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Appendix1

A More details2

Training Strategy: Different from the training strategy of previous methods, we set the learning rate3

to 0.015 and use an SGD optimizer with cosine learning rate decay when fine-tuning the backbone.4

Therefore, we compared the impact of different training strategies on benchmark datasets. As shown5

in Table 1, the new training strategy does not affect the performance of FSS models. Therefore,6

different training strategies are NOT the key to the success of SVF.

Table 1: Compare with different training strategy on Pascal-5i training set in terms of mIoU for
1-shot segmentation.

Method Backbone Training Strategy
1-shot

Fold-0 Fold-1 Fold-2 Fold-3 Mean

baseline

ResNet50

original 65.60 70.28 64.12 60.27 65.07
baseline ours 64.95 69.75 65.91 59.59 65.05

PFENet [9] original 66.61 72.55 65.33 60.91 66.35
PFENet [9] ours 65.58 72.49 66.12 60.30 66.12
BAM [3] original 68.97 73.59 67.55 61.13 67.81
BAM [3] ours 68.43 73.66 67.98 61.63 67.93

Table 2: Ablation study on the training trick.

Method Backbone Training Trick
1-shot

Fold-0 Fold-1 Fold-2 Fold-3 Mean

baseline

ResNet50

w/o 66.36 69.22 57.64 58.73 62.99
baseline w 65.60 70.28 64.12 60.27 65.07

PFENet [9] w/o 67.06 71.61 55.21 59.46 63.34
PFENet [9] w 66.61 72.55 65.33 60.91 66.35
CyCTR [15] w/o 67.80 72.80 58.00 58.00 64.20
CyCTR [15] w 65.17 72.52 66.60 60.9 66.30

BAM [3] w/o 68.37 72.05 57.55 60.38 64.59
BAM [3] w 68.97 73.59 67.55 61.13 67.817

Training Tricks: Following the same setting of BAM [3], we remove some images containing8

novel classes of the test set from the training set. This is a novel trick in FSS to further improve9

the performance. In Table 2, we compared the effect of this trick on FSS models. The results show10

that this trick brings 2.0 mIoU improvement over the original FSS model on average. Especially on11

Flod-2, the trend of improvement is very obvious. It proves that removing images with novel classes12

of the test set from the training set prevents potential information leakage.13
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Table 3: Compare with different test image on COCO-20i in terms of mIoU for 1-shot segmentation.

Method backbone test image
1-shot

Fold-0 Fold-1 Fold-2 Fold-3 Mean
baseline

ResNet50

1000 38.91 46.07 42.67 39.71 41.84
baseline + SVF 1000 44.22 46.38 42.65 41.65 43.72

baseline 4000 37.19 45.30 42.90 38.49 40.97
baseline + SVF 4000 39.80 46.99 42.51 42.06 42.84

baseline 5000 36.59 45.17 43.34 38.73 40.96
baseline + SVF 5000 39.49 46.95 42.09 41.15 42.42

Test image of COCO-20i: We found that the number of test sets used in previous work was different14

when testing on COCO. For example, BAM [3], HSNet [6] were tested with 1000 images, yet15

Yang [12] was tested with 4000 images, and CyCTR [15] was tested with 5000 images. This is very16

detrimental to the development of the community. In Table 3, we compare the different number of17

test images on COCO-20i to observe changes in model performance. The experimental results show18

that as the number of test images increases, the performance of the baseline shows a downward trend.19

Therefore, we call on researchers to use the same training samples for a fair comparison. Meanwhile,20

SVF brings positive results in different numbers of test sets. It again shows the effectiveness of SVF.21

B Compare with other SOTA methods.22

To clear the doubts of dataset, we use the unprocessed training set to make a fair comparison with other23

SOTA methods, as show in Table4. It can be seen that baseline with SVF achieves best performance24

on both Pascal-5i 1-shot and 5-shot settings. The experimental results prove that the advantages of25

SVF will not disappear due to the introduction of the training trick. Meanwhile, the experimental26

results prove that finetuning backbone is not only feasible in FSS, but also brings positive results to27

FSS models.28

Table 4: Compare with SOTA on Pascal-5i[8] in terms of mIoU for 1-shot and 5-shot segmentation.

