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Abstract

Label Ranking (LR) is the supervised task of learning a sorting function that maps1

feature vectors 𝑥 ∈ R𝑑 to rankings 𝜎(𝑥) ∈ S𝑘 over a finite set of 𝑘 labels. We2

focus on the fundamental case of learning linear sorting functions (LSFs) under3

Gaussian marginals: 𝑥 is sampled from the 𝑑-dimensional standard normal and4

the ground truth ranking 𝜎⋆(𝑥) is the ordering induced by sorting the coordinates5

of the vector 𝑊 ⋆𝑥, where 𝑊 ⋆ ∈ R𝑘×𝑑 is unknown. We consider learning6

LSFs in the presence of bounded noise: assuming that a noiseless example is of7

the form (𝑥, 𝜎⋆(𝑥)), we observe (𝑥, 𝜋), where for any pair of elements 𝑖 ̸= 𝑗,8

the probability that the order of 𝑖, 𝑗 is different in 𝜋 than in 𝜎⋆(𝑥) is at most9

𝜂 < 1/2. We design efficient non-proper and proper learning algorithms that10

learn hypotheses within normalized Kendall’s Tau distance 𝜖 from the ground truth11

with 𝑁 = ̃︀𝑂(𝑑 log(𝑘)/𝜖) labeled examples and runtime poly(𝑁, 𝑘). For the more12

challenging top-𝑟 disagreement loss, we give an efficient proper learning algorithm13

that achieves 𝜖 top-𝑟 disagreement with the ground truth with 𝑁 = ̃︀𝑂(𝑑𝑘𝑟/𝜖)14

samples and poly(𝑁) runtime.15

1 Introduction16

1.1 Background and Motivation17

Label Ranking (LR) is the problem of learning a hypothesis that maps features to rankings over a18

finite set of labels. Given a feature vector 𝑥 ∈ R𝑑, a sorting function 𝜎(·) maps it to a ranking of 𝑘19

alternatives, i.e., 𝜎(𝑥) is an element of the symmetric group with 𝑘 elements, S𝑘. Assuming access20

to a training dataset of features labeled with their corresponding rankings, i.e., pairs of the form21

(𝑥, 𝜋) ∈ R𝑑 × S𝑘, the goal of the learner is to find a sorting function ℎ(𝑥) that generalizes well over22

a fresh sample. LR has received significant attention over the years [DSM03, SS07, HFCB08, CH08,23

FHMB08] due to the large number of applications. For example, ad targeting [DGR+14] is an LR24

instance where for each user we want to use their feature vector to predict a ranking over ad categories25

and present them with the most relevant. The practical significance of LR has lead to the development26

of many techniques based on probabilistic models and instance-based methods [CH08, CDH10],27

[GDV12, ZLGQ14], decision trees [CHH09], entropy-based ranking trees [RdSRSK15], bagging28

[AGM17], and random forests [dSSKC17, ZQ18]. However, almost all of these works come without29

provable guarantees and/or fail to learn in the presence of noise in the observed rankings.30

Linear Sorting Functions (LSFs). In this work, we focus on the fundamental concept class of31

Linear Sorting functions [HPRZ03]. A linear sorting function parameterized by a matrix 𝑊 ∈ R𝑘×𝑑32

with 𝑘 rows 𝑊1, . . . ,𝑊𝑘 takes a feature 𝑥 ∈ R𝑑, maps it to 𝑊𝑥 = (𝑊1 ·𝑥, . . . ,𝑊𝑘 ·𝑥) ∈ R𝑘 and33

then outputs an ordering (𝑖1, . . . , 𝑖𝑘) of the 𝑘 alternatives such that 𝑊𝑖1 ·𝑥 ≥ 𝑊𝑖2 ·𝑥 ≥ . . . ≥ 𝑊𝑖𝑘 ·𝑥.34
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In other words, a linear sorting function ranks the 𝑘 alternatives (corresponding to rows of 𝑊 ) with35

respect to how well they correlate with the feature 𝑥. We denote a linear sorting function with36

parameter 𝑊 ∈ R𝑘×𝑑 by 𝜎𝑊 (𝑥) ≜ argsort(𝑊𝑥) where argsort : R𝑘 → S𝑘 takes as input a37

vector (𝑣1, . . . , 𝑣𝑘) ∈ R𝑘, sorts it in decreasing order to obtain 𝑣𝑖1 ≥ 𝑣𝑖2 ≥ . . . ≥ 𝑣𝑖𝑘 and returns the38

ordering (𝑖1, . . . , 𝑖𝑘).39

Noisy Ranking Distributions. Learning LSFs in the noiseless setting can be done efficiently by40

using linear programming. However, the common assumption both in theoretical and in applied41

works is that the observed rankings are noisy in the sense that they do not always correspond to42

the ground-truth ranking. We assume that the probability that the order of two elements 𝑖, 𝑗 in the43

observed ranking 𝜋 is different than their order in the ground-truth ranking 𝜎⋆ is at most 𝜂 < 1/2.44

Definition 1 (Noisy Ranking Distribution). Fix 𝜂 ∈ [0, 1/2). An 𝜂-noisy ranking distribution45

ℳ(𝜎⋆) with ground-truth ranking 𝜎⋆ ∈ S𝑘 is a probability measure over S𝑘 that, for any 𝑖, 𝑗 ∈ [𝑘],46

with 𝑖 ̸= 𝑗, satisfies Pr𝜋∼ℳ(𝜎⋆)[𝑖 ≺𝜋 𝑗 | 𝑖 ≻𝜎⋆ 𝑗] ≤ 𝜂. 147

Note that, when 𝜂 = 0, we always observe the ground-truth permutation and, in the case of 𝜂 =48

1/2, we may observe a uniformly random permutation. We remark that most natural ranking49

distributions satisfy this bounded noise property, e.g., (i) the Mallows model, which is probably50

the most fundamental ranking distribution (see, e.g., [BM09, LB11, CPS13, ABSV14, BFFSZ19,51

FKS21, DOS18, LM18, MW20, LM21] for a small sample of this line of research) and (ii) the52

Bradley-Terry-Mallows model [Mal57], which corresponds to the ranking distribution analogue of53

the Bradley-Terry-Luce model [BT52, Luc12] (the most studied pairwise comparisons model; see,54

e.g., [Hun04, NOS17, APA18] and the references therein). For more details, see Supp. Material E.55

We consider the fundamental setting where the feature vector 𝑥 ∈ R𝑑 is generated by a standard56

normal distribution and the ground-truth ranking for each sample 𝑥 is given by the LSF 𝜎𝑊 ⋆(𝑥) for57

some unknown parameter matrix 𝑊 ⋆ ∈ R𝑘×𝑑. For a fixed 𝑥, the ranking that we observe comes58

from an 𝜂-noisy ranking distribution with ground-truth ranking 𝜎𝑊 ⋆(𝑥).59

Definition 2 (Noisy Linear Label Ranking Distribution). Fix 𝜂 ∈ [0, 1/2) and some ground-truth60

parameter matrix 𝑊 ⋆ ∈ R𝑑×𝑘. We assume that the 𝜂-noisy linear label ranking distribution 𝒟 over61

R𝑑 × S𝑘 satisfies the following:62

1. The 𝑥-marginal of 𝒟 is the 𝑑-dimensional standard normal distribution.63

2. For any (𝑥, 𝜋) ∼ 𝒟, the distribution of 𝜋 conditional on 𝑥 is an 𝜂-noisy ranking distribution64

with ground-truth ranking 𝜎𝑊 ⋆(𝑥).65

At first sight, the assumption that the underlying 𝑥-marginal is the standard normal may look too66

strong. However, for 𝑘 = 2, Definition 2 captures the problem of learning linear threshold functions67

with Massart noise. Without assumptions for the 𝑥-marginal, it is known [DGT19, CKMY20, DK20,68

NT22] that optimal learning of halfspaces under Massart noise requires super-polynomial time (in69

the Statistical Query model of [Kea98]). On the other hand, a lot of recent works [BZ17, MV19,70

DKTZ20, ZSA20, ZL21] have obtained efficient algorithms for learning Massart halfspaces under71

Gaussian marginals. The goal of this work is to provide efficient algorithms for the more general72

problem of learning LSFs with bounded noise under Gaussian marginals.73

1.2 Our Results74

The main contributions of this paper are the first efficient algorithms for learning LSFs with bounded75

noise with respect to Kendall’s Tau distance and top-𝑟 disagreement loss.76

Learning in Kendall’s Tau Distance. The most standard metric in rankings [SSBD14] is Kendall’s77

