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Abstract

Modern deep learning applications require increasingly more compute to train
state-of-the-art models. To address this demand, large corporations and institutions
use dedicated High-Performance Computing clusters, whose construction and
maintenance are both environmentally costly and well beyond the budget of most
organizations. As a result, some research directions become the exclusive domain
of a few large industrial and even fewer academic actors. To alleviate this disparity,
smaller groups may pool their computational resources and run collaborative
experiments that benefit all participants. This paradigm, known as grid- or volunteer
computing, has seen successful applications in numerous scientific areas. However,
using this approach for machine learning is difficult due to high latency, asymmetric
bandwidth, and several challenges unique to volunteer computing. In this work,
we carefully analyze these constraints and propose a novel algorithmic framework
designed specifically for collaborative training. We demonstrate the effectiveness
of our approach for SwWAV and ALBERT pretraining in realistic conditions and
achieve performance comparable to traditional setups at a fraction of the cost.
Finally, we provide a detailed report of successful collaborative language model
pretraining with nearly 50 participants.

1 Introduction

The deep learning community is becoming increasingly more reliant on transfer learning. In computer
vision, pretraining convolutional networks on large image collections such as ImageNet [1]] is the
de facto standard for a wide range of applications, ranging from object detection [2] and semantic
segmentation [3] to image classification [4] and even learning perceptual similarity [5]. A growing
number of natural language processing systems capitalize on language models with billions of
parameters [6, (7} 8} 9} 10} 11] trained on vast unlabeled corpora. Similar trends have emerged in areas
such as speech processing [12} [13], reinforcement learning[14], and computational biology [[15}16].

Training these models is a notoriously difficult and time-consuming task: it often requires hundreds of
high-end GPU servers [10,[17] and would take multiple years on a single device [18]. Most academic
and independent researchers simply cannot afford to train state-of-the-art models from scratch, which
slows down scientific progress and practical adoption of deep learning.

Historically, the deep learning community has addressed this problem via “model hubs” or “model
z00s” — public repositories for pretrained model checkpoints [19, 120, 21} 22]. These repositories
have played a significant role in the democratization of deep learning, allowing everyone to reap
the benefits of large-scale training runs conducted by corporations and universities with sufficient
resources. However, model hubs are limited to a narrow subset of datasets and tasks that match the
interests of model creators. For instance, in natural language processing, it is often difficult to find
up-to-date models for more than a handful of languages [23]]. In turn, computer vision hubs rarely
feature models trained on drawings, satellite images, 3D renders, microscopy or any other data that
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does not resemble ImageNet. As a result, many researchers in these areas can only work on problems
for which there are available pretrained models, rather than the problems that most need solving.

However, there might be an alternative way to obtain pretrained models: to train these models
collaboratively. This approach, known as volunteer (or grid) computing, allows many independent
parties to combine their computational resources and collectively perform large-scale experiments [24}
25, 26]]. The raw compute performance of such collaborations often exceeds that of the fastest
supercomputers [27]; however, fully utilizing it can be challenging due to several reasons. First,
devices that contribute to collaborative experiments can range from GPU servers and high-end
workstations to consumer-grade computers and even smartphones [28]. Second, most of these devices
use household internet connection with limited bandwidth and low reliability. Third, participants in
such projects often donate their hardware part-time, joining and leaving the experiment at will.

While it is theoretically possible to train neural networks on this kind of infrastructure, modern
distributed training strategies are only efficient in a narrow range of conditions. For instance, training
with Ring All-Reduce [29] works well for identical servers but suffers significant performance
penalties from network latency or bandwidth variation [30]. Another technique known as Parameter
Server can handle heterogeneous devices at the cost of being less scalable [31]. Applying any of these
strategies outside their preferred conditions may significantly reduce the training throughput [32],
which makes them difficult to apply in the volatile infrastructure of volunteer computing. This
issue is further complicated by the unique limitations of volunteer devices, such as network address
translation (NAT), regional access restrictions or variations in performance.

In this study, we carefully analyze the above challenges and come up with a practical solution for
Distributed Deep Learning in Open Collaborations (DeDLOC). DeDLOC is based on a novel algo-
rithm that adapts to the available hardware in order to maximize the training throughput. Depending
on the infrastructure, DeDLOC can recover parameter servers [33], All-Reduce SGD [34], decen-
tralized SGD [33]], BytePS [36], or an intermediate strategy that combines all of them. Using this
algorithm, we propose a system for collaborative training, designed to accommodate a large number
of heterogeneous devices with uneven compute, bandwidth, reliability and network capabilities.

The contributions of our work can be summarized as follows:

* We analyze the unique challenges of distributed training in open collaborations and propose a
practical recipe for training in these conditions.

* We formulate a novel distributed training algorithm that interpolates between traditional strategies
to directly maximize the training performance for the available hardware.

» We verify the effectiveness of the proposed algorithm and system design for unsupervised pretrain-
ing of ALBERT-Large and SwAV under realistic conditions.

* We run collaborative training with actual volunteers, achieving competitive results to models trained
on hundreds of data center GPUs. We also report insights on the collaborator activity and share the
codebase for running similar experiments in the futur

2 Related work

2.1 Distributed training

In this work, we focus on distributed data-parallel training, where each device runs forward and
backward pass of the entire model on a subset of training examples. While there are many alternative
techniques [37} 38}, [39], data-parallel is still the most popular strategy. Even the model-parallel
approaches for extremely large models rely on data parallelism at the top level [39, [17, 140].

Training on multiple nodes was first implemented with parameter server (PS) [33]]. This training
strategy relies on a dedicated node that stores model parameters and executes optimization steps using
the gradients sent by workers. In turn, worker nodes iteratively download the latest version of model
parameters from the server, compute gradients and submit them back to the PS. This strategy is easy
to implement and use, but it has an unavoidable bottleneck: the entire system performance is limited
by the network throughput of a single server. Since then, the scientific community proposed numerous

'Code and training configurations are available at github.com/neurips-submit/DeDLOC
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extensions to PS that alleviate the bottleneck by reducing the communication load [41 4243} 44, 45],
introducing asynchronous updates [46l47]] or training with multiple servers [48 36].

The issue of uneven communication load has also inspired the development and widespread adoption
of another group of methods that rely on All-Reduce for gradient averaging [49, 50} 51]]. All-Reduce
is a family of collective operations that allow nodes to efficiently aggregate (e.g. sum) their local
vectors and distribute the result across all devices [52153|154]]. Unlike parameter servers, All-Reduce
assigns equal roles to all devices, making it easier to scale to a large number of homogeneous workers.

The popularity of AR-SGD sparked many practical applications for different scenarios. One par-
ticularly relevant application is elastic training [55) 156], which allows the user to add or remove
workers at any point without interrupting the training run. While this bears a lot of similarity with
collaborative training, we have found that elastic training systems are designed around global state
synchronization, which makes them are highly dependent on the homogeneity of the workers and their
network connectivity. The overall efficiency is bounded by the performance of the lowest-performing
node; as a result, introducing even a single low-bandwidth participant to such systems reduces the
training speed by orders of magnitude.

Seeking to avoid the need for synchronization and centralized orchestration, the research community
has developed decentralized training algorithms. These algorithms can be broadly divided into two
categories: directly passing updates between peers 57, 58] or running All-Reduce in small alternating
groups [59,130]. Compared to PS and All-Reduce, both categories provide a greater degree of fault
tolerance but often require more steps to converge due to delayed updates [35} 30].