Method backbone
1-shot 5-shot

Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean

PANet [10]

ResNet50

44.00 57.50 50.80 44.00 49.10 55.30 67.20 61.30 53.20 59.30
CANet [14] 52.50 65.90 51.30 51.90 55.40 55.50 67.80 51.90 53.20 57.10
PGNet [13] 56.00 66.90 50.60 50.40 56.00 57.70 68.70 52.90 54.60 58.50
RPMM [11] 55.20 66.90 52.60 50.70 56.30 56.30 67.30 54.50 51.00 57.30
PPNet [4] 47.80 58.80 53.80 45.60 51.50 58.40 67.80 64.90 56.70 62.00
CWT [5] 56.30 62.00 59.90 47.20 56.40 61.30 68.50 68.50 56.60 63.70

PFENet [9] 61.70 69.50 55.40 56.30 60.80 63.10 70.70 55.80 57.90 61.90
CyCTR [15] 67.80 72.80 58.00 58.00 64.20 71.10 73.20 60.50 57.50 65.60

baseline 66.36 69.22 57.64 58.73 62.99 70.75 72.92 58.86 65.56 67.02
baseline + SVF 66.88 70.84 62.33 60.63 65.17 71.49 74.04 59.38 67.43 68.09

C Detailed Ablation Study29

Different finetune strategy: In Figure 1, we visualize the mIoU curve of different fine-tuning30

strategies. It can be seen that both layer-based and convolution-based fine-tuning methods bring31

over-fitting problems. This result shows that traditional fine-tuning methods are not suitable for32

few-shot segmentation tasks. Directly fine-tuning the parameters of backbone in few-shot learning33

affects the robustness of FSS models. Therefore, we propose a novel fine-tuning strategy, namely34

SVF. It decompose pre-trained parameters into three successive matrices via the Singular Value35

Decomposition (SVD). Then, It only fine-tunes the singular value matrices during the training phase.36

The experimental results show that SVF can effectively avoid over-fitting while bringing positive37

results to FSS model.38
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Figure 1: The mIoU curve of baseline with different finetune strategies on Pascal-5i Fold-0.

Table 5: Ablation study of BN on Pascal-5i under 1-shot setting. ✓represents fine-tuning this feature
space. The best mean results are show in bold.

Method BN scale Fold-0 Fold-1 Fold-2 Fold-3 Mean

65.60 70.28 64.12 60.27 65.07

baseline
✓ 61.93 70.67 62.02 57.86 63.12(−1.95)

✓ ✓ 63.46 70.66 64.93 57.75 64.20(−0.87)

✓ 67.42 71.57 67.99 61.57 67.14(+2.07)

Sigular value subspace: In Figure 2, we visualize the changes of initial Top-30 largest singular39

values of all 3×3 convolutional in layer 3 after SVF. The experimental results show that the change of40

last 3x3 convolution is the most obvious, and the change of singular value gradually moderates as the41

network becomes shallower. To verify the above point, we visualize the singular value change map of42

all 3x3 convolutions of layer 2 in Figure 3. The variation of singular values in layer2 is more gradual.43

Furthermore we visualize the singular value changes from the 1× 1 convolution of layer 3 and layer44

2 in Figure 4 and Figure 5. where the 1× 1 convolution is the last 1× 1 convolution of each block in45

ResNet. This result is the same trend as 3× 3 convolution. It shown that the information concerned46

by deep convolutions in pre-train backbone is not conducive to few-shot segmentation tasks. SVF47

improves the expressiveness of FSS model by focusing on adjusting distribution of singular value48

subspace in the deep convolution. Meanwhile, It proves that semantic cues in deep convolutions have49

the greatest impact on few-shot segmentation. In addition, Figure 6 shows the variation of all singular50

values. It can be easy seen that the change of singular values afterward tends to 0. Therefore, the51

change of top-30 singular values can describe the change of all singular values.52