Tau (KT) distance which, for two rankings 𝜋, 𝜏 ∈ S𝑘, measures the fraction of pairs (𝑖, 𝑗) on78

which they disagree. That is, ∆KT(𝜋, 𝜏) =
∑︀

𝑖≺𝜋𝑗
1{𝑖 ≻𝜏 𝑗}/

(︀
𝑘
2

)︀
. Our first result is an efficient79

learning algorithm that, given samples from an 𝜂-noisy linear label ranking distribution 𝒟, computes80

a parameter matrix 𝑊 that ranks the alternatives almost optimally with respect to the KT distance81

from the ground-truth ranking 𝜎𝑊 ⋆(·).82

1We use 𝑖 ≻𝜋 𝑗 (resp. 𝑖 ≺𝜋 𝑗) to denote that the element 𝑖 is ranked higher (resp. lower) than 𝑗 according to
the ranking 𝜋.
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Theorem 1 (Learning LSFs in KT Distance). Fix 𝜂 ∈ [0, 1/2) and 𝜖, 𝛿 ∈ (0, 1). Let 𝒟 be an 𝜂-noisy83

linear label ranking distribution satisfying the assumptions of Definition 2 with ground-truth LSF84

𝜎𝑊 ⋆(·). There exists an algorithm that draws 𝑁 = ̃︀𝑂 (︁ 𝑑
𝜖(1−2𝜂)6 log(𝑘/𝛿)

)︁
samples from 𝒟, runs85

in sample-polynomial time, and computes a matrix 𝑊 ∈ R𝑘×𝑑 such that, with probability at least86

1− 𝛿,87

E
𝑥∼𝒩𝑑

[∆KT(𝜎𝑊 (𝑥), 𝜎𝑊 ⋆(𝑥))] ≤ 𝜖 .

Theorem 1 gives the first efficient algorithm with provable guarantees for the supervised problem of88

learning noisy linear rankings. We remark that the sample complexity of our learning algorithm is89

qualitatively optimal (up to logarithmic factors) since, for 𝑘 = 2, our problem subsumes learning90

a linear classifier with Massart noise 2 for which Ω(𝑑/𝜖) are known to be information theoretically91

necessary [MN06]. Moreover, our learning algorithm is proper in the sense that it computes a92

linear sorting function 𝜎𝑊 (·). As opposed to improper learners (see also Section 1.3), a proper93

learning algorithm gives us a compact representation (storing 𝑊 requires 𝑂(𝑘𝑑) memory) of the94

sorting function that allows us to efficiently compute (with runtime 𝑂(𝑘𝑑 + 𝑘 log 𝑘)) the ranking95

corresponding to a fresh datapoint 𝑥 ∈ R𝑑.96

Learning in top-𝑟 Disagreement. We next present our learning algorithm for the top-𝑟 metric97

formally defined as ∆top−𝑟(𝜋, 𝜏) = 1{𝜋1..𝑟 ̸= 𝜏1..𝑟}, where by 𝜋1..𝑟 we denote the ordering on the98

first 𝑟 elements of the permutation 𝜋. The top-𝑟 metric is a disagreement metric in the sense that it99

takes binary values and for 𝑟 = 1 captures the standard (multiclass) top-1 classification loss. We100

remark that, in contrast with the top-𝑟 classification loss, which only requires the predicted label to101

be in the top-𝑟 predictions of the model, the top-𝑟 ranking metric that we consider here requires that102

the model puts the same elements in the same order as the ground truth in the top-𝑟 positions. The103

top-𝑟 ranking is well-motivated as, for example, in ad targeting (discussed in Section 1.1) we want to104

be accurate on the top-𝑟 ad categories for a user so that we can diversify the content that they receive.105

Theorem 2 (Learning LSFs in top-𝑟 Disagreement). Fix 𝜂 ∈ [0, 1/2), 𝑟 ∈ [𝑘] and 𝜖, 𝛿 ∈ (0, 1).106

Let 𝒟 be an 𝜂-noisy linear label ranking distribution satisfying the assumptions of Definition 2107

with ground-truth LSF 𝜎𝑊 ⋆(·). There exists an algorithm that draws 𝑁 = ̃︀𝑂 (︁ 𝑑𝑟𝑘
𝜖(1−2𝜂)6 log(1/𝛿)

)︁
108

samples from 𝒟, runs in sample-polynomial time and computes a matrix 𝑊 ∈ R𝑘×𝑑 such that, with109

probability at least 1− 𝛿,110

E
𝑥∼𝒩𝑑

[∆top−𝑟(𝜎𝑊 (𝑥), 𝜎𝑊 ⋆(𝑥))] ≤ 𝜖 .

As a direct corollary of our result, we obtain a proper algorithm for learning the top-1 element111

with respect to the standard 0-1 loss that uses ̃︀𝑂(𝑘𝑑) samples. In fact, for small values of 𝑟, i.e.,112

𝑟 = 𝑂(1), our sample complexity is essentially tight. It is known that Θ(𝑘𝑑) samples are information113

theoretically necessary [Nat89] for top-1 classification. 3 For the case 𝑟 = 𝑘, i.e., when we want to114

learn the whole ranking with respect to the 0-1 loss, our sample complexity is 𝑂(𝑘2𝑑). However,115

using arguments similar to [DSBDSS11], one can show that in fact 𝑂(𝑑𝑘) ranking samples are116

sufficient in order to learn the whole ranking with respect to the 0-1 loss. In this case, it is unclear117

whether a better sample complexity can be achieved with an efficient algorithm and we leave this as118

an interesting open question for future work.119

1.3 Our Techniques120

Learning in Kendall’s Tau distance. Our proper learning algorithm consists of two steps: an121

improper learning algorithm that decomposes the ranking problem to 𝑂(𝑘2) binary linear classifica-122

tion problems and a convex (second order conic) program that “compresses” the 𝑘2 linear classifiers123

to obtain a 𝑘 × 𝑑 matrix 𝑊 . Our improper learning algorithm splits the ranking learning problem124

into 𝑂(𝑘2) binary, 𝑑-dimensional linear classification problems with Massart noise. In particular,125

for every pair of elements 𝑖, 𝑗 ∈ [𝑘], each binary classification task asks whether element 𝑖 is126

2Notice that in this case Kendall’s Tau distance is simply the standard 0-1 binary loss.
3Strictly speaking, those lower bounds do not directly apply in our setting because our labels are whole

rankings instead of just the top classes but, in the Supp. Material D, we show that we can adapt the lower bound
technique of [DSBDSS11] to obtain the same sample complexity lower bound for our ranking setting.
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ranked higher than element 𝑗 in the ground-truth permutation 𝜎𝑊 ⋆(𝑥). As we already discussed,127

we have that, under the Gaussian distribution, there exist efficient Massart learning algorithms128

[BZ17, MV19, DKTZ20, ZSA20, ZL21] that can recover linear classifiers sgn(𝑣𝑖𝑗 · 𝑥) that correctly129

order the pair 𝑖, 𝑗 for all 𝑥 apart from a region of 𝑂(𝜖)-Gaussian mass. However, we still need130

to aggregate the results of the approximate binary classifiers in order to obtain a ranking of the 𝑘131

alternatives for each 𝑥. We first show that we can design a “voting scheme” that combines the results132

of the binary classifiers using an efficient constant factor approximation algorithm for the Minimum133

Feedback Arc Set (MFAS) problem [ACN08]. This gives us an efficient but improper algorithm for134

learning LSFs in Kendall’s Tau distance. In order to obtain a proper learning algorithm, we further135

“compress” the 𝑂(𝑘2) approximate linear classifiers with normal vectors 𝑣𝑖𝑗 and obtain a matrix136

𝑊 ∈ R𝑘×𝑑 with the property that the difference of every two rows 𝑊𝑖 −𝑊𝑗 is 𝑂(𝜖)-close to the137

vector 𝑣𝑖𝑗 . More precisely, we show that, given the linear classifiers 𝑣𝑖𝑗 ∈ R𝑑, we can efficiently138

compute a matrix 𝑊 ∈ R𝑘×𝑑 such that the following angle distance with 𝑊 ⋆ is small:139

𝑑angle(𝑊 ,𝑊 ⋆) ≜ max
𝑖,𝑗

𝜃(𝑊𝑖 −𝑊𝑗 ,𝑊
⋆
𝑖 −𝑊 ⋆

𝑗 ) ≤ 𝑂(𝜖) . (1)

It is not hard to show that, as long as the above angle metric is at most 𝑂(𝜖), then (in expectation140

over the standard Gaussian) Kendall’s Tau distance between the LSFs is also 𝑂(𝜖). A key technical141

difficulty that we face in this reduction is bounding the “condition number” of the convex (second142

order conic) program that finds the matrix 𝑊 given the vectors 𝑣𝑖𝑗 , see Claim 2. Finally, we remark143

that the proper learning algorithm of Theorem 1 results in a compact and efficient sorting function144

that requires: (i) storing 𝑂(𝑘) weight vectors as opposed to the initial 𝑂(𝑘2) vectors of the improper145

learner; and (ii) evaluating 𝑘 inner products with 𝑥 to find its ranking (instead of 𝑂(𝑘2)).146

