
Bridging the Gap Between Vision Transformers and
Convolutional Neural Networks on Small

Datasets–Supplementary Materials

Anonymous Author(s)
Affiliation
Address
email

1 Code of Dynamic Hybrid Vision Transformer1

1.1 Code of the Dynamic Aggregation Feed Forward (DAFF)2

3
4

class DAFF(nn.Module):5

def __init__(self , in_dim , hid_dim , out_dim , kernel_size=3):6

self.conv1 = nn.Conv2d(in_dim , hid_dim , kernel_size=1,7

stride=1, padding=0)8

self.conv2 = nn.Conv2d(9

hid_dim , hid_dim , kernel_size=3, stride=1,10

padding=(kernel_size - 1) // 2, groups=hid_dim)11

self.conv3 = nn.Conv2d(hid_dim , out_dim , kernel_size=1,12

stride=1, padding=0)13

self.act = nn.GELU()14

self.squeeze = nn.AdaptiveAvgPool2d ((1, 1))15

self.compress = nn.Linear(in_dim , in_dim //4)16

self.excitation = nn.Linear(in_dim //4, in_dim)17

self.bn1 = nn.BatchNorm2d(hid_dim)18

self.bn2 = nn.BatchNorm2d(hid_dim)19

self.bn3 = nn.BatchNorm2d(out_dim)20

21

def forward(self , x):22

B, N, C = x.size()23

cls_token , tokens = torch.split(x, [1, N - 1], dim=1)24

x = tokens.reshape(B, int(math.sqrt(N - 1)),25

int(math.sqrt(N - 1)), C).permute(0, 3, 1, 2)26

27

x = self.act(self.bn1(self.conv1(x)))28

x = x + self.act(self.bn2(self.conv2(x)))29

x = self.bn3(self.conv3(x))30

31

weight = self.squeeze(x).flatten(1).reshape(B, 1, C)32

weight = self.excitation(self.act(self.compress(weight)))33

cls_token = cls_token * weight34

tokens = x.flatten(2).permute(0, 2, 1)35

out = torch.cat((cls_token , tokens), dim=1)36

return out3738

139

1Code is modified from https://github.com/coeusguo/ceit

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

https://github.com/coeusguo/ceit

1.2 Code of the Sequential Overlapping Patch Embedding (SOPE)40

41
def conv3x3(in_dim , out_dim):42

return torch.nn.Sequential(43

nn.Conv2d(in_dim ,out_dim ,kernel_size=3,stride=2,padding=1),44

nn.BatchNorm2d(out_dim)45

)46

47

class Affine(nn.Module):48

def __init__(self , dim):49

super().__init__ ()50

self.alpha = nn.Parameter(torch.ones([1, dim , 1, 1]))51

self.beta = nn.Parameter(torch.zeros([1, dim , 1, 1]))52

def forward(self , x):53

x = x * self.alpha + self.beta54

return x55

56

class SOPE(nn.Module):57

def __init__(self , patch_size , embed_dim):58

super().__init__ ()59

self.pre_affine = Affine(3)60

self.post_affine = Affine(embed_dim)61

if patch_size[0] == 16:62

self.proj = torch.nn.Sequential(63

conv3x3(3, embed_dim //8, 2),64

nn.GELU(),65

conv3x3(embed_dim //8, embed_dim //4, 2),66

nn.GELU(),67

conv3x3(embed_dim //4, embed_dim //2, 2),68

nn.GELU(),69

conv3x3(embed_dim //2, embed_dim , 2),70

)71

elif patch_size[0] == 4:72

self.proj = torch.nn.Sequential(73

conv3x3(3, embed_dim //2, 2),74

nn.GELU(),75

conv3x3(embed_dim //2, embed_dim , 2),76

)77

elif patch_size[0] == 2:78

self.proj = torch.nn.Sequential(79

conv3x3(3, embed_dim , 2),80