In Table 5, Table 6, Table 7, Table 8 and Tbale 9, we give more detail ablation study results. It53

contains the results for each flod in different ablation study.54

D Discussion55

D.1 Discussion on other SVD56

In this section, we discuss the differences between other SVD-based methods [1, 7] and SVF. Both57

SVB [1] and Hanie [7] constrain the distribution of the singular values s where SVB [1] forces the58

singular value around 1 and Hanie [7] clamps the large singular values into a constant, hence serving59

as a regularization term. We did not pose an extra constraint on s, instead, encouraged the fully60

trainable singular values. As illustrated in SVB’s Figure 1, the singular values of well-trained weights61
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Figure 2: Statistics chart about the changes of initial Top-30 largest singular values of the 3 × 3
convolutional in layer3 after SVF.
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Figure 3: Statistics chart about the changes of initial Top-30 largest singular values of the 3 × 3
convolutional in layer2 after SVF.
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Figure 4: Statistics chart about the changes of initial Top-30 largest singular values of the 1 × 1
convolutional in layer3 after SVF.
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Figure 5: Statistics chart about the changes of initial Top-30 largest singular values of the 1 × 1
convolutional in layer2 after SVF.
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Figure 6: Statistics chart about the changes of all singular values of the last 3 × 3 and 1 × 1
convolutional in layer3 after SVF.

Table 6: Comparative experiment with fine-tuning different layer of backbone on Pascal-5i.

Method layer Fold-0 Fold-1 Fold-2 Fold-3 Mean
baseline - 65.60 70.28 64.12 60.27 65.07

+fully fine-tune 1, 2, 3, 4 57.97 70.51 61.33 53.80 60.90(−4.17)

+ part fine-tune
2, 3, 4 55.34 71.16 62.72 55.38 61.15(−3.92)

3, 4 56.85 71.44 61.72 54.32 61.08(−3.99)

4 56.19 70.63 59.98 55.50 60.58(−4.49)

+SVF 2, 3, 4 67.42 71.57 67.99 61.57 67.14(+2.07)

Table 7: Comparative experiment with fine-tuning different convolutional layer of backbone on
Pascal-5i.

Method layer 3 × 3 1 × 1 Fold-0 Fold-1 Fold-2 Fold-3 Mean
baseline - - - 65.60 70.28 64.12 60.27 65.07

+part fine-tune
2, 3, 4 ✓ ✓ 55.34 71.16 62.72 55.38 61.15(−3.92)

2, 3, 4 ✓ 59.57 69.96 61.74 56.16 61.86(−3.21)

2, 3, 4 ✓ 58.30 70.50 62.04 55.63 61.62(−3.45)

+SVF 2, 3, 4 - - 67.42 71.57 67.99 61.57 67.14(+2.07)

Table 8: Ablation study of SVF fine-tuning different subspace on Pascal-5i.

Method U S V Fold-0 Fold-1 Fold-2 Fold-3 Mean

baseline

✓ 58.14 70.06 60.91 55.24 61.09
✓ 67.42 71.57 67.99 61.57 67.14

✓ 53.87 70.63 63.65 55.36 60.88
✓ ✓ 57.54 70.19 62.12 56.41 61.57

✓ ✓ 53.30 71.21 62.24 54.92 60.42
✓ ✓ 53.81 70.75 61.92 53.60 60.02
✓ ✓ ✓ 56.64 70.47 63.48 54.36 61.24

Table 9: Ablation study of SVF fine-tuning different layer on Pascal-5i.

Method layer Fold-0 Fold-1 Fold-2 Fold-3 Mean

baseline + SVF

4 68.28 71.04 65.59 59.91 66.21
3, 4 67.21 71.88 68.12 61.57 67.20

2, 3, 4 67.42 71.57 67.99 61.57 67.14
1, 2, 3, 4 67.06 71.69 67.77 61.94 67.12
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Figure 7: Different implementations of SVF.

Table 10: Comparing with only fine-tuning BN on Pascal-5i.