Learning in top-𝑟 Disagreement. We next turn our attention to the more challenging top-𝑟 ranking147

disagreement metric. In particular, suppose that we are interested in recovering only the top element148

of the ranking. One approach would be to directly use the improper learning algorithm for this149

task and ask for KT distance of order roughly 𝜖/𝑘2. The resulting hypothesis would produce good150

predictions for the top element but the required sample complexity would be 𝑂(𝑑𝑘2). While it seems151

that training 𝑂(𝑘2) 𝑑-dimensional binary classifiers inherently requires 𝑂(𝑑𝑘2) samples, we show152

that, using the proper KT distance learning algorithm of Theorem 1, we can also obtain improved153

sample complexity results for the top-𝑟 metric. Our main technical contribution here is a novel154

estimate of the top-𝑟 disagreement in terms of the angle metric. In general, one can show that the155

top-𝑟 disagreement is at most 𝑂(𝑘2) 𝑑angle(𝑊 ,𝑊 ⋆). We significantly sharpen this estimate by156

showing the following lemma.157

Lemma 1 (Top-𝑟 Disagreement via Parameter Distance). Consider two matrices 𝑊 ,𝑊 ⋆ ∈ R𝑘×𝑑158

and let 𝒩𝑑 be the standard Gaussian in 𝑑 dimensions. We have that159

Pr
𝑥∼𝒩𝑑

[𝜎1..𝑟(𝑊𝑥) ̸= 𝜎1..𝑟(𝑊
⋆𝑥)] ≤ ̃︀𝑂(𝑘𝑟) 𝑑angle(𝑊 ,𝑊 ⋆) .

We remark that Lemma 1 is a general geometric tool that we believe will be useful in other distribution-160

specific multiclass learning settings. The proof of Lemma 1 mainly relies on geometric Gaussian161

surface area computations that we believe are of independent interest. For the details, we refer the162

reader to Section 4. An interesting question with a convex-geometric flavor is whether the sharp163

bound of Lemma 1 also holds under the more general class of isotropic log-concave distributions.164

1.4 Related Work165

Robust Supervised Learning. We start with a summary of prior work on PAC learning with Massart166

noise. The Massart noise model was formally defined in [MN06] but similar variants had been defined167

by Vapnik, Sloan and Rivest [Vap06, Slo88, Slo92, RS94, Slo96]. This model is a strict extension168

of the Random Classification Noise (RCN) model [AL88], where the label noise is uniform, i.e.,169

context-independent and is a special case of the agnostic model [Hau18, KSS94], where the label170

noise is fully adversarial and computational barriers are known to exist [GR09, FGKP06, Dan16,171

DKZ20, GGK20, DKPZ21, HSSVG22]. Our work partially builds upon on the algorithmic task of172

PAC learning halfspaces with Massart noise [BH20]. In the distribution-independent setting, known173

efficient algorithms [DGT19, CKMY20, DKT21] achieve error 𝜂+𝜖 and the works of [DK20, NT22]174

indicate that this error bound is the best possible in the Statistical Query model [Kea98]. This lower175

4



bound motivates the study of the distribution-specific setting (which is also the case of our work).176

There is an extensive line of work in this direction: [ABHU15, ABHZ16, YZ17, ZLC17, BZ17,177

MV19, DKTZ20, ZSA20, ZL21] with the currently best algorithms succeeding for all 𝜂 < 1/2178

with a sample and computational complexity poly(𝑑, 1/𝜖, 1/(1− 2𝜂)) under a class of distributions179

including isotropic log-concave distributions. For details, see [DKK+21]. In this work we focus on180

Gaussian marginals but some of our results extend to larger distribution classes.181

Label Ranking. Our work lies in the area of Label Ranking, which has received significant attention182

over the years [SS07, HFCB08, CH08, HPRZ03, FHMB08, DSM03]. There are multiple approaches183

for tackling this problem (see [VG10], [ZLY+14]). Some of them are based on probabilistic models184

[CH08, CDH10, GDV12, ZLGQ14] or may be tree based, such as decision trees [CHH09], entropy185

based ranking trees and forests [RdSRSK15, dSSKC17], bagging techniques [AGM17] and random186

forests [ZQ18]. There are also works focusing on supervised clustering [GDGV13]. Finally, [CH08,187

CDH10, CHH09] adopt an instance-based approaches using nearest neighbors approaches. The above188

results are industrial. From a theoretical perspective, LR has been mainly studied from a statistical189

learning theory framework [CV20, CKS18, KGB18, KCS17]. [FKP21] provide some computational190

guarantees for the performance of decision trees in the noiseless case and some experimental results191

on the robustness of random forests to noise. The setting of [DGR+14] is close to ours but is192

investigated from an experimental standpoint. We remark that while reducing LR to multiple binary193

classification tasks has been used in prior literature [HFCB08, CH12, FKP21], standard reductions194

can not tolerate noise in rankings (nevertheless, from an experimental perspective, e.g., random195

forests seem robust to noise but lack formal theoretical guarantees). Our reduction crucially relies on196

the existence of efficient learning algorithms for binary linear classification with Massart noise.197

2 Notation and Preliminaries198

General Notation. We use ̃︀𝑂(·) to omit poly-logarithmic factors. A learning algorithm has sample-199

polynomial runtime if it runs in time polynomial in the size of the description of the input training set.200

We denote vectors by boldface 𝑥 (with elements 𝑥𝑖) and matrices with 𝑊 , where we let 𝑊𝑖 ∈ R𝑑201

denote the 𝑖-th row of 𝑊 ∈ R𝑘×𝑑 and 𝑊𝑖𝑗 its elements. We denote 𝑎 · 𝑏 the inner product of202

two vectors and 𝜃(𝑎, 𝑏) their angle. Let 𝒩𝑑 denote the 𝑑-dimensional standard normal and Γ(·) the203

Gaussian surface area.204

Rankings. We let argsort𝑖∈[𝑘]𝑣 denote the ranking of [𝑘] in decreasing order according to the values205

of 𝑣. For a ranking 𝜋, we let 𝜋(𝑖) denote the position of the 𝑖-th element. If 𝜋 = 𝜋(𝑥), we may also206

write 𝜋(𝑥)(𝑖) to denote the position of 𝑖. We often refer to the elements of a ranking as alternatives.207

For a ranking 𝜎, we let 𝜎1..𝑟 denote the top-𝑟 part of 𝜎. When 𝜎 = 𝜎(𝑥), we may also write 𝜎1..𝑟(𝑥)208

and 𝜎ℓ(𝑥) will be the alternative at the ℓ-th position. We let ∆KT denote the (normalized) KT209

distance, i.e., ∆KT(𝜋, 𝜏) =
∑︀

𝑖≺𝜋𝑗
1{𝑖 ≻𝜏 𝑗}/

(︀
𝑘
2

)︀
for 𝜋, 𝜏 ∈ S𝑘.210

3 Learning in KT distance: Theorem 1211

In this section, we present the main tools required to obtain our proper learning algorithm of212

Theorem 1. Our proper algorithm adopts a two-step approach: it first invokes an efficient improper213

algorithm which, instead of a linear sorting function (i.e., a matrix 𝑊 ∈ R𝑘×𝑑), outputs a list of214

𝑂(𝑘2) linear classifiers. We then design a novel convex program in order to find the matrix 𝑊215

satisfying the guarantees of Theorem 1. Let us begin with the improper learner for LSFs with bounded216

noise with respect to the KT distance, whose description can be found in Algorithm 1.217

3.1 Improper Learning Algorithm218

Let us assume that the target function is 𝜎⋆(𝑥) = 𝜎𝑊 ⋆(𝑥) = argsort(𝑊 ⋆𝑥) for some 𝑊 ⋆ ∈ R𝑘×𝑑.219

Step 1: Binary decomposition and Noise Structure. For each drawn example (𝑥, 𝜋) from the220

𝜂-noisy linear label ranking distribution 𝒟 (see Definition 2), we create
(︀
𝑘
2

)︀
binary examples (𝑥, 𝑦𝑖𝑗)221

with 𝑦𝑖𝑗 = sgn(𝜋(𝑖)− 𝜋(𝑗)) for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑘. We have that222

Pr
(𝑥,𝜋)∼𝒟

[︀
𝑦𝑖𝑗 · sgn((𝑊 ⋆

𝑖 −𝑊 ⋆
𝑗 ) · 𝑥) < 0 | 𝑥

]︀
= Pr

𝜋∼ℳ(𝜎⋆(𝑥))

