
Supplementary Materials to
“Multi-Game Decision Transformers“

A Implementation Details1

A.1 Transformer network architecture2

The input consists of a sequence of observations, returns, actions and rewards. Observations are3

images in the format B × T ×W ×H × C. We use 84× 84 grayscale images (i.e., W = 84, H =4

84, C = 1). Similar to ViT [6], we extract M non-overlapping image patches, perform a linear5

projection and then rasterise them into dmodel-dimensional 1D tokens. We define each patch to be6

14× 14 pixels (i.e., M = 6× 6 = 36). A learned positional embedding is added to each of the patch7

tokens o1, ...,oM to retain positional information as in ViT. As described in Section 3.2, returns8

are discretized into 120 buckets in {−20, ..., 100}, and rewards are converted to ternary quantities9

{−1, 0,+1}.10

For the whole sequence 〈...,ot1, ...,otM , R̂t, at, rt, ...〉, we learn another positional embedding at each11

position and add to each token embedding. We experimented with rotary position embedding [16],12

but did not find a significant benefit from them in our setting. On top of the token embeddings, our13

transformer models use a standard transformer decoder architecture.14

A standard transformer implementation for sequence modeling would employ a sequential causal15

attention masking to prevent positions from attending to subsequent positions [17]. However, for16

the sequence 〈...,ot1, ...,otM , R̂t, at, rt, ...〉 that we consider, we do not want to prevent the position17

corresponding to observation token otm from accessing subsequent observation tokens {otm′ : m′ >18

m} within the same timestep, since there is no clear sequential causal relation between image patches.19

Therefore, we change the sequential causal masking to allow observation tokens within the same20

timestep to access each other, but not subsequent positions after otM , i.e.R̂t, at, rt,ot+1
1 , ...,ot+1

M , ...21

Table 1 summarizes the transformer configurations we use for each model size. We train these22

models on an internal cluster, each with 64 TPUv4. Due to prohibitively long training times, we only23

evaluated one training seed.24

Model Layers Hidden size D (dmodel) Heads Params Training Time on 64 TPUv4
DT-10M 4 512 8 10M 1 day
DT-40M 6 768 12 40M 2 days
DT-200M 10 1280 20 200M 8 days

Table 1: Multi-Game Decision Transformer Variants

A.2 Fine-tuning protocol for Atari games25

In the fine-tuning experiments, we reserved five games (Alien, MsPacman, Pong, Space Invaders and26

Star Gunner) to be used only for fine-tuning. These games were selected due to their varied gameplay27

characteristics. Each game was fine-tuned separately to measure the model’s transfer performance for28

a fixed game. We use 1% of the original dataset (corresponding to roughly 500 000 transitions) to29

specifically test fine-tuning in low-data regimes.30

A.3 Action and return sampling during in-game evaluation31

We sample actions from the model with a temperature of 1. Inspired by Nucleus sampling (Holtzman32

et al. [10]), we only sample from the top 85th percentile action logits for all Decision Transformer33

models and Behavioral Cloning models (this parameter was selected to give highest performance for34
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both models). While we train the model to predict actions for all timesteps in the sequence, during35

in-game evaluation, we execute the last predicted action in the sequence (conditioned on all past36

observations, and past generated actions, rewards, and target returns).37

To generate target returns as discussed in Section 3.4, we sample them from the model with the38

temperature of 1 and the top 85th percentile logits. We use κ = 10 in all our experiments. To avoid39

storing the history of previously generated target returns (which may be difficult to incorporate into40

some RL frameworks), we experimented with autoregressively regenerating all target returns in the41

sequence, and found that to work well without requiring any special recurrent state maintenance42

outside of the model.43

As an alternative way to generate expert-but-likely returns, we also experimented with simply44

generating N return samples from the model according to log-probability logPθ(R
t|...), and picking45

the highest one. We then generate the action conditioned on this largest picked return as before. This46

avoids needing the hyperparameter κ. In this setting, we found N = 128, inverse temperature of47

