out, Bob1205

decrypts access_tokenAlice with public_keyauth;1206

– the signature of the request is invalid after being decrypted with public_keyAlice stored1207

into access_tokenAlice;1208

– the nonce has already been used before;1209

– the request’s current time field differs from Bob’s current time by more than N seconds;1210

– the recipient’s public key field doesn’t match the real public_keyBob.1211

These checks protect the exchange against eavesdropped request reuse and man-in-the-1212

middle attacks because Bob is sure that 1) Alice is white-listed and her authorization is still1213

valid, 2) the request was created by Alice and could not have been modified by someone1214

else, 3) Bob is the recipient of the request, and 4) the request is not repeated by someone1215

who eavesdropped a previous request.1216

• Responding to requests: When Bob responds to Alice, we also require Bob to include1217

several additional information in his response: 1) his access token access_tokenBob, 2) the1218

nonce sent with Alice’s request and 3) a signature of the content of the response and the1219

additional information made with private_keyBob. In the same way as above, a response is1220

not considered valid by Alice if:1221
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– Bob’s access token access_tokenBob is invalid or expired after being decrypted with1222

public_keyauth;1223

– the signature of the request is invalid after being decrypted with public_keyBob stored1224

into access_tokenBob;1225

– the nonce doesn’t match the nonce stored into Alice’s request;1226

– the sender’s public key field doesn’t match the real public_keyBob.1227

If the response does not check any of the above cases, Alice is sure that 1) Bob is white-listed1228

and still has valid access, 2) the response was sent by Bob and could not be modified, and1229

3) it is the response to the request associated with this nonce. In short, an eavesdropped1230

response can’t be replayed for another request and a man-in-the-middle attacker can’t replace1231

the response content.1232

H.5 Stepwise learning curves1233

As one can see on Figure 9, collaborative training is nearly equivalent to regular data-parallel training1234

in terms of the total number of SGD updates. The slight difference between the two curves is likely1235

due to random variation, though it can also be explained by the fact that DeDLOC uses slightly larger1236

batches due to network latency. In other words, some peers will aggregate a few extra gradients1237

between the moment when the collaboration accumulated 4096 samples and the moment when every1238

peer enters the gradient averaging stage.1239
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Figure 9: Stepwise learning rate for DeDLOC, compared to regular distributed training.

H.6 Evaluation1240

We compare sahajBERT with three other pretrained language models: XLM-R [124], IndicBert [108],1241

and bnRoBERTa [109]. For downstream evaluation, we use two tasks from the Indic General1242

Language Understanding Evaluation (IndicGLUE) benchmark [108]: 1) Named Entity Recognition1243

(NER) with the balanced train-dev-test splits version [125] of the original WikiANN dataset [110],1244

which is also part of the Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME)1245

benchmark [126] and 2) News Category Classification (NCC) with the Soham News Article (SNA)1246

dataset [108].1247

Each model was finetuned and evaluated as follows:1248

1. For each tuple of (lr,max_len) in the hyperparameters grid composed of a learning rate lr1249

in (1e-5, 3e-5) and the maximum sequence length max_len in (64, 128, 192, 256, 512), we1250

finetuned the model on the task t and evaluated it on the test set. If t was a NER task, we1251

computed the F1-score, and if it was a NCC task, we computed the accuracy;1252
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2. We repeated the first step three times for different random seeds and computed the mean1253

and standard deviation of the best model metrics in each pool.1254

All finetuning experiments were ran using the Adam [127] optimizer with the weight decay fix [128],1255

weight decay of 0.001, and a linear decay learning rate schedule. Finally, each model was trained for1256

a maximum number of 20 epochs and stopped earlier if the loss on the validation set did not decrease1257

during 3 epochs. The size of the batch was chosen to be as large as possible: we started with a batch1258

size of 128 and then, if necessary, the batch size is decreased until it can be stored in memory. For1259

exact hyperparameter values, see Table 5.1260

Table 5: Model evaluation hyperparameters.
Task Model Learning rate Input length Batch size

NER

sahajBERT 1e-05 128 32
XLM-R 1e-05 256 8
IndicBERT 3e-05 256 64
bnRoBERTa 3e-05 512 64

NCC

sahajBERT 3e-05 64 64
XLM-R 1e-05 128 8
IndicBERT 3e-05 128 128
bnRoBERTa 3e-05 128 64

I Environmental impact1261

Recent works have outlined the environmental consequences of training ever larger deep learning1262

models [129, 130] and encouraged authors to at least report the energy costs incurred [131]. The1263

direction proposed in this work may help in two specific ways. First, while most of the current1264

tools focus on the CO2 cost caused by the training-time energy consumption [111], a more holistic1265

evaluation protocol would need to include the not insignificant manufacturing cost of the training1266

infrastructure [132, 133]. The collaborative training method described here allows volunteers to make1267

better use of existing computing resources, which helps minimize these costs. Second, the distributed1268

training setting allows users to dispense with the extensive cooling infrastructures required for large1269

concentrated data centers, and may thus also help reduce the operating costs themselves [134]. We1270

note however that the additional networking needs may limit the magnitude of these gains.1271
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