Most practical use cases of the above techniques take place in HPC or cloud conditions, but there is
one notable exception. In Federated Learning, multiple parties train a shared model on decentralized
privacy-sensitive data that cannot be shared between devices [60]. For that reason, federated learning
algorithms prioritize data privacy over training efficiency, often leaving most of the compute resources
unused [61162]]. For a more detailed overview of Federated Learning, refer to Appendix [A]

2.2 Volunteer Computing

Volunteer computing (VC) is a paradigm of distributed computing where people donate idle time
of their desktops, smartphones and other personal devices to collectively solve a computationally
hard problem. This approach has seen successful applications in bioinformatics, physics and other
scientific areas [63, 164, 65, 124! 166 67, 168]].

In all these applications, volunteer computing allows researchers to access vast computational re-
sources. In Folding@home, over 700,000 volunteers have collectively contributed 2.43 exaFLOPs
of compute to COVID-19 research in April of 2020 [27]. Another project named BOINC (Berkeley
Open Infrastructure for Network Computing) brings together 41.548 petaFLOPs from over 790,000
active computers as of 17 March 2020 [26]. Volunteer computing systems were also the first “super-
computers” to reach 1 petaFLOP and 1 exaFLOP barriers [27,169]]. These results became possible
due to the contributions of a broad range of devices from high-end workstations to smartphones and
even gaming consoles[70].

Unfortunately, this compute diversity is also the main limitation of VC. Any volunteer computing
system should be able to run on a wide range of available hardware and to maintain integrity even if
some participants disconnect. Furthermore, the resources available to a project can vary over time,
as most volunteers are only sharing their hardware when it is unused. Finally, volunteer devices are
interconnected with a shared high latency network at typical home internet connection speeds.

As a result, there were only a few successful attempts to apply volunteer computing to machine
learning workloads. One such project is MLC@Home [71]], which relies on volunteers to train
many small independent models.This specific problem can be solved with no direct communication
between participants. By contrast, distributed training of a single model requires significantly
more communication and does not allow a natural way to “restart” failed jobs. When it comes
to distributed training of neural networks, most volunteer computing projects rely on parameter
server architectures [[72 [73| [74]. As a result, these systems are bounded by the throughput of
parameter servers and the memory available on the weakest GPU. The only notable exception
is Learning@home [75], which uses expert parallelism to train larger models spanning multiple
computers; however, this approach has only been tested in simulated conditions.
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3 Distributed Deep Learning in Open Collaborations

There are two unsolved challenges that stand in the way of practical collaborative training. The first
challenge is algorithmic: how to maintain optimal training performance with dynamically changing
hardware and network conditions? Another major challenge is ensuring consistent training outcomes
with inconsistent composition of participants. Thus, we organize this section around these two issues:

* Section[3.1]provides a general overview of DeDLOC and explains how it maintains consistency in
a dynamic environment.

* In Section [3.2] we describe the generalized communication strategy that maximizes training
throughput by adapting to the currently available devices.

* In Section[3.3] we address system design challenges, such as circumventing NAT and firewalls,
training on large datasets and managing collaborator access.

3.1 Ensuring training consistency

Many state-of-the-art models, notably GANs [76] and Transformers [[77]], require a strict training
regimen. Deviating from the recommended batch size or introducing stale gradients may significantly
affect the training outcome [78} 79} 180]. Since in a collaborative setting one has little control over the
devices that participate in the experiment, it is almost guaranteed that the specific hardware setup will
vary between runs and even during a single run. Without special precautions, these runs may result in
models with vastly different final accuracy.

To avoid this pitfall, DeDLOC follows synchronous data-parallel training with fixed hyperparameters
regardless of the number of collaborators. In order to compensate for relatively slow communication,
we adopt training with extremely large batches [81} 182], which allows peers to communicate less
frequently. This strategy also provides a natural way to deal with heterogeneous hardware [83]:
each device accumulates gradients at its own pace until the collaboration reaches the target batch
size. Once ready, the collaborators exchange their gradients and perform one optimizer step. Using
synchronous updates makes DeDLOC mathematically equivalent to large-batch training on a regular
HPC cluster. Figure|[I] gives a high-level visual explanation of this algorithm.

3.2 Adaptive averaging algorithm

As we discussed in Section [2.1] each distributed training algorithm has a narrow range of conditions
where it can reach optimal performance. For instance, Ring All-Reduce works best on homogeneous
hardware with low-latency communication, while Parameter Server strategy requires dedicated
high-bandwidth devices that communicate with a large number of “workers”. Since all devices are
provided by volunteers, our training infrastructure is in a constant state of flux.

For instance, a collaboration can start with several homogeneous nodes that could be trained optimally
with All-Reduce. If new participants bring devices with less bandwidth, it may be more efficient to
use the original nodes as parameter servers. As more peers join, these servers will eventually become
unable to handle the network load and the collaboration will need to switch to a different strategy.

Running efficient training on this kind of infrastructure requires a protocol that can dynamically
assign roles to every peer given their hardware and network capabilities:

* Compute performance: Each peer i € 1, ..., n can compute gradients over s; samples per
second. A peer that is unable to compute gradients (i.e. that has no GPU) will have s;=0.
* Bandwidth: Peers communicate with a limited throughput: d; for download and u; for upload.

* Geographical limitations: In addition to individual bandwidth, the communication throughput
between two peers 1, j is also restricted by ¢;; and ¢;; in each direction.

I peer [P1}0-0-0-0-0-0-0-0 0-0-0-0-0-0-0-0-0-0

() Microbatch 00000 000000
D State averaging

% Pecr failure 0-0-0-0-0-0-0{ 0-0-0-0-0-0-0-0-0

. [p5]-0-0

Figure 1: Two DeDLOC training iterations with example collaborator dynamics.
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Given these constraints, our objective is to find a communication strategy that has the highest training
throughput, that is, the one that makes the most SGD steps with a target batch size B per unit of
time. In turn, the training throughput of a collaboration depends on how we split the load among
the participants. Each peer can be assigned to compute gradients over a subset of training examples,
aggregate a part of those gradients from all peers, or both.

For simplicity and efficiency, we use delayed parameter updates (DPU) [84] — a technique that
allows gradient computation and communication to run in parallel, at the cost of exactly one round
of staleness. This strategy can improve time to convergence for a wide range of models, including
Transformers [84), [85]]. That said, our approach can be easily adapted to non-concurrent updates.

With DPU, the frequency of training updates is determined by either the time to compute gradients or
the time to aggregate them, whichever takes longer. In total, a collaboration processes Y ., S; - ¢;
samples per second, where c; is the binary indicator denoting whether i-th peer is assigned to
contribute gradients. Assuming the target batch size B, the frequency of the computation phase can
be expressed as Frompute = D1y Si - ¢i | B.

During the communication phase, each peer is first assigned to accumulate gradients over a fraction
of model parameters. After that, everyone partitions their local gradients and sends each partition
to the corresponding peer. On the other end, receiver nodes accumulate the gradients from all
senders and return the average. In modern distributed training systems, this procedure is highly
parallelized [36, 186]: a reducer can aggregate one chunk of gradients while downloading the next
chunk and distributing the previous one back to the same senders.

In order to properly optimize the training throughput, we must account for this parallelism. As such,
we explicitly define the speed a;; at which peer i peer sends gradients to peer j for aggregation. In
turn, j-th peer aggregates gradients from all peers at the rate of the slowest sender a; = min;..,—1 a;;.
The senders can then get the aggregated results from j-th reducer at g;; < a;. Finally, the total a;;
and g;; for each peer cannot exceed their maximum download/upload speed. The only exception is
that transfer within one node (a;;, g;;) does not count towards network throughput.

