
CHARTING AND NAVIGATING THE SPACE OF
SOLUTIONS FOR RECURRENT NEURAL

NETWORKS
SUPPLEMENTARY MATERIAL

Anonymous Author(s)
Affiliation
Address
email

1 2D RNN1

1.1 Training methods2

The four parameters, W ∈ R2×2, were iid sampled from a uniform distribution U(−1.5, 1.5). We3

implemented the continuous time dynamics of the RNN in PyTorch[1] using the package torchdiffeq[2,4

3].5

Network parameters were optimized using gradient descent with no momentum and a learning rate6

of 0.03. During each step of learning, the network dynamics were simulated for a single trajectory7

(Equation 1 in main text), and the loss L (Eq 2 in main text)was used to compute the gradient. We then8

normalised the gradient by its Frobenius norm and scaled it by
√
L before updating the parameters.9

This is a heuristic choice to motivate convergence of learning even when gradients are small for some10

pathological initializations. Networks were trained for 2000 epochs, and only RNNs with L < 10−511

were accepted as solutions.12

1.2 Different nonlinearity13

To examine the effect of training hyperparameters on the space of solutions, we used φ := ReLU14

instead of φ := tanh that was used in the main text. We find that this choice indeed leads to different15

solution types. Specifically, ReLU RNNs did not converge to limit-cycle solutions. Some converged16

to non-zero fixed points, accompanied by a saddle point at the origin, as in the main text. In addition,17

two other solution types arised in this setting. A stable origin with large transient amplification, as in18

the yellow curve of Figure 1), and a diverging trajectory, shown by the dark curve in the same figure.19

The effect of the different non-linearity is also seen in the distribution of trace and determinants of20

the solutions (Figure 2), where limit cycles are absent for ReLu, and stable solutions (bottom-right21

quadrant) are absent for tanh.22

2 Timing task23

2.1 Training process24

2.1.1 Network architecture25

We studied three different RNN architectures and their exact equations are all summarized below.26

The trained parameters are the weights W and biases b. The function σ(z) = (1 + exp(−z))−1 is27

the sigmoid function, ht ∈ RN and ut ∈ {0, 1}2 are the state and the input at time t.28

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

https://github.com/rtqichen/torchdiffeq

0

5

x 1
(t)

0 5 10 15 20
t

0

5

x 2
(t)

transient amplification
divergence

1 0 1
x1(t)

1

0

1

x 2
(t)

0.00

0.05

0.10

0.15

0.20

Im
(

1)

Figure 1: Trajectories of several 2D RNN solutions for φ := ReLU.

2 0 2 4
6

4

2

0

2

2 0 2 4
0

5

10

15

20
co

un
t

0

5

10

15

co
un

t

Figure 2: A 2D histogram of trace τ and determinant ∆ of 2D RNNs solutions for the task specified
in the main text. φ := tanh (left) and φ := ReLU (right).

Vanilla [4]

ht = tanh (Wihut + bih +Whhht−1 + bhh) (1)

GRU [5]

rt = σ (Wirut + bir +Whrht−1 + bhr) (2)
zt = σ (Wizut + biz +Whzht−1 + bhz) (3)
nt = tanh (Winut + bin + rt ∗ (Whnht−1 + bhn)) (4)
ht = (1− zt) ∗ nt + zt ∗ ht−1 (5)

LSTM [6]

it = σ (Wiiut + bii +Whiht−1 + bhi) (6)
ft = σ (Wifut + bif +Whfht−1 + bhf) (7)
gt = tanh (Wigut + big + rt ∗ (Whght−1 + bhg)) (8)
ot = σ (Wiout + bio +Whoht−1 + bho) (9)
ct = ft ∗ ct−1 + it ∗ gt (10)
ht = ot ∗ tanh(ct) (11)

The units had N = 20, . . . , 50 hidden neurons and the output of the network at every time-step is an29

affine readout of the internal state. h0 was always initialized to zero.30

2

2.1.2 Task and trial structure31

Each trial was comprised of seven consecutive epochs, as demonstrated in Figure 3. The Ready pulse32

was given after 20− 30 steps. Both inputs and the required output were binary sequences with ones33

during each pulse (10 steps long) and zero elsewhere. When working with intervals from the range34