Method Backbone Fine-tuning Method Fold-0 Fold-1 Fold-2 Fold-3 Mean

baseline ResNet-50

Freeze Backbone 65.60 70.28 64.12 60.27 65.07
Fine-tuning BN scale (weight) 62.28 68.66 61.19 58.18 62.58

Fine-tuning BN shift (bias) 61.62 70.10 64.80 55.19 62.93
Fine-tuning BN (weight+bias) 61.93 70.67 62.02 57.86 63.12

SVF 67.42 71.57 67.99 61.57 67.14

are widely spread around [0,2]. The strong regularization proposed in SVB [1] and Hanie [7] should62

damage the performance of pre-trained networks. Therefore, they turn to training from scratch, which63

is infeasible in the circumstance of few-shot segmentation. Our method coupled with pre-trained64

parameters can further exploit the capacity of the backbone, leading to superior results.65

D.2 Discussion on different implementation66

In this section, we provide a discussion on our SVF. The main idea of SVF is learning to change67

singular values in the backbone weights. It has different implementations. We show two possible68

ways to achieve SVF in Figure 7: (i) treat the single value matrix S as trainable parameters directly;69

(ii) freeze the original singular value matrix S and introduce another trainable singular value matrix70

S
′

(we use exponential function exp to keep it positive and initialize it with zeros), where the final71

singular value matrix is a product of S (frozen) and S
′

(trainable). In the second implementation,72

SVF keeps the backbone frozen (as all its weights are frozen) while introducing a small part of73

extra trainable parameters. It shares similarities with the recently proposed Visual Prompt Tuning74

(VPT) [2]. The difference between VPT and SVF is that VPT introduces the trainable parameters75

in the input space while SVF introduces them in the singular value space. Although SVF and VPT76

freeze the original backbone, they can produce optimization on the feature maps of the backbone.77

This property enables SVF to perform better in few-shot segmentation (FSS) and is the essential78

difference from the properties in previous SSF methods with frozen backbone (they do not change79

the feature maps of the backbone).80

D.3 Discussion on success of SVF81

In this section, we discuss the truly responsible for the success of SVF from three question. First,82

Does fine-tune another small part of parameters in the backbone work? We conduct experiments83

on Pascal-5i with the 1-shot setting. We compare our SVF with methods that only fine-tune the84

Table 11: introduce a new small part of parameters S’ to verify the importance of singular values on
Pascal-5i.

Method Backbone Expression of weight Fine-tune param Fold-0 Fold-1 Fold-2 Fold-3 Mean

baseline ResNet-50

W - 65.60 70.28 64.12 60.27 65.07
S’W S’ 60.96 71.99 62.54 58.58 63.52
WS’ S’ 62.82 71.69 62.84 61.13 64.62

USVT S 67.42 71.57 67.99 61.57 67.14

6



Table 12: Compare with different implementations of SVF on Pascal-5i 1-shot.

Method Backbone Expression of weight Fine-tune param Fold-0 Fold-1 Fold-2 Fold-3 Mean

baseline ResNet-50

W - 65.60 70.28 64.12 60.27 65.07
USVT S 67.42 71.57 67.99 61.57 67.14

USS’VT S’ 67.16 71.58 68.59 61.08 67.10
USS’VT S + S’ 66.42 71.73 67.23 61.12 66.63

Table 13: Compare with other SVD-based methods on Pascal-5i 1-shot.

Method Backbone Expression of weight Fine-tune param Fold-0 Fold-1 Fold-2 Fold-3 Mean

baseline ResNet-50

W - 65.60 70.28 64.12 60.27 65.07
USVT S 67.42 71.57 67.99 61.57 67.14
S’W S’ 60.96 71.99 62.54 58.58 63.52

RS’R’W S’ 32.91 51.93 51.00 37.60 43.36

parameters in the BN layers. The results in Table 10 show that only fine-tuning the parameters in BN85

layers does not bring over-fitting in few-shot segmentation methods, but they perform worse than86

the conventional paradigm (freezing backbone). While our SVF outperform other methods by large87

margins.88

Second, Is it really necessary to fine-tune the singular values? What if we introduce a new small89

part of parameters S’, which is not in the singular value space, and only fine-tune the S’? To answer90

this question, we conduction two experiments, where the weight becomes S’W or WS’, and only91

fine-tune the introduced small part of parameters S’. The results in Table 11 are consistence with92

