
A Generalized contrastive loss394

Inspired by and built upon [16], we propose the following abstract form of generalized contrastive395

loss.396

Lgeneralized contrastive = Lalignment + λLdistribution (4)
Both terms are defined on hidden representations. Lalignment encourages representations of augmented397

views to be consistent, while Ldistribution encourages representations (or a random subset of them) to398

match a prior distribution (of high entropy).399

The standard contrastive loss is a special case of generalized contrastive loss as it can be re-written as400

Eq. 3. It is worth noting that τ in Eq. 3 appears in two places, one as the scaling of the second term,401

and the other as the width of Gaussian kernel. They do not necessarily need to be the same, so we402

could decouple them as follows. The decoupling allows us to study the effects of them separately.403

LDecoupled NT-Xent = − 1

n

∑
i,j

sim(zi,zj) + λ
1

n

∑
i

log

2n∑
k=1

1[k 6=i] exp(sim(zi,zk)/τ) (5)

Although the LogSumExp and the uniform hypersphere prior are widely used, partially due to the404

popularity of cross entropy loss, here we are interested in knowing whether or not it is essential405

to the effectiveness of contrastive loss. Are there other priors that could also work (e.g. those in406

Figure A.1)? And how much difference does it make by using other priors?407

(a) (b) (c)

Figure A.1: Examples of different prior distribution in 2-D space: (a) uniform hypersphere, (b)
uniform hypercube and (c) normal distribution.

One issue of using other priors is we could not rely on LogSumExp for matching the distribution.408

To this end, we resort to the theory of optimal transport, via Sliced Wasserstein Distance (SWD) [32,409

33, 34]. For two sets of equal-sized samples from two 1-D distributions, the optimal transport can be410

obtained by computing two permutations that order the values of both sets of samples respectively.411

The 1-D Wasserstein distance can then be computed with `2 distance between the ordered values. For412

n-D distributions, we first project the samples to n randomly-generated orthogonal 1-D subspaces,413

and then compute the sum of 1-D Wasserstein distance across all 1-D subspaces. By adjusting the414

network weights to minimize the SWD, we are able to reduce the mismatch between the distribution415

of hidden vectors and a known prior distribution. The detailed algorithm can be found in Algorithm 1.416

Algorithm 1 Sliced Wasserstein Distance (SWD) loss.

input: activation vectors H ∈ Rb×d, a prior distribution (e.g. Gaussian) sampler S
draw prior vectors P ∈ Rb×d using S
generate random orthogonal matrix W ∈ Rd×d′

make projections: H⊥ = HW ;P⊥ = PW
initialize SWD loss ` = 0
for j ∈ {1, 2, · · · , d′} do
` = `+ ‖sort(H⊥:,j)− sort(P⊥:,j)‖2

end for
return `/(dd′)

With SWD loss, we are able to use a wider set of priors, including those in Figure A.1, and potentially417

more. Table 1 summarizes instantiations of the generalized contrastive loss with different prior418

distributions and distribution matching loss.419
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Connection with mutual information. The connection between the standard contrastive loss and420

mutual information has been shown before [3, 20], where the contrastive loss (a.k.a. InfoNCE loss [3])421

is shown to be a lower bound of the mutual information. However, with the generalized contrastive422

loss, do we still have a similar connection?423

The mutual information between two latent variables U, V can be expressed as424

I(U ;V ) = H(U)−H(U |V )

Comparing this factorization of mutual information with generalized contrastive loss, it is not425

difficult to see that: (1) the alignment term Lalignment is directly related to H(U |V ) which aims426

to reduce uncertainty of the other views given one view of the example; and (2) the distribution427

matching term Ldistribution can be considered as a proxy to H(u) for maximizing the entropy in the428

representation. In particular, for representation in the hypersphere, the entropy is maximized if they429

are uniformly distributed [16]. It is perhaps worth noting that different from mutual information430

(Eq. A), the generalized contrastive loss (Eq. 2) allows a tunable weight (λ) between the alignment431

and distribution matching term, whose relation with the temperature (τ ) in standard contrastive loss432

(Eq. 1) will be discussed later.433

Experimental setup. We follow [13, 14] for the use of augmentations and architectures. By default,434

we use ResNet-50 [35] and a 2-layer projection head [13, 14] after the ResNet’s average pooling layer.435