nn.GELU(),81

)82

def forward(self , x):83

B, C, H, W = x.shape84

x = self.pre_affine(x)85

x = self.proj(x)86

x = self.post_affine(x)87

Hp , Wp = x.shape[2], x.shape[3]88

x = x.flatten(2).transpose(1, 2)89

return x9091

292

2Code is modified from https://github.com/facebookresearch/xcit

2

https://github.com/facebookresearch/xcit

1.3 Code of the Head-Interacted Multi-Head Self-Attention (HI-MHSA)93

94
class Attention(nn.Module):95

def __init__(self , dim , num_heads=8):96

super().__init__ ()97

self.num_heads = num_heads98

head_dim = dim // num_heads99

self.scale = head_dim ** -0.5100

self.qkv = nn.Linear(dim , dim * 3, bias=True)101

self.proj = nn.Linear(dim , dim)102

self.act = nn.GELU()103

self.ht_proj = nn.Linear(head_dim , dim ,bias=True)104

self.ht_norm = nn.LayerNorm(head_dim)105

self.pos_embed = nn.Parameter(106

torch.zeros(1, self.num_heads , dim))107

108

def forward(self , x):109

B, N, C = x.shape110

111

head token112

head_pos = self.pos_embed.expand(x.shape[0], -1, -1)113

ht = x.reshape(B, -1, self.num_heads , C // self.num_heads).114

permute(0, 2, 1, 3)115

ht = ht.mean(dim=2)116

ht = self.ht_proj(ht)117

.reshape(B, -1, self.num_heads , C // self.num_heads)118

ht = self.act(self.ht_norm(ht)).flatten(2)119

ht = ht + head_pos120

x = torch.cat([x, ht], dim=1)121

122

common MHSA123

qkv = self.qkv(x).reshape(B, N+self.num_heads , 3,124

self.num_heads , C// self.num_heads)125

.permute(2, 0, 3, 1, 4)126

q, k, v = qkv[0], qkv[1], qkv[2]127

attn = (q @ k.transpose(-2, -1)) * self.scale128

attn = attn.softmax(dim=-1)129

attn = self.attn_drop(attn)130

x = (attn @ v).transpose(1, 2).reshape(B, N+self.num_heads , C)131

x = self.proj(x)132

133

split , average and add134

cls , patch , ht = torch.split(x, [1,N-1,self.num_heads], dim=1)135

cls = cls + torch.mean(ht, dim=1, keepdim=True)136

x = torch.cat([cls , patch], dim=1)137

138

return x139140

3

2 CIFAR-100 Dataset141

2.1 Fine-tuning on CIFAR-100142

We analyse fine-tuning results in this section. All the models are pre-trained on ImageNet-1K only143

and then fine-tuned on CIFAR-100 datasets. Results are shown in Table 1. We cite the reported144

results from corresponding papers. When fine-tuning our DHVT, we use AdamW optimizer with145

cosine learning rate scheduler and 2 warm-up epochs. We use a batch size of 256, initial learning rate146

of 0.0005, weight decay of 1e-8, and fine-tuning epochs of 100. We fine-tune our model on image147

size of 224×224 and we use patch size of 16, head numbers of 3 and 6 for DHVT-T and DHVT-S148

respectively, the same as the model pre-trained model on ImageNet-1K.149

Table 1: Pretrained on ImageNet-1K and then fine-tuned on the CIFAR-100 (top-1 accuracy, 100
fine-tuning epochs). FT Epochs denotes fine-tuning epochs, resolution denotes the image resolution
on fine-tuning.