The frequency of the gradient aggregation phase is simply the rate at which the slowest peer can
aggregate the full gradient vector: F,,, = min; ) j Yii / P, where P is the number of model
parameters. The final optimization problem can be formulated as follows:

S sice; ming o) gy

mex  min L =
s.L. Gij < Miljcy,—1 Qg Vi, j )
D iz (@ji +95i) < d; Vi
> iz (@i + gi5) < Vi
aij + Gij < tij Vi, j

This problem must be solved regularly as participants are joining and leaving. Thus, we must ensure
that the benefits of the optimal strategy outweigh the overhead of computing it. For that reason, we
formulate optimal strategy search as a linear program that can be solved efﬁcientlyﬂ A more formal
definition of problem (T)) with the detailed LP reduction can be found in Appendix

After this problem is solved, we assign each peer to aggregate a fraction of gradients proportional
to min; g;;. Peers with ¢;=1 are also tasked with computing the gradients, while peers with ¢;=0
remain idle and only participate in communication. This results in a natural division of labor. In the
presence of many compute-heavy peers, some participants without accelerators will dedicate all their
bandwidth to gradient aggregation instead of sending their local gradients.

Node failures. The resulting procedure can find the optimal communication strategy for averaging
gradients across all participants. However, as the number of participants grows, it might be impractical
to compute the global average due to node failures. Based on our experiments with several hundred
active volunteers, most training iterations will have at least one participant with network issues. This
implies that without necessary precautions, the entire averaging round will fail more often than it will
succeed. To combat this issue, we use techniques [59,[30] that replace global averaging with several
consecutive iterations in alternating groups of size m. The groups are chosen in such a way that the
collaboration can obtain the exact average in log,, n steps. Furthermore, if any single participant
fails, it will only affect his immediate group rather than the entire collaboration.

’In our experiments, the LP solver consistently converges in < 50ms and is called ~ 2 times per minute.
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Figure 2: Example collaboration setups and corresponding strategies for optimal averaging.
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We adaptively choose the optimal group size m based on the number of peers and their failure rates.
This optimization problem is independent of Equation (I) and aims to maximize the rate at which
collaborators can compute the global average. We elaborate on this procedure in Appendix

Comparison with existing techniques. Our method was designed as a generalization of existing
data-parallel strategies that recovers them in special cases. To illustrate this idea, we provide example
configurations for which DeDLOC recovers specific well-known strategies:

1. AR-SGD: a homogeneous collaboration with reliable peers will use Butterfly All-Reduce [87]];

2. Parameter Server: adding a single participant with a very high bandwidth and low compute
performance will turn the previous collaboration into a parameter server [33]];

3. BytePS: participants with the same bandwidth as AR-SGD nodes, but without compute accelera-
tors, will behave as auxiliary summation services from BytePS [36];

4. Decentralized SGD: any collaboration with a sufficiently high failure rate will converge to m=2.
In this mode, all communication is performed between pairs of nodes, similarly to D-PSGD [35].

However, when training with actual volunteer devices, DeDLOC typically follows a hybrid communi-
cation scheme that differs from each of the above options. We display several examples of schemes
that can arise as a solution for the optimal strategy search problem in Figure 2}

3.3 System Design

Training with volunteer hardware requires specialized system architecture that can dynamically
scale with collaboration size and recover from node failures. DeDLOC achieves these properties by
operating as a swarm, similarly in spirit to BitTorrent [88] and I2P [89]]. Individual peers coordinate
by forming a Distributed Hash Table — a fully decentralized fault-tolerant key-value storage [90} 91]].
Collaborators use this shared “dictionary” to count the number of accumulated gradients, find groups
for averaging and keep track of the training progress.

In order to ensure the integrity of DHT throughout the training run, DeDLOC requires a few peers
with stable internet access. These “backbone” peers are responsible for welcoming new collaborators
and performing auxiliary functions, such as storing checkpoints and tracking learning curves. The
only requirement for those peers is that at least one of them is available at all times. As such, the
backbone peers can be hosted on inexpensive servers without GPU (see Appendix [F for cost analysis).

All other devices are treated as regular collaborators. Depending on their hardware and network
bandwidth, these devices can be assigned to (i) compute gradients, (ii) aggregate gradients computed
by other peers or (iii) do both, according to the adaptive averaging algorithm. However, performing
these steps with actual volunteer devices requires solving another set of challenges described below.

Training under NAT and firewalls. In addition to having uneven compute and network capabil-
ities, volunteer devices also deviate from traditional servers in network configuration. One major
difference is the use of Network Address Translation (NAT) [92]] — the technology that allows multi-
ple devices to share the same IP address. In practice, the majority of household and organizational
computers around the world use one or multiple layers of NAT (see Appendix [D|for more details).
Unfortunately for distributed training, NAT makes it harder to establish peer-to-peer connections [93].

When operating under NAT, DeDLOC participants use one of the following techniques:

1. Hole punching: use a third peer to temporarily open access to both devices. Once both peers are
accessible, they can establish a direct connection and transfer data as usual [94];

2. Circuit relays: both devices connect to a relay (another peer that is mutually accessible), then
forward all communication through that relay [95];

3. Client mode: if everything else fails, a peer can still send gradients to others without the need for
incoming connections. This imposes an additional constraint a; = 0 for Equation ().
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A similar set of strategies can be found in a wide range of distributed systems that rely on peer-to-peer
communication, such as WebRTC, VoIP (IP telephony), and BitTorrent. Most of these systems rely on
dedicated servers to establish connections between peers. However, in our case it is more appealing to
use a fully decentralized NAT traversal where the regular peers perform hole punching and relaying
by themselves. We describe this approach in more detail in Appendix [E]

Training on large datasets. Many prospective applications of DeDLOC require training on large
datasets that can take multiple hours to download. We circumvent this problem by allowing par-
ticipants to download the data progressively during training. To support this behavior, we split the
dataset into shards; upon joining the collaboration, a peer begins downloading examples shard by
shard in a streaming fashion. Once the first several examples are obtained, a collaborator can begin
training right away while downloading the rest of data in background.

To ensure that the training examples are independent and identically distributed, each participant
loads shards in a different random order and uses a buffer to shuffle the data within each shard. Each
participant loads the first S = 10, 000 examples into a buffer, then randomly picks a training batch
from this buffer and replaces the chosen examples with newly downloaded ones. In our experiments,
we stream the training data from a dedicated storage service. However, this service can be replaced
with a peer-to-peer data sharing protocol akin to BitTorrent; see Appendix [G] for details.

Collaborator authentication. Many prospective applications of DeDLOC need a way to keep
track of individual peer contributions and protect against malicious peers. In our experiments, we
achieve this using an allowlist authentication system that we describe in Appendix [H.4}

4 Experiments

In this section, we evaluate the performance of DeDLOC in realistic collaborative training conditions.
Our primary focus is on training models that are useful for a wide range of downstream tasks and thus
would attract a large number of collaborators. One area that fits this description is self-supervised
learning, i.e. learning reusable feature representations on large unlabeled datasets. First, we conduct
controlled experiments on two popular self-supervised learning tasks in Sections and[4.2] Then,
we set up a real-world collaborative training run with volunteers and report our findings in Section4.3]

4.1 Self-supervised learning of visual representations

Our first set of experiments uses SWAV [96] — a self-supervised learning technique that learns
image representations by contrasting cluster assignments. Similarly to the original paper, we train
the ResNet-50 [97]] model on the ImageNet dataset [1] without labels. Our experiments follow the
recommended training configuration [96, [98]]: 2+6 random crops, early prototype freezing and a
queue with 3,840 samples for each worker, LARS [81]] optimizer and 32,768 samples per batch
across all workers. We train with three hardware setups: SERVER, WORKSTATION and HYBRID. The
SERVER setup contains 8 workers, each with a single V100 GPU and 1 Gb/s symmetric bandwidth. In
turn, the WORKSTATION setup consists of 16 nodes with 1080 Ti and 200 Mb/s bandwidth per worker.
Finally, the HYBRID setup combines both previous configurations for a total of 24 nodes. Unlike
servers, workstation GPUs train in full precision because they do not support float16 acceleration [99].