0.75 for return sampling, no percentile cutoff for return sampling, and sampling from the top 50th48

percentile action logits with a temperature of 1 to work similarly well.49

A.4 Evaluation protocol and Atari environment details50

Our environment is the Atari 2600 Gym environment with pre-processing performed as in Agarwal51

et al. [1]. Our Atari observations are 84× 84 grayscale images. We compress observation images52

to jpeg in the dataset (to keep dataset size small) and during in-game evaluation. All games use the53

same shared set of 18 discrete actions. For all methods, each game score is calculated by averaging54

over 16 model rollout episode trials. To reduce inter-trial variability, we do not use sticky actions55

during evaluation.56

A.5 Data augmentation57

All models were trained with data augmentations. We investigate training with the following58

augmentation methods: random cropping, random channel permutation, random pixel permutation,59

horizontal flip, vertical flip, and random rotations. We found random cropping and random rotations60

to work the best. (In our random cropping implementation, images of size 84× 84 are padded on61

each side with 4 zero-value pixels, and then randomly cropped to 84× 84.) In general, we aim to62

expand the domain of problems solved during training to similar kinds that we hope to generalize63

to by encoding useful inductive biases. We maintain the same random augmentation parameters for64

each window sequence. We apply data augmentation in both pre-training and fine-tuning.65

B Baseline Implementation Details66

BC Our BC model is effectively the same as our DT model but removing the return token R̂t from67

the training sequence:68

x = 〈...,ot1, ...,otM , at, rt, ...〉

Instead of predicting a return token (distribution) given observation tokens ot1, ...,o
t
M and the69

previous part of the sequence, we directly predict an action token (distribution), which also means70

that we remove return conditioning for the BC model. During evaluation, we sample actions with a71

temperature of 1, and sample from the top 85th percentile logits (as discussed in Appendix A.3). All72

other implementation details and configurations are identical to DT.73

C51 DQN For single-game experiments, our implementation and training followed the details74

in [3] except for using multi-step learning with n = 4. For multi-game experiments we trained using75

the details provided in the main text; we ran the algorithm for 15M gradient steps (≈ 4B environment76

steps ≈ 16B Atari frames).77

CQL For CQL we use the same optimizer and learning rate as for C51 DQN. We use a per-replica78

batch size of 32 and run for 1M gradient steps on a TPU pod with 32 cores, yielding a global batch79

size of 256. During finetuning for each game, we copy the entire Q-network trained with CQL, and80

apply an additional 100k gradient steps of batch size 32 on a single CPU, where each batch is sampled81
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exclusively from the offline dataset of the finetuned game. We also experimented with smaller82

learning rates (0.00003 instead of the default 0.00025) but found the results largely unchanged. We83

also tried using offline C51 and double DQN as opposed to CQL, and found performance to be worse.84

CPC For the CPC baseline [13], we apply a contrastive loss between φ(ot), φ(ot+1) using the85

objective function86

− φ(ot+1)
>Wφ(ot) + logEs̃∼ρ[exp{φ(õ)>Wφ(ot)}], (1)

where W is a trainable matrix and ρ is a non-trainable prior distribution; for mini-batch training we87

set ρ to be the distribution of states in the mini-batch. The state representations φ(o) is parametrized88

by CNNs followed by two MLP layers with 512 units each interleaved with ReLU activation. For89

the CNN architecture, we used the C51 implementation with an Impala neural network architecture90

of three blocks using 16, 32, and 32 channels respectively, and trained with a batch size of 25691

and learning rate of 0.00025 both during pretraining and downstream BC adaptation. We conduct92

representation learning for a total of 1M gradient steps, and finetune on 1% data for 100k steps every93

50k steps of representation learning and report the best finetuning results.94

BERT and ACL Our BERT and ACL baselines are based on the representation learning objectives95

described in [18]. For the BERT [5] state representation learning baseline, we (1) take a sub-trajectory96

ot:t+k, at:t+k, rt:t+k from the dataset (without special tokenization as in DT), (2) randomly mask a97

subset of these, (3) pass the masked sequence into a transformer, and then (4) for each masked input98

state ot+i, apply a contrastive loss between its representation φ(ot+i) and the transformer output99

Transformer[i] at the corresponding sequence position:100

− φ(ot+i)>W Transformer[i] + logEõ∼ρ[exp{φ(õ)>W Transformer[i]}], (2)

where ρ is the distribution over states in the mini-batch. For attentive contrastive learning (ACL) [18],101

we apply an additional action prediction loss to the output of BERT at the sequence positions of the102

action inputs.103

To parameterize φ, we use the same CNN architecture as in CPC, while the transformer is parameter-104

ized by two self-attention layers with 4 attention heads of 256 units each and feed-forward dimension105