[︀
𝜋(𝑖) < 𝜋(𝑗) | 𝑊 ⋆

𝑖 · 𝑥 < 𝑊 ⋆
𝑗 · 𝑥

]︀
.
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Algorithm 1 Non-proper Learning Algorithm ImproperLSF

Input: Training set 𝑇 = {(𝑥𝑡, 𝜋𝑡)}𝑡∈[𝑁 ], 𝜖, 𝛿 ∈ (0, 1), 𝜂 ∈ [0, 1/2)

Output: Sorting function ℎ : R𝑑 → S𝑘

For any 1 ≤ 𝑖 < 𝑗 ≤ 𝑘, create 𝑇𝑖𝑗 = {(𝑥𝑡, sgn(𝜋𝑡(𝑖)− 𝜋𝑡(𝑗)))}
For any 1 ≤ 𝑖 < 𝑗 ≤ 𝑘, compute 𝑣𝑖𝑗 = MassartLTF(𝑇𝑖𝑗 ,

𝜖
4 ,

𝛿
10𝑘2 , 𝜂) ◁ See Supp. Material A

Ranking Phase: Given 𝑥 ∈ R𝑑:
(a) Construct directed graph 𝐺 with 𝑉 (𝐺) = [𝑘] and edges 𝑒𝑖→𝑗 only if 𝑣𝑖𝑗 · 𝑥 > 0 ∀𝑖 ̸= 𝑗
(b) Output ℎ(𝑥) = MFAS(𝐺) ◁ See Supp. Material A

Since ℳ(𝜎⋆(𝑥)) is an 𝜂-noisy ranking distribution (see Definition 1), we get that the above quantity223

is at most 𝜂 < 1/2. Therefore, each sample (𝑥, 𝑦𝑖𝑗) can be viewed as a sample from a distribution224

𝒟𝑖𝑗 with Gaussian 𝑥-marginal, optimal linear classifier sgn((𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ) · 𝑥), and Massart noise 𝜂.225

Hence, we have reduced the task of learning noisy LSFs to a number of
(︀
𝑘
2

)︀
sub-problems concerning226

the learnability of halfspaces in the presence of bounded (Massart) noise.227

Step 2: Solving Binary Sub-problems. We can now apply the algorithm MassartLTF for LTFs228

with Massart noise under standard Gaussian marginals [ZSA20] (for details, see Supp. Material A):229

for all the pairs of alternatives 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 with accuracy parameter 𝜖′, confidence 𝛿′ = 𝑂(𝛿/𝑘2),230

and a total number of 𝑁 = ̃︀Ω(︁ 𝑑
𝜖′(1−2𝜂)6 log(𝑘/𝛿)

)︁
i.i.d. samples from 𝒟, we can obtain a collection231

of linear classifiers with normal vectors 𝑣𝑖𝑗 for any 𝑖 < 𝑗. We remark that each one of these halfspaces232

𝑣𝑖𝑗 achieves 𝜖 disagreement with the ground-truth halfspaces 𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 with high probability, i.e.,233

Pr
𝑥∼𝒩𝑑

[sgn(𝑣𝑖𝑗 · 𝑥) ̸= sgn((𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ) · 𝑥)] ≤ 𝜖′ .

Step 3: Ranking Phase. We now have to aggregate the linear classifiers and compute a single234

sorting function ℎ : R𝑑 → S𝑘. Given an example 𝑥, we create the tournament graph 𝐺 with 𝑘 nodes235

that contains a directed edge 𝑒𝑖→𝑗 if 𝑣𝑖𝑗 · 𝑥 > 0. If 𝐺 is acyclic, we output the induced permutation;236

otherwise, the graph contains cycles which should be eliminated. In order to output a ranking, we237

remove cycles from 𝐺 with an efficient, 3-approximation algorithm for MFAS [ACN08, VZW09].238

Hence, the output ℎ(𝑥) and the true target 𝜎⋆(𝑥) will have E𝑥∼𝒩𝑑
[∆KT(ℎ(𝑥), 𝜎

⋆(𝑥))] ≤ 𝜖′+3𝜖′ =239

4𝜖′ . This last equation indicates why a constant factor approximation algorithm suffices for our240

purposes – we can always pick 𝜖′ = 𝜖/4 and complete the proof. For details, see Supp. Material A.241

3.2 Proper Learning Algorithm: Theorem 1242

Having obtained the improper learning algorithm, we can now describe our proper Algorithm 2.243

Initially, the algorithm starts similarly with the improper learner and obtains a collection of binary244

linear classifiers. The crucial idea is the next step: the design of an appropriate convex program which245

will efficiently give the matrix 𝑊 . We proceed with the details. For the proof, see Supp. Material A.246

Algorithm 2 Proper Learning Algorithm ProperLSF

Input: Training set 𝑇 = {(𝑥𝑡, 𝜋𝑡)}𝑡∈[𝑁 ], 𝜖, 𝛿 ∈ (0, 1), 𝜂 ∈ [0, 1/2)

Output: Linear Sorting function ℎ : R𝑑 → S𝑘, i.e., ℎ(·) = 𝜎𝑊 (·) for some matrix 𝑊 ∈ R𝑘×𝑑

Compute (𝑣𝑖𝑗)1≤𝑖<𝑗≤𝑘 = ImproperLSF(𝑇, 𝜖, 𝛿, 𝜂) ◁ See Algorithm 1
Setup the CP 1 and compute 𝑊 = Ellipsoid(CP) ◁ See Supp. Material A
Ranking Phase: Given 𝑥 ∈ R𝑑, output ℎ(𝑥) = argsort(𝑊𝑥)

Step 1: Calling Non-proper Learners. As a first step, the algorithm calls Algorithm 1 with247

parameters 𝜖, 𝛿 and 𝜂 ∈ [0, 1/2) and obtains a list of linear classifiers with normal vectors 𝑣𝑖𝑗 for248

𝑖 < 𝑗. Without loss of generality, assume that ‖𝑣𝑖𝑗‖2 = 1.249

Step 2: Designing and Solving the CP 1. Our main goal is to find a matrix 𝑊 whose LSF is close to250

the true target in KT distance. We show the following lemma that connects the KT distance between251
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two LSFs with the angle metric 𝑑angle(·, ·) defined in Eq. (1). The proof can be found in the Supp.252

Material A.253

Lemma 2. For 𝑊 ,𝑊 ⋆ ∈ R𝑘×𝑑, it holds E𝑥∼𝒩𝑑
[∆KT(𝜎𝑊 (𝑥), 𝜎𝑊 ⋆(𝑥))] ≤ 𝑑angle(𝑊 ,𝑊 ⋆) .254

The above lemma states that, for our purposes, it suffices to control the 𝑑angle metric between the255

guess 𝑊 and the true matrix 𝑊 ⋆. It turns out that, given the binary classifiers 𝑣𝑖𝑗 , we can design a256

convex program whose solution will satisfy this property. Thinking of the binary classifier 𝑣𝑖𝑗 as a257

proxy for 𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 , we want each difference 𝑊𝑖−𝑊𝑗 to have small angle with 𝑣𝑖𝑗 or equivalently258

to have large correlation with it, i.e., (𝑊𝑖 −𝑊𝑗) · 𝑣𝑖𝑗 ≈ ‖𝑊𝑖 −𝑊𝑗‖2. To enforce this condition,259

we can therefore use the second order conic constraint (𝑊𝑖 −𝑊𝑗) · 𝑣𝑖𝑗 ≥ (1 − 𝜑)‖𝑊𝑖 −𝑊𝑗‖2.260

We formulate the following convex program 1 with variable the matrix 𝑊 :261

Find 𝑊 ∈ R𝑘×𝑑, ‖𝑊 ‖𝐹 ≤ 1,

such that (𝑊𝑖 −𝑊𝑗) · 𝑣𝑖𝑗 ≥ (1− 𝜑) · ‖𝑊𝑖 −𝑊𝑗‖2 for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑘, (1)

for some 𝜑 ∈ (0, 1) to be decided. Intuitively, since any 𝑣𝑖𝑗 has good correlation with 𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗262

(by the guarantees of the improper learning algorithm) and the CP 1 requires that its solution 𝑊263

similarly correlates well with 𝑣𝑖𝑗 , we expect that 𝑑angle(𝑊 ,𝑊 ⋆) will be small. We show that:264

Claim 1. The convex program 1 is feasible and any solution 𝑊 of 1 satisfies 𝑑angle(𝑊 ,𝑊 ⋆) ≤ 𝜖.265