We report learning curves for each hardware configuration in Figure 3] As expected, the HYBRID
setup converges the fastest, beating SERVER and WORKSTATION setups by 40% and 52% accordingly.
Another important observation is that the workstation-only experiment achieves a reasonable training
throughput despite using dated hardware. To provide more insight into the performance of DeDLOC,
we also measure the time it takes to run averaging in different configurations. We report the mean
over 100 averaging rounds; the standard deviation was below 1% in all setups. As demonstrated in
Figure[I] adaptive averaging does not affect the performance for homogeneous setups but runs 1.9
times faster on the hybrid infrastructure.

—— Hightandwidh  Tahle ]: ResNet-50 averaging perfor-

— SERVER 10 Heterogeneous

=1

WORKSTATION —— +load balancing  ANCE.
- —— HYBRID 2 —— +4x CPU-only .
% 6 S 6 —— + 8x time-varying Setup Algorlthm
= AR PS Ours

A: 8x1Gb/s 1.19 4.73 1.20
Oh 24h 48h 72h 9h 120h 144h 16sh  B: 16x0.2Gb/s 5.3 39.6 5.3

“Gh 24h 48h 72h 9h 120n Time clapsed C:AUB 5.69 14.1 2.96
Time elapsed A .
Figure 4: ALBERT pretrain- D: (]?x‘g.l;lz}lr;/ss) 5.3 3.22 3.18

Figure 3: SWAV pretraining. ing performance.
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4.2 Self-supervised pretraining for language understanding

Next, we investigate how collaborative training performs for more complex models. In this experiment,
we pretrain the ALBERT-large [[7] masked language model on the WikiText-103 dataset [L00]. We
chose this setup for two reasons: first, ALBERT is very sensitive to the choice of hyperparameters
and specifically batch size, even more so than regular transformers [[78]. This makes it easier to verify
that DeDLOC can reproduce the training conditions of regular data-parallel training. Second, because
of weight sharing, training ALBERT is relatively more compute- and less communication-intensive
than regular BERT [6], which makes it possible to train with lower bandwidth.

As before, we follow the exact training configuration from the original paper, but use GPUs instead
of TPUs. We use the implementation of ALBERT from the transformers library [103]. We run all
experiments on cloud instances with Tesla T4 GPUs and report the training loss as a function of time,
similarly to [18}40]]. In order to evaluate how DeDLOC performs with different network speeds, we
consider the following setups on the same platform with controlled conditions:

» High-bandwidth: 16 workers, each with Tesla T4 and 25 Gb/s symmetric bandwidth;

* Heterogeneous: same, but with 4x 200 Mb/s, 8x 100 Mb/s and 4x 50 Mb/s bandwidths;

* Heterogeneous + load balancing: like Heterogeneous, but with adaptive averaging (Section [3.2));
* Auxiliary peers: the previous setup with 4 additional CPU-only peers at 1 Gb/s bandwidth.

* Time-varying: same as previous, but with 8 additional peers at 100 Mb/s. The extra peers are
training part-time, jointly alternating between 8 hours of training and 8 hours of downtime.

As one can see in Figure[d] naive training with low-bandwidth peers results in an ~ 2.5x slowdown
compared to high-bandwidth ones. Enabling load balancing accelerates that setup by ~ 47%. This
effect grows to over 60% when adding 4 auxiliary peers. Finally, adding 8 part-time peers allows the
collaboration to train at 74% the speed of the high-bandwidth setup without sacrificing the training
stability. This turns the latter setup into a viable alternative to traditional distributed training without
the need for expensive infrastructure (see the cost analysis in Appendix [F).

4.3 Real-world collaborative training

For our final evaluation, we organized an actual collaborative training run with volunteer participants.
In this experiment, we asked collaborators to pretrain a Transformer [77]] model for the Bengali
language. This task was chosen deliberately to showcase the benefits of collaborative training:
Bengali has over 230M native speakers that can benefit from recent advances in NLP, but there are
few pretrained models available for this language. We recruited 38 Bengali-speaking volunteers and
11 outside collaborators. All participants received instructions for contributing with local computers
and free cloud platforms. To avoid bias, we did not encourage any specific form of participation:
volunteers were free to choose what hardware they contribute and for how long.

Specifically, we trained the ALBERT-large architecture on Wikipedia and the Bengali part of the
OSCAR [104] multilingual corpus. The model was named sahajBERT after conducting a poll among
the participants. We adapted our preprocessing by following the best practices for the Bengali
language described in Appendix [H.2] To stream from a mix of Wikipedia and OSCAR, the training
process iteratively samples examples from one or the other dataset, as described in Section [3.3] We
accounted for uneven size and quality of data by oversampling Wikipedia by a factor of 2, which
resulted in mixing probabilities of 0.23 for Wikipedia and 0.77 for OSCAR. Other hyperparameters
were set to the same values as in Section [£.2]
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(a) Collaboration activity. (b) Distribution of participation (c) Summary of volunteer hard-
time. ware with examples.

Figure 5: Collaborative experiment summary.
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Figure 6: Training progress of sahajBERT.

In total, the 49 volunteers contributed compute time from 91 unique devices, most of which were
running episodically. Figure [Sb|shows that although the median GPU time contributed by volunteers
across all devices was =~ 1.5 days, some participants ran the training script on several devices,
attaining more than 200 hours over the duration of the experiment. With the exception of the start and
the end of the collaborative run, the number of simultaneously active devices mostly varied between
15 and 35 depending on the local time. There was less activity in the last 3 days, likely because the
volunteers could see that the model has converged on a public Weights & Biases [[105] dashboard.

As depicted in Figure [5c| individual device performance varied significantly among the collaborators.
Along with the resources provided by participants, we also used 16 preemptible single-GPU cloud T4
instances for training. Regarding the network utilization, we have estimated that the average volunteer
device consumed 6.95 GB of network traffic per hour of training. While this bandwidth usage by no
means insignificant, it is comparable with cloud gaming [[106] or high-quality video streaming [[107].

The model converged after 8 days of training, which is 1.8x as fast as regular distributed training with
8 V100 GPUs that we ran as a baseline (see Figure[6). At the same time, the stepwise learning curves
of the two runs were virtually identical, which supports our hypothesis that training with DeDLOC is
equivalent to a regular large-batch SGD.

In addition, we compare the Bengali language representations of sahajBERT with other pretrained
models on several downstream tasks. The first model is XLM-R Large [9] — a Transformer network
pretrained on 100 languages, which remains a strong baseline for multilingual representation learning.
The second model, IndicBERT [108]], is also based on the ALBERT architecture and pretrained on 12
languages including Bengali and Indian English. The third model, bnRoBERTa [[109], is a RoBERTa
architecture trained on monolingual Bengali. We evaluate the model quality on two downstream tasks
in Bengali: Wikiann [110] named entity recognition dataset and Soham News Category Classification
benchmark from IndicGLUE [108]]. As shown in Table[2} sahajBERT performs comparably to three
recent strong baselines despite being pretrained in a heterogeneous and highly unstable setting. For
more details regarding the downstream evaluation, refer to Appendix

S Conclusion & Broader Impact

In this work, we proposed DeDLOC — a collaborative deep learning approach that enables large-
scale collective distributed training on whichever computers available to participants, regardless of
hardware and network limitations. We demonstrated with several experiments that this is a viable
approach that maintains its efficiency in a broad range of conditions. Finally, we report the first real
collaborative training run of such scale and share our findings on volunteer activity to pave the road
for similar experiments in the future.