We set the output (z) dimensionality to 64 for CIFAR10 and 128 for ImageNet, since increasing them436

has little effect on the performance. The batch size and training epoch will be specified for each437

experiment. We use the linear evaluation protocol, i.e. the accuracy of a trained linear classifier on438

the learned features is used as a proxy for representation quality.439

When comparing the standard contrastive loss (i.e. NT-Xent in Eq. 1) and other instantiations of440

the generalized contrastive loss (in Table 1), we optimize the hyper-parameters for different losses441

(for NT-Xent loss, we set τ = 0.2; for decoupled NT-Xent loss, we set τ = 1.0, λ = 0.1; for SWD442

based losses, we set λ = 5 ; and since we use mean squared error instead of `2 distance in alignment443

loss for losses in Table 1, we find it helpful to scale the loss by 1000 when the hidden vector z is444

normalized). A batch size of 128 is used for CIFAR-10, and 1024 is used for ImageNet.445

B Temperature τ (in standard contrastive loss, Eq. 1) is (within a range)446

inversely correlated to weighting λ (of distribution matching term in447

Eq. 2)448

To see how well the learned distribution matches the prior distribution (e.g. Gaussian), we randomly449

project the (high-dimensional) representation vectors into 1-D space and plot the histogram distribu-450

tion. For prior distribution of Gaussian or uniform in hypersphere, these random projections in 1-D451

space should be Gaussian like.452
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(f) NT-XENT (τ = 0.1)

Figure B.1: Distribution of random orthogonal projection of output vectors on CIFAR-10 test set
(each small plot has its own random projection direction). For SWD (uniform hypersphere) loss,
distribution becomes more Gaussian as λ increases. For NT-Xent loss, the distribution becomes more
Gaussian as τ decreases.
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Figure B.1 shows random orthogonal projection of representation from CIFAR-10 test set. We see453

that both weighting (λ in Eq. 2) and the temperature scaling (τ in Eq. 1) have the effect of controlling454

distribution matching term, but they have an inverse correlation. In other words, using a higher455

temperature has similar effect as setting a larger weighting of distribution matching term.456

In addition to visualize the representation statistics. We also tune τ and λ separately for the decoupled457

NT-xent loss (Eq. 5). Figure B.2 shows the linear evaluation of ResNet-18 trained in 200 epochs. We458

see that the temperature τ and the weighting λare inversely correlated for most range. In practice one459

could simply fix one and tune the other.460
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Figure B.2: Linear evaluation of ResNet-18 trained on CIFAR-10 (200 epochs) using decoupled
NT-Xent loss (Eq. 5). The temperature τ and the weighting λ are mostly inverse correlated.

C Distribution matching loss, LogSumExp or SWD, saturates with a few461

bits of entropy462
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(a) LogSumExp.
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(b) SWD (uniform hypersphere).

Figure C.1: Distribution matching loss saturates quickly with a few bits of entropy. The saturation
varies slightly across batch sizes.

Here we study the saturation of distribution matching loss (based on LogSumExp or SWD), without463

presence of the alignment term. To do so, we create square images with k binary channels (instead of464

RGB channels), and all pixels at different locations of a 32× 32 image share the same value, this465

allows us to use the same architecture as one for CIFAR-10 (i.e. ResNet-18 and 2-layer projection466

head with output dimensionality of 64). We note that this experiment can also be conducted on467

images of 1× 1 size with other architecture. It is not difficult to see the entropy of this dataset is k468

bits. A mini-batch of data points (without augmentations) are first encoded via the network, and then469

the distribution matching loss is defined on the network’s outputs. The network is trained for 400470

epochs, and longer training epochs makes little difference. Figure C.1 shows that distribution loss471
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saturates quickly with a few bits of entropy in the dataset (same or less bits in representations), and472

both temperature and batch sizes have effects on the saturation behavior.473

D Linear evaluation of generalized contrastive losses on CIFAR-10 and474

ImageNet475

Table D.1, D.2 and D.3 show linear evaluation performance of ResNet-50 trained with different476

losses (numerical results of Figure 1). Similar to [13, 14], a square root learning rate is used. In477

addition, results of different batch sizes are also compared, and we find the differences are small with478

reasonable sizes (e.g. 128 for CIFAR-10 and 1024 for ImageNet).479

Table D.1: Linear evaluation accuracy (top-1) of ResNet-50 trained with different losses on CIFAR-10.
Epoch 100 200 400 800