Method GFLOPs ImageNet-1K FT Epochs Img Size CIFAR-100 Acc (%)

ResNet-50 [1] 3.8 - 100 224 85.44
ViT-B/16 [2] 18.7 77.9 10000 384 87.13
ViT-L/16 [2] 65.8 76.5 10000 384 86.35

T2T-ViT-14 [1] 5.2 81.5 100 224 87.33
Swin-T [1] 4.5 81.3 100 224 88.22
DeiT-B [3] 17.3 81.8 7200 224 90.8

DeiT-B ↑384 [3] 52.8 83.1 7200 384 90.8
CeiT-T [4] 1.2 76.4 100 224 88.4

CeiT-T ↑384 [4] 3.6 78.8 100 384 88.0
CeiT-S [4] 4.5 82.0 100 224 90.8

CeiT-S ↑384 [4] 12.9 83.3 100 384 90.8

DHVT-T (Ours) 1.4 76.5 100 224 86.73
DHVT-S (Ours) 5.1 82.3 100 224 88.87

From Table 1, we can see that our model has competitive transferable performance to Swin150

Transformer[5], T2T-ViT [6]. We fail in competing with DeiT [3] maybe because we only fine-tuning151

our model for 100 epochs. The longer epochs experiments are left for the future. And we also fail152

to compete with CeiT [4] under comparable computational complexity. We consider that maybe153

our model introduced too much inductive biases so that the fine-tuning performance is constrained154

also. However, the target of our method is mainly on train-from-scratch on small datasets. Thus the155

fine-tuning results are not so important in our consideration. And we can also see that we achieve156

85.68 accuracy when training from scratch on CIFAR-100 only, as we reported in the main part of157

this paper. Such result even outperforms ResNet-50 pretrained on ImageNet-1k, which only reaches158

85.44 accuracy when fine-tuning. DHVT is able to beat the pre-trained and fine-tuned ResNet-50159

while without any pre-training, suggesting the significant performance of our model.160

2.2 Computational Complexity on CIFAR-100161

We empircally measure the computational complexity of our proposed DHVT on CIFAR-100 dataset.162

Results are shown in Table 2. We show the number of parameters, GFLOPs, throughtputs and163

corresponding input image size and accuracy. We use DHVT-X/Y to denote the variants of models.164

Here X is the type of model, w.r.t. the number of parameters, and Y is the patch size. For example,165

DHVT-T/4 means our tiny model with patch size of 4. The throughput are measure as follows: The166

batch size is set to 256 except for DHVT-S/2, and DHVT-S/2 uses batch size of 128. The devices is167

one NVIDIA GeForce RTX 3090 GPU, and the two CPUs are Intel(R) Xeon(R) CPU E5-2630 v4 @168

2.20GHz.169

We can see that our DHVT-T/4 model achieves 80.93 accuracy with only 0.4 GFLOPs computation170

and is able to process more than 6000 images per second. Such light weight but accurate model171

has the potential to be used in mobile style. As the patch size drops from 4 to 2, the number of172

patch tokens grows quadratically, and the corresponding GFLOPs and throught puts also changes173

4

Table 2: The computational complexity of our model on CIFAR-100 dataset. We use DHVT-X/Y to
denote the variants of models. Here X is the type of model, w.r.t. the number of parameters, and Y is
the patch size.

Method #Params GFLOPs Throughput (img/sec) Resolution Acc (%)

DHVT-T/4 6.0M 0.4 6684 32 80.93
DHVT-S/4 23.4M 1.5 3631 32 82.91
DHVT-T/2 5.8M 1.7 1844 32 83.54
DHVT-S/2 22.8M 6.3 812 32 85.68

quadratically. Though our DHVT-S/2 reaches significant high accuracy, it is at the huge cost of174

computation. We hope to alleviate the burden and maintain accuracy in the future investigation.175

2.3 Training Efficiency on CIFAR-100176

(a) (b)

Figure 1: (a) Training Efficiency of applying head token only. (b) Training efficiency of applying
SOPE and DAFF and with or without absolute positional embedding.

Figure 2: Training efficiency of head token when both SOPE and DAFF are applied and absolute
positional embedding is removed.