[tmin
s , tmax

s], the length of all trials was set to 2 ∗ tmax
s + 100. This allowed the network time to35

relax back to rest for at least 70 steps after emitting a Go pulse. The training set always included 512

Figure 3: Ready-Set-Go timeline

36
random trials so, on average, every interval was included more than 5 times.37

2.1.3 Training protocol38

All networks were trained using Adam [7] for 10000 epochs with a batch size of 64 and a decaying39

learning rate starting from 1e − 3 up until 1e − 4. Unless stated otherwise, the training set was40

comprised of 512 trials and their order was shuffled at the beginning of each epoch. We estimated the41

network’s performance with mean squared error (MSE), and training was halted when the minimal42

threshold of 10−5 was achieved over the training set.43

2.2 Feature extraction44

The feature extraction process in this work can be divided into two. First, we describe how we45

extracted numerical features from the neural activity during training. Later, we describe how we46

extracted topological features by analyzing the network dynamics outside the training set. Often in47

our analysis we quantified the neural velocity in phase space. For that purpose, we used the scalar48

function49

q(ht) = ‖ht+1 − ht‖2, t ∈ N (12)

that was introduced in [8]. This function estimates the distance that the network crosses in a single50

time-step, given its current location.51

2.3 Neural features52

As described in the main text, we extracted various features from the neural activity during the53

training set. These were related to the major dynamical objects and task epochs. Below, we explain54

and define the features according to the relevant epoch.55

Ready-Set features As seen in the main text (FIGURE WITH CIRCULAR TRAJECTORY), the56

shape of the Ready-Set trajectory can indicate whether the network will eventually converge to a57

limit cycle. We thus considered the minimal and maximal curvature, the speed at its end, and the58

ratio between its initial and final speed. All these features were measured on a logarithmic scale.59

Set-Go features The Set-Go manifold was defined by collecting the network states corresponding60

to trials of all delays (ts ∈ [30, 120]), and using the time points from 10 after the Set pulse until 1061

before the Go pulse. Because this is a two-dimensional manifold (time by trials), we calculated the62

aspect ratio as follows. The nominator was the cumulative length of the trajectory corresponding63

to the initial states across all trials. The denominator was the length of the full trajectory of the64

longest trial (ts = 120). Similarly, we extracted the aspect ratio with respect to the final states of the65

Set-Go manifold. We also measured how this ratio changes as a function of time in the following66

3

manner.. Later, we calculated how the length of the Set-Go trajectory changes as a function of the67

time interval that is being encoded, by fitting a linear regressor to the mapping ts → ||Set-Go(ts)||2268

and extracting its slope as a feature. To account for whether time-coding is concentrated in single69

neurons or distributed across the population, we measured the following quantity. For each neuron,70

we considered all points on the Set-Go manifold. We used linear regression to map the activity of the71

neuron to the time remaining until the Go pulse. The minimal error across all neurons was used as a72

feature.73

Ready-Set & Set-Go features Here, we focused on the relationship between the trajectory74

Ready-Set(tmax
s) and Set-Go(tmax

s). We extracted as features the Pearson correlation and the angle75

between them, the ratio between their speeds, and the width of their separating hyper-plane obtained76

from Linear SVM.77

Figure 4 shows the density-histogram of each feature for each architecture.78

2.4 Topological79

As we discussed in the main text, defining what is a solution is not trivial. In the context of dynamical80

systems, obtaining a qualitative description of the phase space is often enough. However, this81

description requires full knowledge of the dynamical objects, which is often inaccessible. Particularly,82

the transient nature of the Ready-Set-Go timing task renders the dynamical landscape less structured83

and more difficult to analyze with classical dynamical systems tools. Therefore, to understand the84

mechanism of the network we will suffice in identifying the key areas of the dynamics and the85

transitions between them. In the RSG task, following the Ready cue the network entire activity86

falls into one of the following categories: Ready-Set, Set-Go, Go, and its final configuration. These87

state-space regions are not mutually exclusive, thus each different realization of them may indicate88

a different algorithm. We derived a set of binary features (Figure 5) to partition the networks into89

solution sets with distinct topological structures. To measure whether the Ready-Set and the Set-Go90

epochs are the same objects (Fig 5 A) we fitted a linear SVM classifier to separate the neural states91

that constitute these two epochs. If the classification was not successful, we considered them the92

same. To measure whether the network transitions to the Go epoch after the Ready (Fig 5 E) we let it93

evolve from there for 200 steps and measured its output. We initially let the network evolve after the94