To see this, note that any solution of CP 1 is a matrix 𝑊 whose angle metric (see Eq. (1)) with the266

true matrix is small by an application of the triangle inequality between the angles of (𝑣𝑖𝑗 ,𝑊𝑖−𝑊𝑗)267

and (𝑣𝑖𝑗 ,𝑊
⋆
𝑖 −𝑊 ⋆

𝑗 ) for any 𝑖 ̸= 𝑗. We next have to deal with the feasibility of CP 1. Our goal is to268

determine the value of 𝜑 that makes the CP 1 feasible. For the pair 1 ≤ 𝑖 < 𝑗 ≤ 𝑘, the guess 𝑣𝑖𝑗 and269

the true normal vector 𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 satisfy, with high probability,270

Pr
𝑥∼𝒟𝑥

[sgn(𝑣𝑖𝑗 · 𝑥) ̸= sgn((𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ) · 𝑥)] ≤ 𝜖 . (2)

Under the Gaussian distribution (which is rotationally symmetric), it is well known that the angle271

𝜃(𝑢,𝑣) between two vectors 𝑢,𝑣 ∈ R𝑑 is equal to 𝜋 · Pr𝑥∼𝒩𝑑
[sgn(𝑢 · 𝑥) ̸= sgn(𝑣 · 𝑥)]. Hence,272

using Eq. (2), we get that the angle between the guess 𝑣𝑖𝑗 and the true normal vector 𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗273

is 𝜃(𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ,𝑣𝑖𝑗) ≤ 𝑐𝜖. For sufficiently small 𝜖, this bound implies that the cosine of the above274

angle is of order 1− (𝑐𝜖)2 and so the following inequality will hold (since 𝑣𝑖𝑗 is unit):275

(𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ) · 𝑣𝑖𝑗 ≥ (1− 2(𝑐𝜖)2) · ‖𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ‖2 .

Hence, by setting 𝜑 = 2(𝑐𝜖)2, the convex program 1 with variables 𝑊 ∈ R𝑘×𝑑 will be feasible;276

since ‖𝑊 ⋆‖𝐹 ≤ 1 comes without loss of generality, 𝑊 ⋆ will be a solution with probability 1− 𝛿.277

Next, we have to control the volume of the feasible region. This is crucial in order to apply the278

ellipsoid algorithm (for details, see in Supp. Material A) and, hence, solve the convex program. We279

show the following claim (see Supp. Material A for the proof):280

Claim 2. There exists 𝑟 ≥ 2−poly(𝑑,𝑘,1/𝜖,log(1/𝛿)) so that the feasible set of CP 1 with 𝜑 = 𝑂(𝜖2)281

contains a ball (with respect to the Frobenius norm) of radius 𝑟.282

Critically, the runtime of the ellipsoid algorithm is logarithmic in 1/𝑟. So, the ellipsoid runs in time283

polynomial in the parameters of the problem and outputs the desired matrix 𝑊 .284

4 Learning in top-𝑟 Disagreement: Theorem 2285

In this section we show that the proper learning algorithm of Section 3.2 learns noisy LSFs in the top-𝑟286

disagreement metric. We have seen that, with ̃︀𝑂(𝑑 log(𝑘)/𝜖) samples, Algorithm 2 of Section 3.2287

computes a matrix 𝑊 such that 𝑑angle(𝑊 ,𝑊 ⋆) ≤ 𝜖, see Claim 1. Our main contribution is the288

following lemma that connects the top-𝑟 disagreement metric with the geometric distance 𝑑angle(·, ·),289

recall Lemma 1. To keep this sketch simple we shall present a sketch of the proof of Lemma 1 for the290

special case of top-1 classification, which we restate below. The proof of the top-1 case can be found291

at the Supp. Material B. The detailed proof of the general case (𝑟 > 1) can be found in the Supp.292

Material C.293
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Lemma 3 (Top-1 Disagreement Loss via 𝑑angle(·, ·)). Consider two matrices 𝑈 ,𝑉 ∈ R𝑘×𝑑 and let294

𝒩𝑑 be the standard Gaussian in 𝑑 dimensions. We have that295

Pr
𝑥∼𝒩𝑑

[𝜎1(𝑈𝑥) ̸= 𝜎1(𝑉 𝑥)] ≤ 𝑂
(︁
𝑘
√︀
log 𝑘

)︁
𝑑angle(𝑈 ,𝑉 ) .

We observe that296

Pr
𝑥∼𝒩𝑑

[𝜎1(𝑈𝑥) ̸= 𝜎1(𝑉 𝑥)] =
∑︁
𝑖∈[𝑘]

Pr
𝑥∼𝒩𝑑

[𝜎1(𝑈𝑥) = 𝑖, 𝜎1(𝑉 𝑥) ̸= 𝑖] . (1)

We denote by 𝒞(𝑖)
𝑈 ≜ 1{𝑥 : 𝜎1(𝑈𝑥) = 𝑖} =

∏︀
𝑗 ̸=𝑖 1{(𝑈𝑖 − 𝑈𝑗) · 𝑥 ≥ 0}, i.e., this is the set297

where the ranking corresponding to 𝑈 picks 𝑖 as the top element. Note that 𝒞(𝑖)
𝑈 is the indicator of a298

homogeneous polyhedral cone since it can be written as the intersection of homogeneous halfspaces.299

Using these cones we can rewrite the top-1 disagreement of Eq. (1) as300

Pr
𝑥∼𝒩𝑑

[𝜎1(𝑈𝑥) ̸= 𝜎1(𝑉 𝑥)] =
∑︁
𝑖∈[𝑘]

Pr
𝑥∼𝒩𝑑

[𝐶
(𝑖)
𝑈 (𝑥) = 1, 𝐶

(𝑖)
𝑉 (𝑥) = 0] . (2)

Hence, our task is to control the mass of the disagreement region of two cones. The next Lemma 4301

achieves this task and, combined with Eq. (2) directly gives the conclusion of Lemma 3.302

Next we work with two general homogeneous polyhedral cones with set indicators 𝐶1, 𝐶2:303

Lemma 4 (Cone Disagreement). Let 𝐶1, 𝐶2 : R𝑑 ↦→ {0, 1} be homogeneous polyhedral cones304

defined by the 𝑘 unit vectors 𝑣1, . . . ,𝑣𝑘 and 𝑢1, . . . ,𝑢𝑘 respectively. For some universal constant305

𝑐 > 0, it holds that Pr𝑥∼𝒩𝑑
[𝐶1(𝑥) ̸= 𝐶2(𝑥)] ≤ 𝑐

√
log 𝑘 max𝑖∈[𝑘] 𝜃(𝑣𝑖,𝑢𝑖) .306

Roadmap of the Proof of Lemma 4: Assume that we rotate one face of the polyhedral cone 𝐶1 by307

a very small angle 𝜃 to obtain the perturbed cone 𝐶2. At a high-level, we expect the probability of308

the disagreement region between the new cone 𝐶2 and 𝐶1 to be roughly (this is an underestimation)309

equal to the size of the perturbation 𝜃 times the (Gaussian) surface area of the face of the convex310

cone that we perturbed. The Gaussian Surface Area (GSA) of a convex set 𝐴 ⊂ R𝑑, is defined311

as Γ(𝐴) ≜
∫︀
𝜕𝐴

𝜑𝑑(𝑥)𝑑𝜇(𝑥), where 𝑑𝜇(𝑥) is the standard surface measure in R𝑑 and 𝜑𝑑(𝑥) =312

(2𝜋)−𝑑/2 ·exp(−‖𝑥‖22/2). In fact, in Claim 3 below, we show that the probability of the disagreement313

between 𝐶1 and 𝐶2 is roughly 𝑂(𝜃)Γ(𝐹1)
√︀
log(1/Γ(𝐹1) + 1), where 𝐹1 is the face of cone 𝐶1 that314

we rotated. Now, when we perturb all the faces by small angles (all perturbations are at most 𝜃), we315

can show (via a sequence of triangle inequalities) that the total probability of the disagreement region316

is bounded above by the perturbation size 𝜃 times the sum of the Gaussian surface area of every face317

(times a logarithmic blow-up factor):318

Pr
𝑥∼𝒩𝑑

[𝐶1(𝑥) ̸= 𝐶2(𝑥)] ≤ 𝑂(𝜃)

𝑘∑︁
𝑖=1

Γ(𝐹𝑖)
√︀

log(1/Γ(𝐹𝑖) + 1) .