In this section, we show the training efficiency of our method when applying each module. All the177

experimental settings are the same as in the ablation study section. The baseline module is DeiT-Tiny178

with 4 heads. Here we denote "without absolute positional embedding" as "woabs" and "wabs"179

denotes the opposite. From Fig. 1 (a), we can see that introducing head token into baseline can180

facilitate the overall training process and reaches higher accuracy, proving the effectiveness of our181

5

novel head token design. And from Fig. 1 (b), we can see that both SOPE and DAFF is able to182

improve the whole training, and their combination has a positive influence on the model.183

In addition, in Fig. 2, we use "DHVT full" to represent the full version of our model, including SOPE,184

DAFF and head tokens, while removing absolute positional embedding. In such circumstance, head185

token is still able to give rise to the performance during most of the training epochs, and the final186

result is also a little higher than the one without head token.187

2.4 Visualization on CIFAR-100188

To further understand the feature interaction style in our proposed model, we provide more visual-189

ization results in this section. First, we visualize the attention map of all the tokens, including class190

token, patch tokens and head tokens on the 2nd, 5th, 8th and 11th encoder layers.We provide three191

example input images in total. Second, we visualize the attention of head tokens to patch tokens in192

their corresponding head on the 2nd, 5th, 8th and 11th encoder layers. The model we visualize here193

is DHVT-T training from scratch on CIFAR-100 dataset, which contains 4 attention head in each194

layer thus the corresponding number of head token is 4. Patch size is set to 4 here.195

(a) attention maps (b) attention of head tokens to patch tokens

Layer 2

Layer 5

Layer 8

Layer 11

head token 1 head token 2 head token 3 head token 4

Figure 3: (a) Averaged attention maps. (b) Attention of head tokens to patch tokens in the correspond-
ing heads.

From the above results in Figure 3,4,5, we can summarize two attributes that head tokens brought196

to the model. First, in the lower layers, such as the 2nd layer, model tends to attend neighbouring197

features and interacts with head tokens. As going deeper, such as in the 5th layer, attention is scattered198

around all patch tokens and head tokens do not receive much attention here. In higher layers, like in199

the 8th layer, attention focus on some of the patch tokens and now head tokens receive more attention200

than in the 5th layer. Finally, in the layers near output layer, such as the 11th layer, patch tokens do201

not focus too much on head tokens, and all the tokens converge their attention to the prominent patch202

tokens.203

Second, each head token represents different representation as we visualized above. When head204

tokens participate in attention calculation, they help interaction of different representation, fusing205

poor representation encoded in different heads into a strong integral representation.206

6

(a) attention maps (b) attention of head tokens to patch tokens

Layer 2

Layer 5

Layer 8

Layer 11

head token 1 head token 2 head token 3 head token 4

Figure 4: (a) Averaged attention maps. (b) Attention of head tokens to patch tokens in the correspond-
ing heads.

(a) attention maps (b) attention of head tokens to patch tokens

Layer 2

Layer 5

Layer 8

Layer 11

head token 1 head token 2 head token 3 head token 4

Figure 5: (a) Averaged attention maps. (b) Attention of head tokens to patch tokens in the correspond-
ing heads.

7

3 DomainNet Dataset207

3.1 Example of DomainNet208

In this part, we visualize some example images in the DomainNet datasets as in Fig. 6. These datasets209

has a domain shift from traditional natural image dataset like ImageNet-1K and CIFAR. Also because210

of the scarce training data, models are hard to train from scratch on such datasets. However, our211

proposed DHVT is able to address the issue with satisfactory results in both train-from-scratch and212

pretrain-finetune scenario. Under comparable amount of computational complexity, our models213

exhibit non-trivial performance gain compared with baseline models on all of the three datasets.214

angel

Clipart

birthday cake headphones seesaw

ambulanceclarinet pizzasnorkel

ceiling fans raccoon monkey pencil

Painting

Sketch

Figure 6: Visualization of example in DomainNet datasets Clipart, Painting and Sketch