Loss Batch size

NT-Xent

128 87.4 91.0 93.0 93.9
256 88.0 91.3 93.0 93.6
512 87.9 91.3 92.9 93.7
1024 88.2 91.2 92.7 93.3

Decoupled NT-Xent

128 87.8 91.0 93.0 94.0
256 87.7 91.1 92.8 93.6
512 87.5 91.3 92.7 93.6
1024 87.5 91.0 92.6 93.7

SWD (normal)

128 86.3 90.5 92.8 93.8
256 86.2 90.8 93.1 94.1
512 85.0 90.7 92.9 94.1
1024 83.3 89.9 93.0 93.9

SWD (uniform hypercube)

128 85.1 90.1 92.6 93.4
256 84.6 89.9 92.9 93.8
512 83.1 89.8 92.8 93.8
1024 81.3 88.3 92.2 93.6

SWD (uniform hypersphere)

128 87.0 90.9 92.9 93.8
256 87.1 90.9 92.5 93.7
512 86.6 90.8 92.9 93.4
1024 86.0 90.3 92.5 93.2

E Extra results on CIFAR-10 with random bits added480

Figure E.1 shows linear evaluation on CIFAR-10 with different random bits added trained with a481

wider range of batch sizes. It is worth noting that the bits (in the x-axis) are calculated based on the482

total size of uniform integer distribution. However, this is an overestimation of actual bits as due to483

collision in generated integers.484

We observe that the linear evaluation accuracy decreases quickly with a few bits of the extra channel485

competing feature added. And this detrimental effect on the representation quality cannot be avoided486

by different contrastive loss functions, batch sizes, or memory mechanism in momentum contrast [10].487

Although a smaller temperature (τ ) or larger weighting (λ) slightly mitigate the degeneration effect,488

its baseline performance when no extra bits are added is also worse. With less than 15 bits of489

competing features added, the representation quality degenerates to the level where RGB channels490

are completely ignored.491
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Table D.2: Linear evaluation accuracy (top-1) of ResNet-50 trained with different losses on ImageNet
(with 2-layer projection head).

Epoch 100 200 400 800
Loss Batch size

NT-Xent
512 65.4 67.3 68.7 69.3
1024 65.6 67.6 68.8 69.8
2048 65.3 67.6 69.0 70.1

Decoupled NT-Xent
512 65.8 67.6 68.9 69.5
1024 66.0 67.9 69.0 70.1
2048 65.8 67.9 69.3 70.2

SWD (normal)
512 64.9 66.8 68.0 69.0
1024 65.0 67.1 68.2 69.3
2048 65.0 66.9 68.4 69.7

SWD (uniform hypercube)
512 64.3 66.4 67.8 68.7
1024 64.2 66.5 67.9 68.9
2048 63.9 66.6 67.9 69.0

SWD (uniform hypersphere)
512 65.6 67.7 69.0 70.0
1024 65.8 67.9 69.0 69.6
2048 65.6 67.8 69.2 69.8

Table D.3: Linear evaluation accuracy (top-1) of ResNet-50 trained with different losses on ImageNet
(with 3-layer projection head).

Epoch 100 200 400 800
Loss Batch size

NT-Xent
512 66.6 68.4 70.0 71.0
1024 66.8 68.9 70.1 70.9
2048 66.8 69.1 70.4 71.3

Decoupled NT-Xent
512 66.8 68.4 69.6 70.6
1024 66.6 68.9 69.9 70.8
2048 66.6 69.0 70.1 70.8

SWD (normal)
512 66.5 68.4 69.8 70.8
1024 66.6 68.8 70.1 71.1
2048 66.7 69.1 70.2 71.1

SWD (uniform hypercube)
512 66.1 68.3 69.7 70.7
1024 66.3 68.5 70.0 71.3
2048 65.8 68.2 70.1 71.1

SWD (uniform hypersphere)
512 66.5 68.3 69.5 70.5
1024 66.6 68.6 69.8 70.8
2048 66.5 68.7 70.2 70.9
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(a) Standard NT-Xent
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(b) NT-Xent with Momentum Contrast (MoCo)
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Figure E.1: Linear evaluation accuracy on CIFAR-10 of ResNet-18 (400 epochs) when different
random bits are added. Different contrastive losses and batch sizes are compared.
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