Surprisingly, for homogeneous convex cones, the above sum cannot grow very fast with 𝑘. In fact,319

we show that it can be at most 𝑂(
√
log 𝑘). To prove this, we crucially rely on the following convex320

geometry result showing that the Gaussian surface area of a homogeneous convex cone is 𝑂(1)321

regardless of the number of its faces 𝑘.322

Lemma 5 ([Naz03]). Let 𝐶 be a homogeneous polyhedral cone with 𝑘 faces 𝐹1, . . . , 𝐹𝑘. Then 𝐶323

has Gaussian surface area Γ(𝐶) =
∑︀𝑘

𝑖=1 Γ(𝐹𝑖) ≤ 1.324

Using an inequality similar to the fact that the maximum entropy of a discrete distribution on325

𝑘 elements is at most log 𝑘, and, since, from Lemma 5, it holds that
∑︀𝑘

𝑖=1 Γ(𝐹𝑖) ≤ 1, we can326

show that
∑︀𝑘

𝑖=1 Γ(𝐹𝑖)
√︀
log(1/Γ(𝐹𝑖) + 1) = 𝑂(

√
log 𝑘). Therefore, with the above lemma we327

conclude that, if the maximum angle perturbation that we perform on 𝐶1 is 𝜃, then the probability328

of the disagreement region is 𝑂(𝜃). We next give the formal proof resulting in the upper bound of329

𝑂(
√
log 𝑘 𝜃) for the disagreement.330

Single Face Perturbation Bound: Claim 3: We will use the following notation for the positive331

orthant indicator 𝑅(𝑧) =
∏︀𝑘

𝑖=1 1{𝑧𝑖 ≥ 0}. Notice that the homogeneous polyhedral cone 𝐶1 can be332

written as 𝐶1(𝑥) = 𝑅(𝑉 𝑥) = 𝑅(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥). Claim 3 below shows that the disagreement of333

two cones that differ on a single normal vector is bounded by above by the Gaussian surface area of a334

particular face 𝐹1 times a logarithmic blow-up factor
√︀
log(1/Γ(𝐹1) + 1).335
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Claim 3. Let 𝑣1, . . . ,𝑣𝑘 ∈ R𝑑 and 𝑟 ∈ R𝑑 with 𝜃(𝑣1, 𝑟) ≤ 𝜃 for some sufficiently small 𝜃 ∈ (0, 𝜋/2).336

Let 𝐹1 be the face with 𝑣1 · 𝑥 = 0 of the cone 𝑅(𝑉 𝑥) and 𝑐 > 0 be some universal constant. Then,337

Pr
𝑥∼𝒩𝑑

[𝑅(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) ̸= 𝑅(𝑟 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥)] ≤ 𝑐 · 𝜃 · Γ(𝐹1)

√︃
log

(︂
1

Γ(𝐹1)
+ 1

)︂
.

Proof Sketch of Claim 3. Since the constraints 𝑣2 · 𝑥 ≥ 0, . . . ,𝑣𝑘 · 𝑥 ≥ 0 are common in the two338

cones, we have that 𝑅(𝑣1 ·𝑥, . . . ,𝑣𝑘 ·𝑥) ̸= 𝑅(𝑟 ·𝑥,𝑣2 ·𝑥, . . . ,𝑣𝑘 ·𝑥) only when the first “halfspaces”339

disagree, i.e., when (𝑣1 ·𝑥)(𝑟 ·𝑥) < 0. Thus, we have that the LHS probability of Claim 3 is equal to340

E
𝑥∼𝒩𝑑

[𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) · 1{(𝑣1 · 𝑥)(𝑟 · 𝑥) < 0}] . (3)

This expectation contains two terms: the term 𝑅(𝑣2 · 𝑥, . . .𝑣𝑘 · 𝑥) that contains the last 𝑘 − 1341

common constrains of the two cones and the region where the first two halfspaces disagree, i.e., the342

set {𝑥 : (𝑣1 ·𝑥)(𝑟 ·𝑥) < 0}. In order to upper bound this integral in terms of the angle 𝜃, we observe343

that (for 𝜃 sufficiently small) it is not hard to show (see Supp. Material B) that the disagreement region,344

which is itself a (non-convex) cone, is a subset of the region {𝑥 : |𝑣1 · 𝑥| ≤ 2𝜃|𝑞 · 𝑥|}, where 𝑞 the345

normalized projection of 𝑟 onto the orthogonal complement of 𝑣1, i.e., 𝑞 = proj𝑣⊥
1
𝑟/‖proj𝑣⊥

1
𝑟‖2.346

Therefore, we have that the integral of Eq. (3) is at most347

E
𝑥∼𝒩𝑑

[𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) 1{|𝑣1 · 𝑥| ≤ 2𝜃|𝑞 · 𝑥|}] .

This is where the definition of the Gaussian surface area appears. In fact, we have to compute348

the derivative of the above expression (which is a function of 𝜃) with respect to 𝜃 and evaluate it349

at 𝜃 = 0. The idea behind this computation is that we can upper bound probability mass of the350

cone disagreement, i.e., the term Pr𝑥∼𝒩𝑑
[𝑅(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) ̸= 𝑅(𝑟 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥)] by351

its derivative with respect to 𝜃 (evaluated at 0) times 𝜃 by introducing 𝑜(𝜃) error. Hence, it suffices to352

upper bound the value of this derivative at 0, which is:353

2 E
𝑥∼𝒩𝑑

[𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) |𝑞 · 𝑥| 𝛿(|𝑣1 · 𝑥|)] ,

where 𝛿 is the Dirac delta function. Notice that, if we did not have the term |𝑞 · 𝑥|, the above354

expression would be exactly equal to two times the Gaussian surface area of the face with 𝑣1 · 𝑥 = 0,355

i.e., it would be equal to 2Γ(𝐹1). We now show that this extra term of |𝑞 · 𝑥| can only increase the356

above surface integral by at most a logarithmic factor. For some 𝜉 to be decided, we have that357

E
𝑥∼𝒩𝑑

[𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) |𝑞 · 𝑥| 𝛿(|𝑣1 · 𝑥|)] =
∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|𝑑𝜇(𝑥)

≤
∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|1{|𝑞 · 𝑥| ≤ 𝜉}𝑑𝜇(𝑥) +
∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|1{|𝑞 · 𝑥| ≥ 𝜉}𝑑𝜇(𝑥)

≤ 𝜉

∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)𝑑𝜇(𝑥) +

∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|1{|𝑞 · 𝑥| ≥ 𝜉}𝑑𝜇(𝑥) ,

where 𝑑𝜇(𝑥) is the standard surface measure in R𝑑. The first integral above is exactly equal to the358

Gaussian surface area of the face 𝐹1. To bound from above the second term we can use the next claim359

showing that not a lot of mass of the face 𝐹1 can concentrate on the region where |𝑞 · 𝑥| is very large.360

Its proof relies on standard Gaussian concentration arguments, and is provided in Supp. Material B.361

Claim 4. It holds that
∫︀
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|1{|𝑞 · 𝑥| ≥ 𝜉}𝑑𝜇(𝑥) ≤ 𝑂(exp(−𝜉2/2)) .362

Using the above result, we get that363

𝑑

𝑑𝜃

(︁
E

𝑥∼𝒩𝑑

[𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) 1{|𝑣1 · 𝑥| ≤ 2𝜃|𝑞 · 𝑥|}]
)︁⃒⃒⃒

𝜃=0
≤ 𝑂(𝜉) Γ(𝐹1)+𝑂(exp(−𝜉2/2)) .

By picking 𝜉 = Θ(
√︀
log(1 + 1/Γ(𝐹1))), the result follows since, up to introducing 𝑜(𝜃) error, we364

can bound the term Pr𝑥∼𝒩𝑑
[𝑅(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) ̸= 𝑅(𝑟 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥)] by its derivative365

with respect to 𝜃, evaluated at 0, times 𝜃.366

Conclusion. Our work presents the first theoretical guarantees for (linear) LR with noise and settles367

interesting directions for future work, as mentioned in Section 1. This paper is theoretical and does368

not have any negative social impact.369
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A Learning LSFs with Bounded Noise in Kendall’s Tau distance634

A.1 Improperly Learning LSFs with Bounded Noise635

We provide an improper learner for LSFs in the presence of bounded noise. We first restate the636

main result of this section, whose proof relies on a connection between noisy linear label ranking637

distributions and the Massart noise model.638

Theorem 3 (Non-Proper Learning Algorithm). Fix 𝜂 ∈ [0, 1/2) and 𝜖, 𝛿 ∈ (0, 1). Let 𝒟 be an639

𝜂-noisy linear label ranking distribution satisfying the assumptions of Definition 2. ImproperLSF640

(Algorithm 1) draws 𝑁 = ̃︀𝑂 (︁ 𝑑
𝜖(1−2𝜂)6 log(𝑘/𝛿)