3.2 Fine-tuning on DomainNet215

We analyse the fine-tuning results on DomainNet datasets in this section. All the models are pre-216

trained on ImageNet-1K only and then fine-tuned on Clipart, Painting, Sketch. Results are shown in217

Table 3. We cite the reported results from corresponding papers. Note that the fine-tuning epochs218

in baseline models are 100, the same as we use. When fine-tuning our DHVT, we use AdamW219

optimizer with cosine learning rate scheduler and 2 warm-up epochs. We use a batch size of 256,220

initial learning rate of 0.0005, weight decay of 1e-8, and fine-tuning epochs of 100. We fine-tune our221

model on image size of 224×224 and we use patch size of 16, head numbers of 3 and 6 for DHVT-T222

and DHVT-S respectively, the same as the model pre-trained model on ImageNet-1K.223

Table 3: Pretrained on ImageNet-1K and then fine-tuned on the DomainNet (top-1 accuracy (%),
100 fine-tuning epochs). The ImageNet-1K column shows the accuracy of pretrained model on
ImageNet-1K.

Method GFLOPs ImageNet-1K Clipart Painting Sketch

ResNet-50 [1] 3.8 - 75.22 66.58 67.77
T2T-ViT-14 [1] 5.2 81.5 74.59 72.29 72.18

Swin-T [1] 4.5 81.3 73.51 72.99 72.37

DHVT-T (Ours) 1.4 76.5 77.88 72.05 70.79
DHVT-S (Ours) 5.1 82.3 80.06 74.18 73.32

8

From Table 3, we can see that our models show better performance than baseline methods ResNet-50224

[7], Swin Transformer[5], T2T-ViT [6]. Especially on Clipart, our DHVT-S reaches more than 80225

accuracy, showing a significant performance gap compared with baseline methods. Our tiny model226

achieves comparable and even better accuracy than T2T-ViT and Swin Transformer with much lower227

computational complexity on Clipart and Painting. From the main part of this paper, the performance228

of training from scratch of DHVT-S is 68.72, which outperforms the fine-tuning result of ResNet-50,229

exhibiting the train-from-scratch capacity of our method.230

4 ImageNet-1K Dataset231

4.1 Comparision on ImageNet-1K232

Table 4: Performance comparison of different method on ImageNet-1K. All models are trained from
random initialization.

Method #Params Image Size GFLOPs Top-1 Acc (%)

RegNetY-800MF [8] 6.3M 224 0.8 76.3
RegNetY-4.0GF [8] 20.6M 224 4.0 79.4

ConvNeXt-T [9] 29M 224 4.5 82.1

T2T-ViT-7 [6] 4.3M 224 1.2 71.7
DeiT-T [3] 5.7M 224 1.3 72.2
PiT-Ti [10] 4.9M 224 0.7 72.9

ConViT-Ti [11] 5.7M 224 1.4 73.1
CrossViT-Ti [12] 6.9M 224 1.6 73.4

TNT-T [13] 6.2M 224 1.4 73.6
LocalViT-T [14] 5.9M 224 1.3 74.8
ViTAE-T [15] 4.8M 224 1.5 75.3

CeiT-T [4] 6.4M 224 1.2 76.4
DHVT-T (Ours) 6.2M 224 1.4 76.5

DeiT-S [3] 22.1M 224 4.6 79.8
PVT-S [16] 24.5M 224 3.8 79.8
PiT-S [10] 23.5M 224 2.9 80.9

CrossViT-S [12] 26.7M 224 5.6 81.0
PVT-Medium [16] 44.2M 224 6.7 81.2
Conformer-Ti [17] 23.5M 224 5.2 81.3