Ready pulse for 5000 steps and saved the final state and the neural velocity at that state. We applied a95

threshold of 10−6 to determine whether it converges to a fixed point (Fig 5 D). To measure whether96

a transition to Go occurs from any state (5 B) or whether its activity is periodic (Fig 5 C) we let it97

evolve spontaneously for 1000 steps from that saved state and measured its output and periodicity98

respectively. Using these features, we divided the space of solutions into six distinct clusters.99

2.5 Different views of same object100

To see whether the neural data from the training set contains information about the topology of the101

networks, we evaluated the ability of the neural features to predict the topological classification102

we described earlier. This was done by a Cross-Validation procedure that included 50 repetitions103

of fitting a Decision Tree classifier to a randomly selected 70% of the data, and then evaluating104

the kappa-cohen score and the confusion matrix of the classification on the remaining validation105

set. For each architecture separately and combined, the mean and the standard errors of these two106

measurements across all repetitions are shown in 6.107

References108

[1] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,109

N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,110

S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style,111

high-performance deep learning library,” in Advances in Neural Information Processing Systems112

32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds.113

Curran Associates, Inc., 2019, pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/114

paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf115

[2] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, “Neural ordinary differential116

equations,” Advances in Neural Information Processing Systems, 2018.117

4

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Figure 4: The histogram of every feature, shown for each architecture.

5

Figure 4: The histogram of every feature, shown for each architecture. (cont.)

[3] R. T. Q. Chen, B. Amos, and M. Nickel, “Learning neural event functions for ordinary differential118

equations,” International Conference on Learning Representations, 2021.119

[4] J. L. Elman, “Finding Structure in Time,” vol. 14, no. 2, pp. 179–211. [Online]. Available:120

http://doi.wiley.com/10.1207/s15516709cog1402_1121

[5] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and122

Y. Bengio, “Learning Phrase Representations using RNN Encoder–Decoder for Statistical123

Machine Translation,” in Proceedings of the 2014 Conference on Empirical Methods in Natural124

Language Processing (EMNLP). Association for Computational Linguistics, pp. 1724–1734.125

6

http://doi.wiley.com/10.1207/s15516709cog1402_1

Figure 5: The five topological properties targeted by the binary features. Each feature separates
alternatives i and ii. A Whether the Ready-Set epoch is identical to the Set-Go (i) or not (ii). B
Whether the final state transitions to the Go epoch autonomously (i) or not (ii). C Whether the network
enters a limit-cycle (i) or not (ii). D Whether the network reaches a fixed points autonomously from
the Ready-Set epoch (i) or not (ii). E Whether the Ready-Set epoch transitions to the Go epoch
autonomously (i) or not (ii).

[Online]. Available: http://aclweb.org/anthology/D14-1179126

[6] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” vol. 9, no. 8, pp. 1735–1780.127

[Online]. Available: https://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735128

[7] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. [Online]. Available:129

http://arxiv.org/abs/1412.6980130

[8] D. Sussillo and O. Barak, “Opening the Black Box: Low-Dimensional Dynamics in131

High-Dimensional Recurrent Neural Networks,” vol. 25, no. 3, pp. 626–649. [Online]. Available:132

https://www.mitpressjournals.org/doi/abs/10.1162/NECO_a_00409133

7

http://aclweb.org/anthology/D14-1179
https://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1412.6980
https://www.mitpressjournals.org/doi/abs/10.1162/NECO_a_00409