)︁
samples from 𝒟, runs in poly(𝑑, 𝑘, 1/𝜖, log(1/𝛿))641

time and, with probability at least 1 − 𝛿, outputs a hypothesis ℎ : R𝑑 → S𝑘 that is 𝜖-close in KT642

distance to the target.643

Proof. Assume that the target function is 𝜎⋆(𝑥) = 𝜎𝑊 ⋆(𝑥) = argsort(𝑊 ⋆𝑥) for some unknown644

matrix 𝑊 ⋆ ∈ R𝑘×𝑑. Consider a collection of 𝑁 i.i.d. samples from an 𝜂-noisy linear label ranking645

distribution 𝒟 (see Definition 2) and let 𝑇 be the associated training set. For each example (𝑥, 𝜋) ∈ 𝑇 ,646

we create a list of
(︀
𝑘
2

)︀
binary examples (𝑥, 𝑦𝑖𝑗) with 𝑦𝑖𝑗 = sgn(𝜋(𝑖)− 𝜋(𝑗)) for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑘,647

where 𝜋(𝑖) denotes the position of the element 𝑖. Hence, we create the datasets 𝑇𝑖𝑗 consisting of the648

binary labeled examples (𝑥, 𝑦𝑖𝑗). We have that649

Pr
(𝑥,𝜋)∼𝒟

[︀
𝑦𝑖𝑗 · sgn((𝑊 ⋆

𝑖 −𝑊 ⋆
𝑗 ) · 𝑥) < 0 | 𝑥

]︀
= Pr

𝜋∼ℳ(𝜎⋆(𝑥))

[︀
𝜋(𝑖) < 𝜋(𝑗) | 𝑊 ⋆

𝑖 · 𝑥 < 𝑊 ⋆
𝑗 · 𝑥

]︀
.

Since ℳ(𝜎⋆(𝑥)) is an 𝜂-bounded noise ranking distribution (see Definition 1), we get that650

Pr
𝜋∼ℳ(𝜎⋆(𝑥))

[𝜋(𝑖) < 𝜋(𝑗) | 𝜎⋆(𝑥)(𝑖) > 𝜎⋆(𝑥)(𝑗)] ≤ 𝜂 < 1/2 ,

where 𝜎⋆(𝑥)(𝑖) denotes the position of the element 𝑖 in the ranking 𝜎⋆(𝑥). Focusing on the training651

set 𝑇𝑖𝑗 , we have that the sign 𝑦𝑖𝑗 is flipped with probability at most 𝜂. So, we have reduced the652

problem to
(︀
𝑘
2

)︀
sub-problems concerning the learnability of halfspaces in the presence of Massart653

noise. The Massart noise model is a special case of Definition 2 where 𝑘 = 2. Note also that for each654

training set 𝑇𝑖𝑗 , the features 𝑥 have the same distribution. We can now apply the following result655

for LTFs with Massart noise for the standard Gaussian distribution. Recall that the concept class of656

homogeneous halfspaces (or linear threshold functions) is 𝒞LTF = {ℎ𝑤(𝑥) = sgn(𝑤 ·𝑥) : 𝑤 ∈ R𝑑}.657

Lemma 6 (Learning Halfspaces with Massart noise [ZSA20]). Fix 𝜂 ∈ [0, 1/2) and let 𝜖, 𝛿 ∈ (0, 1).658

Let 𝒟 be an 𝜂-noisy linear label ranking distribution satisfying the assumptions of Definition 2 with659

𝑘 = 2 (where 𝒞LSF = 𝒞LTF). There is a computationally efficient algorithm MassartLTF that draws660

𝑚 = 𝑂(𝑑 polylog(𝑑)
𝜖(1−2𝜂)6 · log(1/𝛿)) samples from 𝒟, runs in poly(𝑚) time and outputs a linear threshold661

function ℎ that is 𝜖-close to the target linear threshold function ℎ⋆ with probability at least 1− 𝛿, i.e.,662

it holds Pr𝑥∼𝒩𝑑
[ℎ(𝑥) ̸= ℎ⋆(𝑥)] ≤ 𝜖.663

We can invoke the algorithm of Lemma 6 for any alternatives 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 with accuracy 𝜖′ = 𝑂(𝜖),664

𝛿′ = 𝑂(𝛿/𝑘2) and error rate 𝜂 < 1/24. We remark that Lemma 6 returns a halfspace. Each one of665

the
(︀
𝑘
2

)︀
calls will provide a vector 𝑣𝑖𝑗 ∈ R𝑑 such that, with probability at least 1− 𝛿′, it satisfies666

Pr
𝑥∼𝒩𝑑

[sgn(𝑣𝑖𝑗 · 𝑥) ̸= sgn((𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ) · 𝑥)] ≤ 𝜖′ ,

where the true target halfspace has normal vector 𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 . Moreover, for any 𝑖 < 𝑗, the algorithm667

requires that the training set 𝑇𝑖𝑗 is of size668

|𝑇𝑖𝑗 | = Ω

(︂
𝑑

𝜖′
· 1

(1− 2𝜂)6
· log(1/𝛿′)

)︂
,

and, so, a total number of669

𝑁 = Ω

(︂
𝑑

𝜖
· 1

(1− 2𝜂)6
· log(𝑘/𝛿)

)︂
,

4We can assume that 𝜂 is known without loss of generality.
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samples (𝑥, 𝜋) is required from the distribution 𝒟. Given a collection of linear classifiers with normal670

vectors 𝑣𝑖𝑗 for any 𝑖 < 𝑗, it remains to aggregate them and compute a sorting function ℎ : R𝑑 → S𝑘.671

To this end, the estimator ℎ, given an example 𝑥, creates the directed complete graph 𝐺 with 𝑘 nodes672

with directed edge 𝑖 → 𝑗 if 𝑣𝑖𝑗 · 𝑥 > 0. If all the linear classifiers are correct (which occurs with673

probability 1−𝑂(𝜖𝑘2) over 𝒟𝑥 due to the union bound), the graph 𝐺 is acyclic (since it will match674

the true directions induced by 𝑊 ⋆) and the estimator ℎ outputs the induced permutation. Observe675

that the KT distance is676

1(︀
𝑘
2

)︀ · E
𝑥∼𝒩𝑑

⎡⎣ ∑︁
1≤𝑖<𝑗≤𝑘

1{sgn(𝑣𝑖𝑗 · 𝑥) ̸= sgn((𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ) · 𝑥)}

⎤⎦ ≤ 𝜖′ .

Otherwise, the classifiers are inconsistent and 𝐺 contains cycles. So, the expected number of mistakes677

in the graph 𝐺 is 𝜖𝑘2. The estimator in order to output a ranking uses a deterministic constant678

approximation algorithm for the minimum Feedback Arc Set [ACN08] in order to remove the cycles.679

For an overview of this fundamental line of research, we refer to [ACN08, VZW09, KMS06].680

Lemma 7 (3-Approximation Algorithm for mimimum FAS (see [VZW09, ACN08])). There is a681

deterministic algorithm MFAS for the minimum Feedback Arc Set on unweighted tournaments with 𝑘682

vertices that outputs orderings with cost less than 3 ·OPT. The running time is poly(𝑘).683

In the above, OPT is the minimum number of flips the algorithm should perform. With input684

the cyclic directed graph 𝐺 induced by the estimated linear classifiers, the algorithm of Lemma 7685

computes, in poly(𝑘) time, a 3-approximation of the optimal solution (i.e., instead of correcting 𝜖0686

directed edges, the algorithm will provide a directed acyclic graph with 3𝜖0 changed edges). Hence,687

for the hypothesis ℎ : R𝑑 → S𝑘, where ℎ(𝑥) is the output of the minimum FAS approximation688

algorithm with input 𝐺 (𝐺 depends on the input 𝑥, the randomness of the samples and the internal689

randomness of the
(︀
𝑘
2

)︀
calls of the Massart linear classifiers), and the target function 𝜎⋆(𝑥), we have690

that691

E
𝑥∼𝒩𝑑

[∆𝐾𝑇 (ℎ(𝑥), 𝜎
⋆(𝑥))] ≤ (𝜖′ + 3𝜖′) = 4𝜖′ ,

which completes the proof, by setting 𝜖′ = 𝜖/4.692

Remark 1. Consider the following variant of the above procedure: compute the 𝑂(𝑘2) linear693

classifiers with accuracy 𝜖′ = 𝜖/𝑘2: If the induced directed graph is acyclic, output the ranking;694

otherwise, output a random permutation. With probability 𝜖, the KT distance will be of order 𝑘2.695

Hence, one has to draw in total 𝑂(𝑘4𝑑/𝜖) samples to make the expected KT distance roughly 𝑂(𝜖).696