Table 10. Both of them can avoid over-fitting but show slightly worse performance than the freezing93

backbone baseline. The above experimental results suggest that fine-tuning a small part of parameters94

is a good way to avoid over-fitting when fine-tuning the backbone in few-shot segmentation. But it is95

non-trivial to find such a small part of parameters that can bring considerable improvements.96

Third, What causes the differences between SVF and WS’ or S’W? In this question, we try to97

provide our understanding of what causes the superior performances of SVF over WS’ and S’W.98

We conjecture that this may be related to the context that S or S’ can access when fine-tuning the99

parameters. Assume that W has the shape of [M,N ]. S and S’ are diagonal matrices. S has the shape100

of [Rank, Rank], and S’ has the shape of [M,M ] or [N,N ]. When optimizing the parameters, S’101

only has relations on dimension M or dimension N in a channel-wise manner, while S can connect all102

channels on both dimension M and dimension N, as S is in the singular value space. This differences103

can affect the received gradients when training S or S’, which results in different performance. To104

give more evidences, we design more variants of SVF and provide their results in Table 12.105

Finaly, To verify whether SVF depends crucially on the singular value space, or simply on the number106

of effective updated parameters. we design a experiment: let R be a random rotation matrix, and107

set U=R’ and V=RW, where W is the original weight matrix for the given layer. The formulation of108

the weight becomes RS’R’W. Note that S’ is initialized with an identity matrix as done in previous109

experiments. During the fine-tuning, we only train S’ while keep others frozen in the backbone. We110

provide the results in Table 13. Random rotation formulation gives poor results. In fact, if we set R as111

an identity matrix (identity matrix is a rotation matrix), RS’R’W = S’W. As shown in the table, S’W112

is much better than random RS’R’W. It seems that the selection of the rotation matrix R is critical to113

the final segmentation performance. Meanwhile, If we consider RS’R’ (it is a diagonal matrix in the114

initialization stage) as a whole, RS’R is only related to one dimension of the weight W. Thus for the115

middle matrix S’, it is also channel-aligned with respect to weight W.116

In addition, if R is random initialized, we can not guarantee that RS’R’ is a diagonal matrix when117

updating S’ during training (we verify this phenomenon with the saved checkpoints when we finish the118

training). Note that the weight W is the one from the pre-trained backbone, which contains semantic119

clues or learned knowledge. The non-diagonal matrix RS’R’ may bring unexpected transformation to120

the pre-trained weight W, leading to poor results.121
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E Code in PyTorch122

In this section, we give the core code of SVF.123

import copy124
import inspect125

126
import torch127
import torch.nn as nn128

129
130

def d_nsvd(matrix, rank=1):131
U, S, V = torch.svd(matrix)132
S = S[:rank]133
U = U[:, :rank] # * S.view(1, -1)134
V = V[:, :rank] # * S.view(1, -1)135
V = torch.transpose(V, 0, 1)136
return U, S, V137

138
139

class SVD_Conv2d(nn.Module):140
141

def __init__(self, in_channels, out_channels, kernel_size,142
stride, padding, dilation, groups, bias,143
padding_mode=’zeros’, device=None, dtype=None,144
rank=1):145

super(SVD_Conv2d, self).__init__()146
factory_kwargs = {’device’: device, ’dtype’: dtype}147
self.conv_V = nn.Conv2d(148

in_channels, rank, kernel_size, stride, padding, dilation, groups, False)149
self.S = nn.Parameter(torch.empty((1, rank, 1, 1), **factory_kwargs))150
self.conv_U = nn.Conv2d(151

rank, out_channels, (1, 1), (1, 1), 0, (1, 1), 1, bias)152
153

def forward(self, x):154
x = self.conv_V(x)155
x = x.mul(self.S)156
output = self.conv_U(x)157
return output158