An important aspect of collaborative training is its environmental impact. While all distributed
training experiments have negative impact due to carbon emissions [[111]], DeDLOC has one unique
advantage. Due to its ability to utilize low-end heterogeneous devices, collaborative training can
prolong the effective lifespan of existing computers, reducing the waste from hardware overhaul. We
discuss this in Appendix

One issue that needs to be addressed before starting collaborative experiments is the need to gather a
community of volunteers. DeDLOC is equally suitable for artificial “communities” composed of in-
expensive preemptible cloud instances, existing groups of people or communities created specifically
for the experiment (as described in Section[4.3). Although our proposed authentication mechanism
(see Appendix allows to acknowledge participants for their contribution, the development of
the best approach to recruit volunteers is an open question: one needs to take into account both the
available resources of community members and their motivation for training a specific model.
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Supplementary Material

A Federated learning

Federated learning (FL) is an approach that trains the model on decentralized data stored on many
devices without sharing private training data [60]. This scenario is currently gaining more popularity
with the rising awareness of data privacy and emerging legal constraints, such as GDPR. Similarly to
our setting, FL systems must deal with unreliable heterogeneous hardware. However, their main goal
is to ensure the data privacy, which often leads to sacrifices in terms of efficiency.

Most practical FL systems utilize a central parameter server that aggregates local gradients from
workers and updates the global model. As we increase the number of workers, the total system
performance becomes bounded by the throughput of this server. The problem is exacerbated by
secure aggregation protocols [[112}|113] that further increase the communication overhead to ensure
data privacy. To account for these limitations, production FL systems perform each update using
only a small random subset of peers, while the rest remain idle [114]. Contrary to this, our goal is to
maximize the training performance by running computations on all peers.

Another recent line of work explores federated learning algorithms with a decentralized communi-
cation topology. Maintaining data privacy in these conditions also requires specialized techniques
that introduce communication overhead. For instance, [62] proposes a system where workers cannot
share parameters directly, relying on a secure peer-to-peer knowledge distillation instead.

The above discussion makes it clear that the purpose of the federated learning is orthogonal to ours:
we aim to train the global model on publicly available data and achieve the best possible performance.

B Optimal averaging strategy via linear programming

Recall that DeDLOC finds the optimal communication strategy by solving the following problem:

max min (Z;ll sici  mingd gji)
B I’

a,g,c P

s.t. Gij < Mig.c, =1 Qk; Vz:,j )
> i (@i +95i) < d; Vi (2)
>z (aij + 9i5) < wi Vi
aij + gij < tij Vi, j

CL”ZO&QUZO&QG{O71} VZ,]

Here, a;; denotes the fraction of network throughput allocated to sending gradients from peer  to
peer j for aggregation, g;; is the corresponding fraction for returning the averaged tensors back to
sender, and ¢; is a binary indicator that represents whether or not peer ¢ computes gradients. The
remaining variables are parameters that denote peer compute performance s;, maximum download
and upload speeds (d; and u; respectively) and regional limitations of peer-to-peer throughput (¢;7).
Finally, B denotes the global target batch size per step and P is the number of model parameters.

As stated earlier in Section[3.2] the DeDLOC peers need to find the optimal strategy during each
averaging round. As such, we must ensure that the procedure for solving (2) does not introduce any
significant overhead. To that end, we reformulate the problem as a linear program by means of several
consecutive reductions, which are described below.

Max-min LP reduction. First, we replace the original max-min objective with a linear one by
following the technique described in [115]: we maximize a new surrogate variable ¢ and replace the
inner min by two additional constraints:

max 13
,g,C
st < Zima 3)
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Binary to LP relaxation. Second, we must account for the binary variable ¢;. From a formal
perspective, using these indicators transforms our problem into a binary mixed-integer program with
a combinatorial worst-case complexity. However, for this specific problem, it is possible to rewrite
the constraints in such a way that c¢; can be treated as a continuous variable 0 < ¢; < 1:

Vi,j,kel...n gijgaki—i—(l—ck)-di 4)

For ¢;, = 1, the above equation (@) is exactly equivalent to the original constraint Gij < Milgic, =1 Qg
In turn, setting ¢, < 1 for some k effectively removes the corresponding peer £ from the min operator,
allowing participant 7 to aggregate tensors with up to its maximum download speed d; instead of
waiting for peer k. The d; factor in (@) can be replaced with any large positive number as long as
the constraint (@) is not saturated for c;,=0. In practice, c;, # 1 corresponds to peer & not computing
gradients, but still assisting in gradient aggregation.

Applying the two above reductions, we get the following linear program:

max 13

a,g,c

s.t <> s;-¢ /B
< Z 9ji /P Vi
i; ga +(1—ck)-d Vi, 5, k
Zjaéz aji + gji) < di vi (5)
> (@i + gij) < ui Vi
a;j + gij < tij Vi, j
a;; >0 Vi, j
9i; =0 Vi, j
0 S C; S 1 Vi

To avoid additional synchronization steps, each peer within DeDLOC solves the above problem (5)
independently using the interior point solver [116]. Based on the obtained solution, peer ¢ will
aggregate a fraction of gradients proportional to its effective throughput:

HliIlj gij
>, ming gi;
Furthermore, if ¢; # 1, the corresponding participant will disregard its local gradients. In the future,

it may be possible to allow such peers to contribute partial gradients akin to [41]. However, we leave
this investigation to future work.

fraction; o<

(6)

For certain collaboration compositions, there can be multiple optimal strategies with equal training
throughputs. To ensure that all participants act according to the same strategy, we require each peer to
solve (3 using a deterministic interior point algorithm with globally consistent hyperparameters [T17].

Another practical consideration is that some peers are unable to compute gradients or perform
aggregation (for instance, due to networking issues described in Section [3.3). To account for these
s

o L. e e
limitations, we exclude such peers from aggregation in “}BS “ and ZJP * terms for compute and

network resources respectively.

C Fault tolerance

In practice, using DeDLOC with large collaborations will eventually require dealing with node
failures. If the failures are rare, it is possible restart the failed steps until they succeed. However, if
the collaboration size increases, this strategy will eventually become impractical.

One possible solution is to replace the global (collaboration-wide) All-Reduce with several parallel
operations, which is known as Group All-Reduce [30]] or Moshpit All-Reduce [59]]. Each operation
involves a small independent group of m peers, whereas the groups themselves are formed in such a
way that the collaboration can obtain the global average in a logarithmic number of rounds.

Under this strategy, any failed device will only affect its local group instead of the entire collaboration.
Furthermore, each individual group will have a higher success rate, since it contains m < n peers.

20



941
942

943
944

946
947

949
950

952
953
954
955
956
957

958
959
960
961
962

Number of participants

—

XX X X2
e x a2 L R T e B e A I N o %
S S S S = o e e e e e e = o= N NS

0.5%

X
<
S

X XX
N
S o o

Fail probability for one node

Figure 7: Optimal group size for different collaboration sizes and failure rates.

In turn, the drawback of using group-based All-Reduce is that the collaboration will need [log,,, n]
steps to obtain the global average.

We can select the optimal group size by minimizing the expected number of iterations required to
compute the global average, including both restarts from node failures and the overhead from using
Group All-Reduce. For reference, we include the optimal group sizes for typical collaborations and
failure rates in Figure [/} In all our experiments, the optimal group size was m=n due to a small
number of participants and very rare significant network failures.

D Network address translation

Collaborative training, similarly to any other application incorporating peer-to-peer communication,
is susceptible to a number of networking issues, among which the most common is the inability
to accept incoming connections due to Network Address Translation, or NAT [92]]. The primary
function of NAT is to separate the address space of the local network from the global address space
by dynamically translating addresses and port numbers of outgoing sessions into public endpoints.
Therefore, NAT helps deter the rapid depletion of IPv4 addresses and provides additional security
by hiding the local network structure from external parties. However, this also means that NAT
devices only authorize outgoing connections, since the dynamic mapping of local endpoints makes it
impossible to forward incoming packets to the proper internal host.