Swin-T [5] 29.0M 224 4.5 81.3
ConViT-S [11] 27.8M 224 5.4 81.3

TNT-S [13] 23.8M 224 5.2 81.3
T2T-ViT-14 [6] 21.5M 224 5.2 81.5

NesT-T [18] 17.0M 224 5.8 81.5
CvT-13 [19] 20.0M 224 4.5 81.6

Twins-SVT-S [20] 24.0M 224 2.8 81.7
CaiT-XS24 [21] 26.6M 224 5.4 81.8

CoaT-Lite Small [22] 20.0M 224 4.0 81.9
CeiT-S[4] 24.2M 224 4.5 82.0
ViL-S[23] 24.6M 224 4.9 82.0

PVTv2-B2[24] 25.4M 224 4.0 82.0
ViTAE-S[15] 23.6M 224 5.6 82.0

LG-T[25] 32.6M 224 4.8 82.1
Focal-T[26] 29.1M 224 4.9 82.2

DHVT-S (Ours) 24.1M 224 5.1 82.3

We conduct experiments on ImageNet-1K dataset to test the performance of our proposed Dynamic233

Hybrid Vision Transformer (DHVT) on common medium dataset. From the above Table 4, we234

can see that with less parameter and comparable computational complexity, our DHVT achieve235

state-of-the art results compared to recent CNNs and ViTs. Both of our model in trained from scratch236

on ImageNet-1K datasets, with image size of 224×224, patch size of 16, optimizer of AdamW and237

9

base learning rate of 0.0005 following cosine learning rate decay, weight decay of 0.05, warm-up238

epoch of 10, batch size of 512. All the data-augmentations and regularization methods follow Deit239

[3], including random cropping, random flipping, label-smoothing [27], Mixup [28], CutMix [29]240

and random erasing [30].241

Our DHVT-T reaches 76.5 accuracy with only 6.2M parameters, while DHVT-S achieves 82.3242

accuracy with only 24.1M parameters. Our model not only outperforms the best non-hierarchical243

vision transformer CeiT [4], but also shows competitive performance to most of the hierarchical244

vision transformers like Swin Transformer [5] and hybrid architecture like ViTAE-S [15]. We also245

show better performance than recent strong CNNs RegNet [8]and ConvNeXt [9]. We achieve such246

results with much less parameters than existing methods, while our computational complexity is also247

higher than them. This is a kind of mixed blessing. On one hand, our method can be seen as using248

less parameter to conduct comprehensive and sufficient computation. On the other hand, such amount249

of computation is a huge burden for both training and testing. We hope to reduce the computational250

burden in the future research, while maintaining the same performance.251

4.2 Visualization on ImageNet-1K252

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

Layer 7 Layer 8 Layer 9 Layer 10 Layer 11 Layer 12

Figure 7: Averaged attention maps from DHVT-S training from scratch on ImageNet-1K.

We further visualize the attention maps of our proposed model training from scratch on ImageNet-1K253

only. Here the model is DHVT-S with 6 attention head, patch size of 16. Note that head tokens are254

concatenated behind patch tokens, so the right hand side of attention maps represents the attention255

from all the tokens to head tokens. Under the introduction of head tokens, we are able to understand256

the feature extraction and representation process in our model.257

In the input encoder layer, i.e. the 1st layer, all the tokens focus on themselves and head tokens. And258

in the early stage, such as in the 2nd to 6th layers, all the tokens focus more on themselves and do not259

attend too much on head tokens. Further in middle stage, such as in 7th to 9th layers, head tokens260

draw more attention from other tokens. And in late stage, such as in 10th, 11th and 12th layers,261

attention are more on prominent patch tokens.262

From such attention style, we can conclude the feature extraction and representation process as:263

Early stage focus on local and neighbouring features, extracting low-level fine-grained feature. Then264

feature representations interact and fuse with each other to generate strong enough representation.265

The representation in each token is enhanced by such interaction. And in the late stage, the model266

focus on the most prominent patch tokens to extract information for final classification.267