512. The transformer does not apply any additional directional masking to its inputs. We used106

k = 16.107

Pretraining and finetuning is analogous to CPC. Namely, when finetuning we take the pretrained108

representation φ and use a BC objective for learning a neural network (two MLP layers with 512109

units each) policy on top of this representation.110
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C Comparisons between methods based on Inter-Quartile Mean Scores111

We used median human-normalized scores to aggregate performance over individual games in Figure112

1 and Figure 5, following [1]. It was discussed in [2] that the median has high variability, and in113

the most extreme case, the median is unaffected by zero performance on nearly half of the tasks.114

Therefore, we follow the evaluation practice proposed in [2] to also compute Inter-Quartile Mean115

(IQM) across all games as another aggregate metric. We present Figure 9 as the IQM version of116

Figure 1, and Figure 10 as the IQM version of Figure 5. We can observe that our conclusions on the117

benefits of Multi-Game Decision Transformers do not change. Furthermore, in the following sections118

in the Appendix, we report aggregate performance in both median and IQM scores.119
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D Learning Exclusively from Expert Data120

Our DT and baseline models all use the full Atari datasets for training, which include large amounts121

of sub-optimal, non-expert behavior. We believe that learning from large, diverse datasets in this way122

helps learning and improves performance. To verify this hypothesis, we experiment with training our123

DT model and baseline BC model on a filtered version of the training data [1], for which we preserve124

only the top 10% of episodes from each game according to computed episodic return. We plot return125

histograms in Figure 11. We use this expert dataset to train our multi-game decision transformer126

(DT-40M) and the transformer-based behavioral cloning model (BC-40M). Figure 12 and Figure 13127

compare these models trained on expert data and our DT-40M trained on all data.128

We observe that: (1) Training only on expert data improves behavioral cloning; (2) Training on full129

data, including expert and non-expert data, improves Decision Transformer; (3) Decision Transformer130

with full data outperforms behavioral cloning trained on expert data.
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Figure 11: Histograms of rollout performance from [1] used to generate the expert dataset, with
(unnormalized) score-density on the vertical axis, and game score (rewards are clipped) on the
horizontal axis. We indicate the 90th percentile performance cutoff with a red vertical line for each
game. Rollouts that exceeded this score threshold were included in the expert dataset.
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Figure 13: Comparison of 40M transformer models trained on full data and only expert data, in terms
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131

E Comparisons between transformers and convolution networks132

Decision Transformer is an Upside-Down RL (UDRL) [14, 15] implementation that uses the trans-133

former architecture and considers RL as a sequence modeling problem. To understand the benefit134

of the transformer architecture, we compare to an UDRL implementation that uses feed-forward,135

convolutional Impala networks [7]. Specifically, we use the same return, action, and reward tokenizers136

as in DT, and only replace the observation (four consecutive Atari frames stacked together) encoding137

to use the Impala architecture. Similar to what we do for CQL, we also experiment with different sizes138

of the Impala architecture by varying the number of blocks and channels in each block of the Impala139

network: the number of blocks and channels is one of (5 blocks, 128 channels) ≈ 5M params,140

(10 blocks, 256 channels) ≈ 30M params, (5 blocks, 512 channels) ≈ 60M params. We use a141

(768, 768) 2-layer fully-connected head to predict the next return token from observation embedding;142

another (768, 768) head to predict the next action token from a concatenation of observation embed-143

ding and return token embedding; another (768, 768) head to predict the next reward token from a144

concatenation of observation embedding, return token embedding, and action token embedding.145

The input to the model is slightly different from what we have for DT: Instead of considering a146

T -timestep sub-trajectory (T = 4) where each timestep contains ot, Rt, at, rt, we stack T image147

frames (as common in [12]), and only consider Rt, at, rt from the last timestep. All other design148

choices and evaluation protocols are the same as DT.149
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Figure 14: How UDRL (Impala architecture) performance scales with model size on training set
games, in comparisons with Decision Transformer and CQL (Impala architecture).