159
160

class SVD_Linear(nn.Module):161
162

def __init__(self, in_features, out_features, bias, device=None, dtype=None, rank=1):163
super(SVD_Linear, self).__init__()164
factory_kwargs = {’device’: device, ’dtype’: dtype}165
self.fc_V = nn.Linear(in_features, rank, False)166
self.S = nn.Parameter(torch.empty((1, rank), **factory_kwargs))167
self.fc_U = nn.Linear(rank, out_features, bias)168

169
def forward(self, x):170

x = self.fc_V(x)171
x = x.mul(self.S)172
output = self.fc_U(x)173
return output174

175
176

full2low_mapping_n = {177
nn.Conv2d: SVD_Conv2d,178
nn.Linear: SVD_Linear179

}180
181
182

def replace_fullrank_with_lowrank(model, full2low_mapping={}, layer_rank={}, lowrank_param_dict={},183
module_name=""):184

"""Recursively replace original full-rank ops with low-rank ops.185
"""186
if len(full2low_mapping) == 0 or full2low_mapping is None:187

return model188
else:189

for sub_module_name in model._modules:190
current_module_name = sub_module_name if module_name == "" else \191

module_name + "." + sub_module_name192
# has children193
if len(model._modules[sub_module_name]._modules) > 0:194

replace_fullrank_with_lowrank(model._modules[sub_module_name],195
full2low_mapping,196
layer_rank,197
lowrank_param_dict,198
current_module_name)199

else:200
if type(getattr(model, sub_module_name)) in full2low_mapping and \201

current_module_name in layer_rank.keys():202
_attr_dict = getattr(model, sub_module_name).__dict__203
# use inspect.signature to know args and kwargs of __init__204
_sig = inspect.signature(205
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type(getattr(model, sub_module_name)))206
_kwargs = {}207
for param in _sig.parameters.values():208

if param.name not in _attr_dict.keys():209
if ’bias’ in param.name:210

if getattr(model, sub_module_name).bias is not None:211
value = True212

else:213
value = False214

elif ’stride’ in param.name:215
value = 1216

elif ’padding’ in param.name:217
value = 0218

elif ’dilation’ in param.name:219
value = 1220

elif ’groups’ in param.name:221
value = 1222

elif ’padding_mode’ in param.name:223
value = ’zeros’224

else:225
value = None226

_kwargs[param.name] = value227
else:228

_kwargs[param.name] = _attr_dict[param.name]229
_kwargs[’rank’] = layer_rank[current_module_name]230
_layer_new = full2low_mapping[type(231

getattr(model, sub_module_name))](**_kwargs)232
old_module = getattr(model, sub_module_name)233
old_type = type(old_module)234
bias_tensor = None235
if _kwargs[’bias’] == True:236

bias_tensor = old_module.bias.data237
setattr(model, sub_module_name, _layer_new)238
new_module = model._modules[sub_module_name]239
if old_type == nn.Conv2d:240

conv1 = new_module._modules["conv_U"]241
conv2 = new_module._modules["conv_V"]242
param_list = lowrank_param_dict[current_module_name]243
conv1.weight.data.copy_(param_list[1])244
conv2.weight.data.copy_(param_list[0])245
new_module.scale.data.copy_(param_list[2])246
if bias_tensor is not None:247

conv2.bias.data.copy_(bias_tensor)248
return model249

250
251

class DatafreeSVD(object):252
253

def __init__(self, model, global_rank_ratio=1.0,254
excluded_layers=[], customized_layer_rank_ratio={}, skip_1x1=True, skip_3x3=True):255

# class-independent initialization256
super(DatafreeSVD, self).__init__()257
self.model = model258
self.layer_rank = {}259
model_dict_key = list(model.state_dict().keys())[0]260
model_data_parallel = True if str(261

model_dict_key).startswith(’module’) else False262
self.model_cpu = self.model.module.to(263