In the future research, it maybe possible to only apply head token design in the middle stage of268

vision transformers to save computation cost. We hope this visualization will inspire more wonderful269

architecture in the future.270

10

5 Architecture Variants271

Table 5: Architecture variants of DHVT

Method Dataset Patch DAFF #heads depth Dim Params GFLOPsMLP S&E

DHVT-T CIFAR 4 4 4 4 12 192 6.0M 0.4
DHVT-T CIFAR 2 4 4 4 12 192 5.8M 1.7
DHVT-S CIFAR 4 4 4 8 12 384 23.4M 1.5
DHVT-S CIFAR 2 4 4 8 12 384 22.8M 6.3

DHVT-T Domain 16 4 4 4 12 192 6.1M 1.4
DHVT-S Domain 16 4 4 6 12 384 23.8M 5.1

DHVT-T ImageNet 16 4 4 3 12 192 6.2M 1.4
DHVT-S ImageNet 16 4 4 6 12 384 24.1M 5.1

We present the variants and architecture parameter of our proposed model in this section. Note that272

all the models remove the absolute positional embedding. For CIFAR-100 dataset, the image size273

is 32×32, and for DomainNet and ImageNet it is 224×224. In Table 5, "MLP" represents MLP274

projection ratio and "S&E" is the reduction ratio in the squeeze-excitation operation. Code will be275

released if accepted.276

11

References277

[1] Liu, Y., E. Sangineto, W. Bi, et al. Efficient training of visual transformers with small datasets.278

Advances in Neural Information Processing Systems, 34, 2021.279

[2] Dosovitskiy, A., L. Beyer, A. Kolesnikov, et al. An image is worth 16x16 words: Transformers280

for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.281

[3] Touvron, H., M. Cord, M. Douze, et al. Training data-efficient image transformers & distillation282

through attention. In International Conference on Machine Learning, pages 10347–10357.283

PMLR, 2021.284

[4] Yuan, K., S. Guo, Z. Liu, et al. Incorporating convolution designs into visual transformers. In285

Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pages286

579–588. 2021.287

[5] Liu, Z., Y. Lin, Y. Cao, et al. Swin transformer: Hierarchical vision transformer using shifted288

windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages289

10012–10022. 2021.290

[6] Yuan, L., Y. Chen, T. Wang, et al. Tokens-to-token vit: Training vision transformers from291

scratch on imagenet. In Proceedings of the IEEE/CVF International Conference on Computer292

Vision, pages 558–567. 2021.293

[7] He, K., X. Zhang, S. Ren, et al. Deep residual learning for image recognition. In Proceedings294

of the IEEE conference on computer vision and pattern recognition, pages 770–778. 2016.295

[8] Radosavovic, I., R. P. Kosaraju, R. Girshick, et al. Designing network design spaces. In296

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages297

10428–10436. 2020.298

[9] Liu, Z., H. Mao, C.-Y. Wu, et al. A convnet for the 2020s. arXiv preprint arXiv:2201.03545,299

2022.300

[10] Heo, B., S. Yun, D. Han, et al. Rethinking spatial dimensions of vision transformers. In301

Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 11936–302

11945. 2021.303

[11] d’Ascoli, S., H. Touvron, M. L. Leavitt, et al. Convit: Improving vision transformers with304

soft convolutional inductive biases. In International Conference on Machine Learning, pages305

2286–2296. PMLR, 2021.306

[12] Chen, C.-F. R., Q. Fan, R. Panda. Crossvit: Cross-attention multi-scale vision transformer for307

image classification. In Proceedings of the IEEE/CVF International Conference on Computer308

Vision, pages 357–366. 2021.309

[13] Han, K., A. Xiao, E. Wu, et al. Transformer in transformer. Advances in Neural Information310

Processing Systems, 34, 2021.311

[14] Li, Y., K. Zhang, J. Cao, et al. Localvit: Bringing locality to vision transformers. arXiv preprint312

arXiv:2104.05707, 2021.313

[15] Xu, Y., Q. Zhang, J. Zhang, et al. Vitae: Vision transformer advanced by exploring intrinsic314

inductive bias. Advances in Neural Information Processing Systems, 34, 2021.315

[16] Wang, W., E. Xie, X. Li, et al. Pyramid vision transformer: A versatile backbone for dense316

prediction without convolutions. In Proceedings of the IEEE/CVF International Conference on317