Figure 14 shows clear advantages of Decision Transformer over UDRL with the Impala architecture.150

In the comparison between UDRL (Impala) and CQL that uses the same Impala network at each151

model size we evaluated, we observe that UDRL (Impala) outperforms CQL. The results show that152

the benefits of our method come not only from using network architectures, but also from the UDRL153
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formulation. Although it is not feasible to compare transformer with all possible convolutional154

architectures due to the broad design space, we believe these empirical results still show a clear trend155

favoring both UDRL and transformer architectures.156

F Effect of Model Size on Training Speed157

It is believed that large transformer-based language models train faster than smaller models, in the158

sense that they reach higher performance after observing a similar number of tokens [11, 4]. We find159

this trend to hold in our setting as well. Figure 15 shows an example of performance on two example160

games as multi-game training progresses. We see that larger models reach higher scores per number161

of training steps taken (thus tokens observed).
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162

G Qualitative Attention Analysis163

We find that the Decision Transformer model consistently attends to observation image patches that164

contain meaningful game entities. Figure 16 visualizes selected attention heads and layers for various165

games. We find heads consistently attend to entities such as player character, player’s free movement166

space, non-player objects, and environment features.167

(a) Asterix: player (b) Frostbite: player (c) Breakout: ball

(d) Breakout: no paddle (e) Breakout: unbroken blocks (f) Asterix: non-players

Figure 16: Example image patches attended (red) for predicting next action by Decision Transformer.
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H Raw Atari Scores168

We report full raw scores of 41 training Atari games for best performing sizes of multi-game models169

in Table 2.170

Game Name DT (200M) BC (200M) Online DQN (10M) CQL (60M)
Amidar 101.5 101.0 629.8 4.0
Assault 2,385.9 1,872.1 1,338.7 820.1
Asterix 14,706.3 5,162.5 2,949.1 950.0
Atlantis 3,105,342.3 4,237.5 976,030.4 16,800.0
BankHeist 5.0 63.1 1,069.6 20.0
BattleZone 17,687.5 9,250.0 26,235.2 5,000.0
BeamRider 8,560.5 4,948.4 1,524.8 3,246.4
Boxing 95.1 90.9 68.3 100.0
Breakout 290.6 185.6 32.6 62.0
Carnival 2,213.8 2,986.9 2,021.2 440.0
Centipede 2,463.0 2,262.8 4,848.0 2,904.0
ChopperCommand 4,268.8 1,800.0 951.4 400.0
CrazyClimber 126,018.8 123,350.0 146,362.5 139,300.0
DemonAttack 23,768.4 7,870.6 446.8 1,202.0
DoubleDunk -10.6 -1.5 -156.2 -2.0
Enduro 1,092.6 793.2 896.3 729.0
FishingDerby 11.8 5.6 -152.3 18.4
Freeway 30.4 29.8 30.6 32.0
Frostbite 2,435.6 782.5 2,748.4 408.0
Gopher 9,935.0 3,496.3 3,205.6 700.0
Gravitar 59.4 12.5 492.5 0.0
Hero 20,408.8 13,850.0 26,568.8 14,040.0
IceHockey -10.1 -8.3 -10.4 -10.5
Jamesbond 700.0 431.3 264.6 500.0
Kangaroo 12,700.0 12,143.8 7,997.1 6,700.0
Krull 8,685.6 8,058.8 8,221.4 7,170.0
KungFuMaster 15,562.5 4,362.5 29,383.1 13,700.0
NameThisGame 9,056.9 7,241.9 6,548.8 3,700.0
Phoenix 5,295.6 4,326.9 3,932.5 1,880.0
Pooyan 2,859.1 1,677.2 4,000.0 330.0
Qbert 13,734.4 11,276.6 4,226.5 11,700.0
Riverraid 14,755.6 9,816.3 7,306.6 3,810.0
RoadRunner 54,568.8 49,118.8 25,233.0 50,900.0
Robotank 63.2 44.6 9.2 17.0
Seaquest 5,173.8 1,175.6 1,415.2 643.0
TimePilot 2,743.8 1,312.5 -883.1 2,400.0
UpNDown 16,291.3 10,454.4 8,167.6 5,610.0
VideoPinball 1,007.7 1,140.8 85,351.0 0.0
WizardOfWor 187.5 443.8 975.9 500.0
YarsRevenge 28,897.9 20,738.9 18,889.5 19,505.4
Zaxxon 275.0 50.0 -0.1 0.0

Table 2: Raw scores of 41 training Atari games for best performing multi-game models.
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