For the purposes of the current work, NAT devices can be categorized into two groups — cone and
symmetric. A cone NAT translates an internal IP address and port to the same globally routable
endpoint regardless of the destination host, whereas a symmetric NAT allocates different address
mapping for each destination host. In case of UDP traffic, the cone NAT can be traversed using
the mechanism of UDP Hole Punching. Briefly put, this technique consists of two stages. During
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the first phase, peers A and B connect to the same globally accessible rendezvous server using the
STUN protocol [118] and exchange their public and private endpoints. The rendezvous server is
often called the STUN server by the name of the protocol. At the next step, both peers start sending
UDP data packets to each other’s endpoints. If A’s packet reaches NAT B before B’s packet “punches
a hole”, then it is dropped by the NAT B, but when the B’s packet reaches NAT A shortly after this,
the outgoing session has already been initiated by A, so the B’s request is successfully forwarded to
A. If both peers happen to "punch a hole" in their NATs before the arrival of the counterpart’s packet,
then the connection is established immediately. This can be illustrated by the following diagram.

For the TCP traffic, hole punching is also possible, though it has to overcome additional API issues
that arise because of the client-server paradigm around which TCP was designed. However, peer-
to-peer communication over TCP connections is more robust than over UDP, since NAT usually
timeouts UDP port mapping, thus periodical keep-alive messages must be transmitted. As reported
in [[119], currently almost two thirds of all NAT vendors provide devices which are compatible
with TCP hole punching, that is, consistently map private endpoints and do not send back Reset
packets to unsolicited requests. More precise figures are not available because of the lack of NAT
standardization.

As for the symmetric NAT, only relaying through a third-party proxy can help establish the connection
between peers. This is supported with the TURN protocol [935]. If two peers fail to connect via hole
punching, they appeal to the TURN server for an interaction through it.

E Peer-to-peer network infrastructure

To enable peer-to-peer interactions that can bypass NAT, we can use the libp2p framework [120]. Each
peer has a set of multiaddresses that allow other participants to establish a connection. Multiaddress
comprises an IP address, an L4 protocol (TCP/UDP) with a port, an optional high-level protocol
(QUIC), and a peer identifier. A peer can listen to several transport protocols, but it may have only
one identifier.

After peers connect to the network, they can interact with each other via their respective identifiers.
There are no dedicated STUN and TURN servers in the libp2p network: their role is played by
public participants. The network must contain at least 4 publicly accessible peers to be able to
recognize public addresses of newly connected peers. Optimally, these are well-known peers with
multiaddresses known to all participants. Upon joining, a new node synchronizes with the DHT used
for routing and receives information about other available peers. After that, a peer can interact with
other participants using their peer id. If the network can get the public address of the peer, then other
participants will be able to connect to it.

If a public address of the peer is not available or two peers are using different transport, the com-
munication can be started by relaying requests via an intermediate participant. Libp2p supports the
autorelay feature that allows finding the best relay automatically. When autorelay is enabled, a public
peer can serve as a relay for other participants, and a private peer will find the best relay.

F Cost analysis

In this section, we provide a detailed cost analysis of several hardware and networking setups that
can be used for both tasks described in Section @] namely, SWAV and ALBERT pretraining.

For simplicity, we only consider temporary resource ownership, i.e., renting GPU-enabled servers
instead of building it on-premise. The latter option can be more cost-efficient in the long term, but
might be impractical if only a few training runs are required. For the same reason, we do not consider
discounts available for committed usage of the same resource over multiple years.

As for the rented resources, there are several general hardware categories that we consider:

1. High-performance cloud GPU — dedicated instances with multiple high-end compute
accelerators and extremely fast device interconnect.

2. Low-end cloud GPU — single-GPU instances with NVIDIA M60, T4 or P40, linked with a
fast (preferably intra-datacenter) network of 10-50 Gb/s.
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3. Commodity GPUs — regular desktop-like machines with consumer-grade GPUs, like
NVIDIA RTX 2070, 2080 Ti, 3070. On average, they can have higher performance than
low-end cloud devices, but lower network throughput (50-200 Mb/s).

4. Volunteer hardware — almost the same class of devices as in the previous section, with the
same advantages and disadvantages, but “free” for the experiment organizers.

For a fair comparison, we consider three types of GPU instances: cloud V100, cloud T4 and
commodity GPUs from peer-to-peer marketplaces, such as vast.ai or golem.ai. While several
cloud providers offer newer generation GPUs (NVIDIA Ampere), this GPU lineup is still in an active
rollout phase, which causes significant price fluctuations. Thus, we base our conclusions on more
established generations of GPUs.

In addition to GPU instances, DeDLOC can also benefit from non-GPU servers that act as auxiliary
parameter aggregators. The only real requirement for such servers is high network bandwidth. As
such, we consider additional resource types:

1. Premium cloud VMs — low-end instances from premium cloud providers. We consider
instances with 2 cores, 16GB RAM and 25 Gb/s maximum bandwidth (symmetric).

2. Economy cloud VMs — similar cloud instances (or dedicated servers) from economy cloud
providers. For this run, we consider instances with the same 2 cores / 16GB RAM, but only
300-1000 Mb/s symmetric bandwidth (depending on the provider).

3. Volunteer non-GPU devices — in theory, it is possible to run collaborative training entirely
on volunteer devices with zero hardware expenses for the organizer. However, we omit this
option as it trivializes our cost analysis.

On top of that, all cloud and marketplace instances can be rented in a guaranteed (“on-demand”) or a
non-guaranteed option. In the latter scenario, the resources are offered at a significant discount, but
the resource provider can terminate such instances at any time.

Based on the available resource types and ownership models, we assemble six server fleets with
approximately equal training performance in our two experimental setups. For convenience, we order
these setups by how difficult they are to operate (easiest-first):

* Single high-end node — 8 x NVIDIA Tesla V100: easiest to operate, but the most expensive
option.

* Preemptible high-end node has the same hardware but costs less due to irregular availability,
which creates a need for regularly saved checkpoints.

* Distributed nodes — 16 x NVIDIA Tesla T4: homogeneous, require distributed optimization.

* Distributed + preemptible — same but preemptible, can be used with a framework that
supports elastic training, such as TorchElastic[55]] or Elastic Horovod[56]].

* Distributed + heterogeneous — 5x NVIDIA GTX 1080 Ti, 3x RTX 2070, 1x 2070S, 2x 2080,
4x 2080 Ti, 1x 3070. This configuration has lower bandwidth, thus additional CPU-only
peers are needed for efficient averaging.

* Collaborative training — for this setup, we assume that the GPUs from the previous setup
are available from volunteers. In that case, the only sources of expenses for the organizer
are networking and CPU-only nodes.

Table 3: Costs of training setups

Cloud on-demand Cloud preemptible Marketplace Volunteer

Instance types 8xV100 16xT4 8xV100 16xT4 4xCPU+16xGPU  4xCPU
Monthly price  $16898  $5299  $5133  $2074 $5148 $257

As one can see in Table[3] using a single high-end node is the most expensive alternative. Switching
to multiple lower-end nodes and using non-guaranteed instances reduces the cost by a factor of
~ 3x each. Finally, the volunteer infrastructure is two orders of magnitude cheaper than the high-
performance setup. However, some of this price difference is effectively shifted to volunteers. Based
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on average electricity and networking costs of household Internet connections, we estimate the
expense at $9-30 per volunteer per month, assuming 16 volunteers with equivalent GPUs. However,
actual costs can vary based on the region, time duration and the exact hardware used by each volunteer.