"cpu") if model_data_parallel else self.model.to("cpu")264
self.model_named_modules = self.model_cpu.named_modules()265
self.global_rank_ratio = global_rank_ratio266
self.excluded_layers = excluded_layers267
self.customized_layer_rank_ratio = customized_layer_rank_ratio268
self.skip_1x1 = skip_1x1269
self.skip_3x3 = skip_3x3270

271
self.low_rank_tol = 0.05272
self.param_lowrank_decomp_dict = {}273
registered_param_op = [nn.Conv2d, nn.Linear]274

275
for m_name, m in self.model_named_modules:276

if type(m) in registered_param_op and m_name not in self.excluded_layers:277
weights_tensor = m.weight.data278
tensor_shape = weights_tensor.squeeze().shape279
param_1x1 = False280
param_3x3 = False281
depthwise_conv = False282
if len(tensor_shape) == 2:283

full_rank = min(tensor_shape[0], tensor_shape[1])284
param_1x1 = True285

elif len(tensor_shape) == 4:286
full_rank = min(287

tensor_shape[0], tensor_shape[1] * tensor_shape[2] * tensor_shape[3])288
if tensor_shape[2] == 1 and tensor_shape[3] == 1:289

param_1x1 = True290
else:291
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param_3x3 = True292
else:293

full_rank = 1294
depthwise_conv = True295

296
if self.skip_1x1 and param_1x1:297

continue298
if self.skip_3x3 and param_3x3:299

continue300
if depthwise_conv:301

continue302
303

self.layer_rank[m_name] = full_rank304
305

def decompose_layers(self):306
self.model_named_modules = self.model_cpu.named_modules()307
for m_name, m in self.model_named_modules:308

if m_name in self.layer_rank.keys():309
weights_tensor = m.weight.data310
tensor_shape = weights_tensor.shape311
if len(tensor_shape) == 1:312

self.layer_rank[m_name] = 1313
continue314

elif len(tensor_shape) == 2:315
weights_matrix = m.weight.data316
U, S, V = d_nsvd(weights_matrix, self.layer_rank[m_name])317
self.param_lowrank_decomp_dict[m_name] = [318

U, V, S.reshape(1, self.layer_rank[m_name])]319
elif len(tensor_shape) == 4:320

weights_matrix = m.weight.data.reshape(tensor_shape[0], -1)321
U, S, V = d_nsvd(weights_matrix, self.layer_rank[m_name])322
self.param_lowrank_decomp_dict[m_name] = [323

V.reshape(324
self.layer_rank[m_name], tensor_shape[1], tensor_shape[2], tensor_shape[3]),325

S.reshape(1, self.layer_rank[m_name], 1, 1),326
U.reshape(tensor_shape[0],327

self.layer_rank[m_name], 1, 1)328
]329

330
def reconstruct_lowrank_network(self):331

self.low_rank_model_cpu = copy.deepcopy(self.model_cpu)332
self.low_rank_model_cpu = replace_fullrank_with_lowrank(333

self.low_rank_model_cpu,334
full2low_mapping=full2low_mapping_n,335
layer_rank=self.layer_rank,336
lowrank_param_dict=self.param_lowrank_decomp_dict,337
module_name=""338

)339
return self.low_rank_model_cpu340

341
342

def resolver(343
model,344
global_low_rank_ratio=1.0,345
excluded_layers=[],346
customized_layers_low_rank_ratio={},347
skip_1x1=False,348
skip_3x3=False,349
tol=0.05350

):351
lowrank_resolver = DatafreeSVD(model,352

global_rank_ratio=global_low_rank_ratio,353
excluded_layers=excluded_layers,354
customized_layer_rank_ratio=customized_layers_low_rank_ratio,355
skip_1x1=skip_1x1,356
skip_3x3=skip_3x3)357

lowrank_resolver.decompose_layers()358
lowrank_cpu_model = lowrank_resolver.reconstruct_lowrank_network()359
return lowrank_cpu_model360

361
362

if __name__ == "__main__":363
origin_model = FSS_model364
final_model = resolver(origin_model)365
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