Computer Vision, pages 568–578. 2021.318

[17] Peng, Z., W. Huang, S. Gu, et al. Conformer: Local features coupling global representations for319

visual recognition. In Proceedings of the IEEE/CVF International Conference on Computer320

Vision, pages 367–376. 2021.321

12

[18] Zhang, Z., H. Zhang, L. Zhao, et al. Nested hierarchical transformer: Towards accurate, data-322

efficient and interpretable visual understanding. In AAAI Conference on Artificial Intelligence323

(AAAI), 2022. 2022.324

[19] Wu, H., B. Xiao, N. Codella, et al. Cvt: Introducing convolutions to vision transformers. In325

Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 22–31.326

2021.327

[20] Chu, X., Z. Tian, Y. Wang, et al. Twins: Revisiting the design of spatial attention in vision328

transformers. Advances in Neural Information Processing Systems, 34, 2021.329

[21] Touvron, H., M. Cord, A. Sablayrolles, et al. Going deeper with image transformers. In330

Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 32–42.331

2021.332

[22] Xu, W., Y. Xu, T. Chang, et al. Co-scale conv-attentional image transformers. In Proceedings of333

the IEEE/CVF International Conference on Computer Vision (ICCV), pages 9981–9990. 2021.334

[23] Zhang, P., X. Dai, J. Yang, et al. Multi-scale vision longformer: A new vision transformer for335

high-resolution image encoding. In Proceedings of the IEEE/CVF International Conference on336

Computer Vision, pages 2998–3008. 2021.337

[24] Wang, W., E. Xie, X. Li, et al. Pvt v2: Improved baselines with pyramid vision transformer.338

Computational Visual Media, pages 1–10, 2022.339

[25] Li, J., Y. Yan, S. Liao, et al. Local-to-global self-attention in vision transformers. arXiv preprint340

arXiv:2107.04735, 2021.341

[26] Yang, J., C. Li, P. Zhang, et al. Focal self-attention for local-global interactions in vision342

transformers. arXiv preprint arXiv:2107.00641, 2021.343

[27] Szegedy, C., V. Vanhoucke, S. Ioffe, et al. Rethinking the inception architecture for computer344

vision. In Proceedings of the IEEE conference on computer vision and pattern recognition,345

pages 2818–2826. 2016.346

[28] Zhang, H., M. Cisse, Y. N. Dauphin, et al. mixup: Beyond empirical risk minimization. In347

International Conference on Learning Representations. 2018.348

[29] Yun, S., D. Han, S. J. Oh, et al. Cutmix: Regularization strategy to train strong classifiers with349

localizable features. In Proceedings of the IEEE/CVF international conference on computer350

vision, pages 6023–6032. 2019.351

[30] Zhong, Z., L. Zheng, G. Kang, et al. Random erasing data augmentation. In Proceedings of the352

AAAI conference on artificial intelligence, vol. 34, pages 13001–13008. 2020.353

13

	Code of Dynamic Hybrid Vision Transformer
	Code of the Dynamic Aggregation Feed Forward (DAFF)
	Code of the Sequential Overlapping Patch Embedding (SOPE)
	Code of the Head-Interacted Multi-Head Self-Attention (HI-MHSA)

	CIFAR-100 Dataset
	Fine-tuning on CIFAR-100
	Computational Complexity on CIFAR-100
	Training Efficiency on CIFAR-100
	Visualization on CIFAR-100

	DomainNet Dataset
	Example of DomainNet
	Fine-tuning on DomainNet

	ImageNet-1K Dataset
	Comparision on ImageNet-1K
	Visualization on ImageNet-1K

	Architecture Variants