Finally, we want to reiterate that the above setups require different amounts of effort (and expertise).
Training on a single high-end node can be done with virtually no code changes in major deep learning
frameworks, such as TensorFlow [[121] or PyTorch [101]. In contrast, multi-node (and especially
elastic) setups require specialized distributed training frameworks and careful performance tuning.
Finally, working with volunteer or marketplace instances introduces a new layer of complexity that
we address in this paper.

Networking costs. When done naively, training with geographically distributed participants can
incur significant networking expenses. For instance, when using preemptible cloud GPUs from a
major provider, allocating these GPUs in different regions can incur additional costs of more than
$3000 per month, compared to a total hardware cost of $2074 for the same period.

More importantly, using premium non-GPU instances for collaborative training will also incur
additional networking costs. Based on our preliminary experiments, a collaborative training setup
equivalent to Table [3| would lead to an average networking bill of $5000-6000 per month. Fortunately,
it is possible to circumvent this expense by using cloud providers that do not charge additional costs
for network traffic. These providers typically offer less reliable instances with lower maximum
bandwidth, which is not a significant issue for DeDLOC.

As a general recipe for reproducing our experiments, we recommend using one of the two setups.
When running experiments internally, one can use any major cloud provider as long as all instances
are configured to avoid cross-regional networking costs (e.g. use internal address space). In contrast,
when training with actual volunteer devices, we recommend using cloud providers without additional
networking charges or existing server infrastructure.

G Decentralized data streaming

In this section, we propose a generalization of our data streaming approach described in Section 3.3
to a setting without any central data storage. Namely, we offer a way to to distribute large datasets
across all participants by sharding the examples in the same manner that was used previously.

Specifically, this approach is based on the notion of a local buffer combined with the decentralized
metadata storage enabled by the DHT. When a peer joins the experiment, the training process allocates
a buffer for several chunks on a local high-capacity storage device (HDD/SSD) available to that peer;
the number of chunks is determined by the participant and depends on the hardware capabilities of
their computer. Then, in order to procure training data, the peer queries the DHT to find the shards
that are stored on the least number of other peers. Assuming that the number of shards does not
exceed several thousand, this search can be done by a simple linear-time lookup of all keys without
any significant performance drawbacks. After finding such shards, the training process randomly
chooses one shard from this set and downloads it from another peer. When the download is complete,
the participating node trains on batches from this shard and stores it for later use by other members
of the network. The training process repeats such iterations; if the local buffer becomes full at any
point, the shards with the highest replication factor are evicted in favor of new data.

The decentralized approach to data streaming has two immediate benefits. First, similarly to dis-
tributed training, this approach reduces the load on a single server (or the content delivery network),
which might result in significant savings for large-scale experiments that use datasets hosted by cloud
providers. Second, even when the data is hosted by organizers of the collaborative experiment, its
size might be too large to prevent efficient storage and sharing without investments in specialized
infrastructure, which is often quite expensive as well. Storing small portions of the dataset on the
computers of participants allows circumventing both issues by distributing the load among all peers.
However, we note that the above approach was not implemented for our current experiments; this
section is intended to serve as a description of future work.
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H Collaborative experiment setup

H.1 Instructions for participants

All communication with volunteer contributors took place on a group instant messaging platform.
Prior to launching the experiment itself, we used this platform to communicate with Bengali speakers
in order to validate the language-specific elements of the model, such as the normalization component
of the tokenizer and the sentence splitter tool.

Then, for the collaborative training, we first sent several introductory messages before the event to
explain what the event will consist of. Then, we sent a message the day before and a message on the
event’s launch day with instructions on how to join the training run. Lastly, we sent daily messages to
report the current status of the event. An anonymized version of the event’s launch day message can
be found in Figure E} In this message, the volunteers were invited to:

1. Submit their account names on the digital identity provider we used for validation;

2. Once added to the allow-list, join the training via notebooks provided by the organizers. After
checking that the connection was established and that the GPU was available, participants
had to run the notebook and fill in the necessary credentials for the identity platform.

Hi @everyone! We’re starting the Collaborative Training Experiment now! Here is some important
information:

How to participate?

1. As a reminder, you need to provide your digital identity provider username to be able to participate.
For the current participants, name; already gathered this list (thank you name;!). For new partici-
pants, please join #albert-allowlist and add your username. Someone from the team will add you to
the allowlist. If you see a T reaction, we’re on it! If you see a [/, you should be added by then. Feel
free to reach out to names, names, namey, names, nameg or me if you don’t have access.

2. You can join the training with:

¢ Colab: notebook access link

» Kaggle: notebook access link
This option provides you a P100 and lasts longer than Colab. This requires a Kaggle account.
You must enable Internet access and switch kernel to GPU mode explicitly. If it is stuck
at “installing dependencies” for over 5 minutes, it means you changed the session type too
late. Simply restart with GPU/Internet enabled and it should work just fine.

Please do not run multiple GPU instances on the same service! You can use Kaggle in one tab and
Colab in another, but avoid having two Colab GPU instances at the same time.

Local run: if you have a local GPU and you’re tech-savvy. We will keep you informed when this
option is available. Stay tuned!

Feel free to ask any questions in #albert-bengali-training channel and reach out to us (at the right
you can see the list of organizers).
In the following dashboard you can track the status of training: link

Thank you all for participating and let us know if you have any questions!

Figure 8: An anonymized instructions message sent at the event launch

H.2 Tokenizer

For this experiment, we used the architecture of the ALBERT model [7]]; the authors of the original
work have chosen the unigram language model [[122] token segmentation algorithm that allows
transforming a raw text into subword units based on a fixed size vocabulary of 30k tokens.

In order to use the tokenizer that is adapted to the Bengali language, we created a new tokenizer using
the Tokenizers library [123]].
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This tokenizer is composed of:

» Several normalizations adapted to the Bengali language: NMT normalization, NFKC
normalization, removal of multiple spaces, homogenization of some recurring unicode
characters in the Bengali language and lowercasing;

* Specific pre-tokenization rules to condense the vocabulary: we split on whitespaces and
replace them with an underscore character “__" (U+2581), we also isolate all punctuation
and digits from any other characters;

* A Unigram language model as a segmentation algorithm with a 32k tokens vocabulary,
trained on the deduplicated Bengali subset of OSCAR [104];

* A template postprocessor, allowing a special token “[CLS]” to be included at the beginning
of the sequence, as well as a special token “[SEP]” to separate a pair of segments and to
denote the end of sequence.

H.3 Dataset streaming

Streaming the data to each participant allows to start training immediately, since the participants
do not have to download the full dataset before launching the training. More specifically, the
examples from the dataset can be downloaded progressively as training goes. To do so, we used the
datasets library [102]. It enabled streaming of Wikipedia and OSCAR, as well as shuffling, on-the-fly
processing and mixing of the datasets.

For the experiment, we use the Wikipedia and OSCAR Bengali datasets. Both datasets are split
in shards, respectively in the Parquet and GZIP-compressed raw text formats. Information about
the datasets is given in Table[d] The participants download the examples from those files during
training, since it is possible to iterate row group by row group from Parquet files and line by line from
compressed text files.

The Bengali Wikipedia dataset is based on the 03/20/2021 Wikipedia dump. The data was processed
using the Wikipedia processing script of the datasets library in early April of 2021. Each example
contains the content of one full article, cleaned from markup and sections such as references.

Table 4: Sizes of the Bengali Wikipedia and OSCAR datasets used for training
Wikipedia OSCAR

Uncompressed size 657MB 6.2 GB
Documents 167786 1114481
Shards 10 4

To shuffle the datasets, we make each participant iterate over the shards in random order. Then, a
shuffle buffer of size S = 10000 is used, which is compatible with the progressive download of
examples. We use a shuffle buffer, because we do not want the participants to download entire shards
in the beginning of training just for shuffling.