Va
ni

lla
A

10.2%

B

21.0%

C

60.3% D

6.5%
E0.5% F1.5%

A B C D E F
Predicted topology

A

B

C

D

E

F

Tr
ue

 to
po

lo
gy

0.50 ± 0.02 0.24 ± 0.02 0.18 ± 0.01 0.04 ± 0.01 N/A 0.03 ± 0.01

0.11 ± 0.01 0.76 ± 0.01 0.00 ± 0.00 0.08 ± 0.01 N/A 0.03 ± 0.01

0.03 ± 0.00 0.00 ± 0.00 0.97 ± 0.00 0.00 ± 0.00 N/A 0.00 ± 0.00

0.06 ± 0.01 0.28 ± 0.03 0.00 ± 0.00 0.55 ± 0.02 N/A 0.10 ± 0.01

N/A N/A N/A N/A N/A N/A

0.03 ± 0.02 0.23 ± 0.04 0.20 ± 0.04 0.32 ± 0.05 N/A 0.10 ± 0.03

= 0.71 ± 0.01

GR
U

A

10.5%

B

65.2%

C

0.0%

D

3.5%
E

20.7%

F0.0%

A B C D E F
Predicted topology

A

B

C

D

E

F
Tr

ue
 to

po
lo

gy

0.20 ± 0.02 0.51 ± 0.02 N/A 0.02 ± 0.01 0.27 ± 0.02 N/A

0.08 ± 0.01 0.69 ± 0.01 N/A 0.03 ± 0.00 0.19 ± 0.01 N/A

N/A N/A N/A N/A N/A N/A

0.11 ± 0.02 0.69 ± 0.03 N/A 0.10 ± 0.02 0.10 ± 0.02 N/A

0.13 ± 0.01 0.54 ± 0.02 N/A 0.03 ± 0.01 0.30 ± 0.02 N/A

N/A N/A N/A N/A N/A N/A

= 0.12 ± 0.01

LS
TM A0.2%

B

30.5%

C

2.3%

D

6.0%

E

45.2%
F

15.7%

A B C D E F
Predicted topology

A

B

C

D

E

F

Tr
ue

 to
po

lo
gy

N/A N/A N/A N/A N/A N/A

N/A 0.50 ± 0.01 0.00 ± 0.00 0.08 ± 0.01 0.31 ± 0.01 0.10 ± 0.01

N/A 0.00 ± 0.00 0.91 ± 0.04 0.00 ± 0.00 0.00 ± 0.00 0.03 ± 0.02

N/A 0.37 ± 0.03 0.00 ± 0.00 0.26 ± 0.03 0.14 ± 0.02 0.22 ± 0.02

N/A 0.22 ± 0.01 0.00 ± 0.00 0.02 ± 0.00 0.72 ± 0.01 0.04 ± 0.00

N/A 0.18 ± 0.01 0.00 ± 0.00 0.09 ± 0.01 0.12 ± 0.01 0.60 ± 0.02

= 0.42 ± 0.01

al
l

A
7.0%

B

38.9%

C

20.8%

D

5.3%

E

22.2%

F
5.8%

A B C D E F
Predicted topology

A

B

C

D

E

F

Tr
ue

 to
po

lo
gy

0.34 ± 0.01 0.40 ± 0.01 0.09 ± 0.01 0.04 ± 0.01 0.13 ± 0.01 0.01 ± 0.00

0.08 ± 0.00 0.64 ± 0.01 0.00 ± 0.00 0.06 ± 0.00 0.20 ± 0.01 0.03 ± 0.00

0.03 ± 0.00 0.00 ± 0.00 0.97 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

0.05 ± 0.01 0.40 ± 0.02 0.00 ± 0.00 0.36 ± 0.02 0.08 ± 0.01 0.11 ± 0.01

0.04 ± 0.00 0.32 ± 0.01 0.00 ± 0.00 0.02 ± 0.00 0.59 ± 0.01 0.03 ± 0.00

0.02 ± 0.00 0.20 ± 0.01 0.00 ± 0.00 0.12 ± 0.01 0.12 ± 0.01 0.54 ± 0.01

= 0.54 ± 0.00

Figure 6: Left: The distribution of the different topologies for each architecture, and for all networks
combined. Right: Confusion matrices (mean and standard errors) obtained from 50 repetitions of a
Decision-Tree classifier. Cells corresponding to underrepresented topologies are shown as N/A. The
value of Cohen’s κ is shown for each matrix.

8

	2D RNN
	Training methods
	Different nonlinearity

	Timing task
	Training process
	Network architecture
	Task and trial structure
	Training protocol

	Feature extraction
	Neural features
	Topological
	Different views of same object