Sentence splitting, tokenization and preprocessing for next sentence prediction are applied to the
examples in an online manner. Since these steps are several orders of magnitude faster that forward
and backward passes of the model, they have no significant impact on the training performance.

H.4 Participant authentication

Since our experiment was an open collaboration, we chose to set up an authentication system allowing
only the people motivated by the final result of the model to join the training. Allow-listing seemed
to be the most suitable solution to this need. We therefore distinguish between three types of actors in
the distributed network:

» Central server’s moderators: people who start the experiment, maintain the whitelist and
know how to join the training. They have a pair (public_keyquih, private_keyquspn) of
public-private keys securely hosted on the central authentication server. In this protocol, the
role of the central server is threefold: 1) to verify the identity of a collaborator requesting
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the confirmation of the identity provider website, 2) to verify that this collaborator is
whitelisted and 3) to distribute access passes to authorized collaborators. Peers have a secure
HTTPS-based communication channel with this server in order to protect the data;

* Digital identity provider: an entity which is able to create digital identities via a website.
In order to create the allowlist, moderators asked collaborators to have a digital identity
on an identity provider website. This has several advantages: the collaborators have the
feeling of belonging to a community which is a great vector of enthusiasm and motivation,
moderators can acknowledge each collaborators’ contribution and it prevents bots from
joining the training. In our setup, each identity linked to a username can be claimed by a
login and a password owned by one collaborator;

* Collaborators / Peers: people who wish to make their computing resources available for the
collaborative training. Each peer ¢ in the network has a pair (public_key;, private_key;)
of public-private keys. They also have a digital identity on a identity provider website.

The following procedures aim to prevent 1) that a non-allow-listed collaborator can communicate with
members of the collaborative training and 2) that a malicious actor could claim to be a allow-listed
collaborator:

* Joining the network: To join the collaborative training, a peer ¢ must request an access pass
from the authorization server. To grant the access pass, the authorization server asks the
digital identity provider if the peer is who he claims to be. If the entity provider confirms
the identity of the peer, the authorization server checks that the username appears in the
allow-list. If these two steps are verified, the authorization server creates an access pass
otherwise it rejects the peer’s request. The access pass is temporary and contains the
following information:

— the endpoint of a peer already present in the network

— an access token access_token,; composed of a string containing the peer’s username,
its public key public_key; and the expiration date of its access pass signed with the
private key private_keyqqyth -

— the public key public_keyqutn

With this access pass, the peer can make requests and responds to requests in the decentral-
ized network. After expiration, the peer may repeat this procedure to get a new token.

* Making requests: Alice wants to make a request to Bob. In order for her request to be
processed by Bob, we require Alice to include several additional information in her request:
1) her access token access_token ajce, 2) receiver’s public key public_keypop, 3) the
current time, 4) a set of random bytes - called a nonce - that is supposed to be unique for
each request and 5) a signature of the content of the request and the additional information
made with private_key ;... With this information, Bob considers that a request is not
legitimate and should not be processed if one of the following cases occurs:

Alice’s access token access_token aice is invalid or expired. To find this out, Bob
decrypts access_token gpice With public_keyguin;

the signature of the request is invalid after being decrypted with public_key ay;ce stored
into access_token ajice;

the nonce has already been used before;
the request’s current time field differs from Bob’s current time by more than N seconds;
the recipient’s public key field doesn’t match the real public_keypop.

These checks protect the exchange against eavesdropped request reuse and man-in-the-
middle attacks because Bob is sure that 1) Alice is white-listed and her authorization is still
valid, 2) the request was created by Alice and could not have been modified by someone
else, 3) Bob is the recipient of the request, and 4) the request is not repeated by someone
who eavesdropped a previous request.

* Responding to requests: When Bob responds to Alice, we also require Bob to include
several additional information in his response: 1) his access token access_tokenpg,p, 2) the
nonce sent with Alice’s request and 3) a signature of the content of the response and the
additional information made with private_keyp.. In the same way as above, a response is
not considered valid by Alice if:
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— Bob’s access token access_tokenp,y, is invalid or expired after being decrypted with
public_keyautn;

— the signature of the request is invalid after being decrypted with public_key g,y stored
into access_tokenpep;

— the nonce doesn’t match the nonce stored into Alice’s request;

— the sender’s public key field doesn’t match the real public_keypp.

If the response does not check any of the above cases, Alice is sure that 1) Bob is white-listed
and still has valid access, 2) the response was sent by Bob and could not be modified, and
3) it is the response to the request associated with this nonce. In short, an eavesdropped
response can’t be replayed for another request and a man-in-the-middle attacker can’t replace
the response content.

H.5 Stepwise learning curves

As one can see on Figure[J] collaborative training is nearly equivalent to regular data-parallel training
in terms of the total number of SGD updates. The slight difference between the two curves is likely
due to random variation, though it can also be explained by the fact that DeDLOC uses slightly larger
batches due to network latency. In other words, some peers will aggregate a few extra gradients
between the moment when the collaboration accumulated 4096 samples and the moment when every
peer enters the gradient averaging stage.
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Figure 9: Stepwise learning rate for DeDLOC, compared to regular distributed training.

H.6 Evaluation

We compare sahajBERT with three other pretrained language models: XLM-R [124]], IndicBert [1OS]],
and bnRoBERTa [109]. For downstream evaluation, we use two tasks from the Indic General
Language Understanding Evaluation (IndicGLUE) benchmark [108]: 1) Named Entity Recognition
(NER) with the balanced train-dev-test splits version [[125]] of the original WikiANN dataset [110],
which is also part of the Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME)
benchmark [[126] and 2) News Category Classification (NCC) with the Soham News Article (SNA)
dataset [[108]].

Each model was finetuned and evaluated as follows:
1. For each tuple of (Ir, max_len) in the hyperparameters grid composed of a learning rate {r
in (le-5, 3e-5) and the maximum sequence length max_len in (64, 128,192, 256,512), we

finetuned the model on the task ¢ and evaluated it on the test set. If ¢ was a NER task, we
computed the F1-score, and if it was a NCC task, we computed the accuracy;
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2. We repeated the first step three times for different random seeds and computed the mean
and standard deviation of the best model metrics in each pool.

All finetuning experiments were ran using the Adam [[127]] optimizer with the weight decay fix [128]],
weight decay of 0.001, and a linear decay learning rate schedule. Finally, each model was trained for
a maximum number of 20 epochs and stopped earlier if the loss on the validation set did not decrease
during 3 epochs. The size of the batch was chosen to be as large as possible: we started with a batch
size of 128 and then, if necessary, the batch size is decreased until it can be stored in memory. For
exact hyperparameter values, see Table 5]

Table 5: Model evaluation hyperparameters.

Task  Model Learning rate  Input length  Batch size
sahajBERT le-05 128 32
XLM-R le-05 256 8

NER  11dicBERT 36-05 256 64
bnRoBERTa 3e-05 512 64
sahajBERT 3e-05 64 64
XLM-R le-05 128 8

NCC IndicBERT 3e-05 128 128
bnRoBERTa 3e-05 128 64

I Environmental impact

Recent works have outlined the environmental consequences of training ever larger deep learning
models [129, [130] and encouraged authors to at least report the energy costs incurred [[131]]. The
direction proposed in this work may help in two specific ways. First, while most of the current
tools focus on the CO2 cost caused by the training-time energy consumption [111]], a more holistic
evaluation protocol would need to include the not insignificant manufacturing cost of the training
infrastructure [[132] [133]]. The collaborative training method described here allows volunteers to make
better use of existing computing resources, which helps minimize these costs. Second, the distributed
training setting allows users to dispense with the extensive cooling infrastructures required for large
concentrated data centers, and may thus also help reduce the operating costs themselves [[134]. We
note however that the additional networking needs may limit the magnitude of these gains.
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