The algorithm of Theorem 3 improves on this approach.697

A.2 The Proof of Theorem 1: Properly Learning LSFs with Bounded Noise698

We first restate the main result of this section.699

Theorem 4 (Proper Learning Algorithm). Fix 𝜂 ∈ [0, 1/2) and 𝜖, 𝛿 ∈ (0, 1). Let 𝒟 be an 𝜂-noisy700

linear label ranking distribution satisfying the assumptions of Definition 2. ProperLSF (Algorithm 2)701

draws 𝑁 = ̃︀𝑂 (︁ 𝑑
𝜖(1−2𝜂)6 log(𝑘/𝛿)

)︁
samples from 𝒟, runs in poly(𝑑, 𝑘, 1/𝜖, log(1/𝛿)) time and, with702

probability at least 1 − 𝛿, outputs a Linear Sorting function ℎ : R𝑑 → S𝑘 that is 𝜖-close in KT703

distance to the target.704

We are now ready to provide the proof of our efficient proper learning algorithm for the class of705

Linear Sorting functions in the presence of bounded noise with respect to the standard Gaussian706

probability measure.707

Proof. As a first step, the algorithm calls the improper learning algorithm ImproperLSF (Algo-708

rithm 1) with parameters 𝜖, 𝛿 and 𝜂 < 1/2 and obtains a list of linear classifiers with normal vectors709

𝑣𝑖𝑗 for 𝑖 < 𝑗. The utility of this step implies that, with probability at least 1 − 𝛿, each one of the710

classifiers 𝜖-learns the associated true halfspace, i.e., it holds711

Pr
𝑥∼𝒩𝑑

[sgn(𝑣𝑖𝑗 · 𝑥) ̸= sgn((𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ) · 𝑥)] ≤ 𝜖 ,
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where 𝑊 ⋆ is the matrix of the target Linear Sorting function. Without loss of generality, assume that712

‖𝑣𝑖𝑗‖2 = 1. In order to make the learner proper, it suffices to solve the following convex program on713

𝑊 :714

Find 𝑊 ∈ R𝑘×𝑑, (1)
such that (𝑊𝑖 −𝑊𝑗) · 𝑣𝑖𝑗 ≥ (1− 𝜑) · ‖𝑊𝑖 −𝑊𝑗‖2 for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 , (CP) (2)

‖𝑊 ‖𝐹 ≤ 1 , (3)

for some 𝜑 ∈ (0, 1) to be decided. The main key ideas are summarized in the next claim.715

Claim 5. The following properties hold true for 𝜑 = 𝑂(𝜖2) with probability at least 1− 𝛿.716

1. The convex program 1 is feasible.717

2. Any solution of the convex program 1 induces an LSF that is 𝜖-close in KT distance to the718

true target 𝜎𝑊 ⋆(·).719

3. The feasible set of the convex program 1 contains a ball of radius 𝑟 = 2−poly(𝑑,𝑘,1/𝜖,log(1/𝛿))720

and is contained in a ball of radius 1. Both balls are with respect to the Frobenius norm.721

4. The convex program 1 can be solved in time poly(𝑑, 𝑘, 1/𝜖, log(1/𝛿)) using the ellipsoid722

algorithm.723

Proof of Item 1. First, we can choose the error 𝜑 so that this convex program is feasible. Let us724

set 𝑊 = 𝑊 ⋆, where 𝑊 ⋆ is the underlying matrix of the target Linear Sorting function 𝜎⋆ with725

𝜎⋆(𝑥) = argsort(𝑊 ⋆𝑥). Recall that, by the guarantees of the improper learning algorithm, for the726

pair 1 ≤ 𝑖 < 𝑗 ≤ 𝑘, it holds727

Pr
𝑥∼𝒩𝑑

[sgn(𝑣𝑖𝑗 · 𝑥) ̸= sgn((𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ) · 𝑥)] ≤ 𝜖 . (4)

Since the standard Gaussian is rotationally symmetric, the angle 𝜃(𝑢,𝑣) between two vectors728

𝑢,𝑣 ∈ R𝑑 is equal to 𝜋 · Pr𝑥∼𝒩𝑑
[sgn(𝑢 · 𝑥) ̸= sgn(𝑣 · 𝑥)]. Hence, using this observation and729

Equation (4), we get that the angle between the guess vector 𝑣𝑖𝑗 and the true normal vector 𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗730

is731

𝜃(𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ,𝑣𝑖𝑗) ≤ 𝑐 · 𝜖 ,
for some constant 𝑐 > 0. For sufficiently small 𝜖, this bound implies that the cosine of the above732

angle is of order 1− (𝑐𝜖)2 and so the following inequality will hold733

(𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ) · 𝑣𝑖𝑗 ≥ (1− 2(𝑐𝜖)2) · ‖𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ‖2 ,

since 𝑣𝑖𝑗 is unit. Hence, by setting 𝜑 = 2(𝑐𝜖)2, the convex program with variables 𝑊 ∈ R𝑘×𝑑 will734

be feasible; 𝑊 ⋆ will be a solution with probability 1− 𝛿, where the randomness is over the output of735

the algorithm dealing with the Massart linear classifiers. Note that we can assume that ‖𝑊 ⋆‖𝐹 ≤ 1736

without loss of generality, since we can divide each row with the Frobenius norm.737

Proof of Item 2. Let ̃︁𝑊 be a solution of the convex program.We will make use of the observation738

that the angle between two vectors is equal to the disagreement of the associated linear threshold739

functions with respect to the standard normal times 𝜋. Observe that any solution ̃︁𝑊 to the convex740

program will satisfy that741

(∀𝑖, 𝑗) 𝜃(𝑣𝑖𝑗 ,̃︁𝑊𝑖 − ̃︁𝑊𝑗) ≤ 𝑂(
√︀
𝜑) = 𝑐𝜖 .

and742

(∀𝑖, 𝑗) 𝜃(𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ,𝑣𝑖𝑗) ≤ 𝜖 .

This implies that743

𝑑angle(𝑊
⋆,̃︁𝑊 ) ≤ 𝑐′ 𝜖

Claim 6. For the matrices 𝑊 ,𝑊 ⋆ ∈ R𝑘×𝑑, it holds that744

E
𝑥∼𝒩𝑑

[∆KT(𝜎𝑊 (𝑥), 𝜎𝑊 ⋆(𝑥))] ≤ 𝑑angle(𝑊 ,𝑊 ⋆) .
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Proof. We have that745

E
𝑥∼𝒩𝑑

[∆KT(𝜎𝑊 (𝑥), 𝜎𝑊 ⋆(𝑥))] =
1(︀
𝑘
2

)︀ · E
𝑥∼𝒩𝑑

[
∑︁

1≤𝑖<𝑗≤𝑘

1{((𝑊𝑖 −𝑊𝑗) · 𝑥) ((𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ) · 𝑥) < 0}

=
1(︀
𝑘
2

)︀ · ∑︁
1≤𝑖<𝑗≤𝑘

Pr
𝑥∼𝒩𝑑

[sgn(𝑊𝑖 −𝑊𝑗) · 𝑥) ̸= sgn((𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ) · 𝑥)]

=
1

𝜋
max
𝑖,𝑗

𝜃(𝑊𝑖 −𝑊𝑗 ,𝑊
⋆
𝑖 −𝑊 ⋆

𝑗 )

≤ 𝑑angle(𝑊 ,𝑊 ⋆) .

746

Using the above claim, we get an expected KT distance bound of order 𝑂(𝜖). This gives the desired747

result.748

Proof of Item 3. We will make use of the next lemma.749

Lemma 8. Fix 𝜖, 𝛿 ∈ (0, 1). Let 𝑊 ⋆ ∈ R𝑘×𝑑 be the true parameter matrix. There exists a matrix750 ̃︁𝑊 ⋆ ∈ R𝑘×𝑑 such that, with probability at least 1− 𝛿:751

• Pr𝑥∼𝒩𝑑
[sgn((𝑊 ⋆

𝑖 −𝑊 ⋆
𝑗 ) · 𝑥) ̸= sgn((̃︁𝑊 ⋆

𝑖 − ̃︁𝑊 ⋆
𝑗 ) · 𝑥)] ≤ 𝜖 for all 𝑖 ̸= 𝑗, and,752

• ‖̃︁𝑊 ⋆
𝑖 − ̃︁𝑊 ⋆

𝑗 ‖2 ≥ 2−poly(𝑑,𝑘,1/𝜖,log(1/𝛿)) for any 𝑖 ̸= 𝑗.753

Proof of Lemma 8. The above lemma is a result of the next Appendix A.2.1. In particular, it is a754

direct implication of Lemma 10 and Corollary 1.755

Note that the above lemma implies that756

(∀𝑖, 𝑗) Pr
𝑥∼𝒩𝑑

[sgn(𝑣𝑖𝑗 · 𝑥) ̸= sgn((̃︁𝑊 ⋆
𝑖 − ̃︁𝑊 ⋆

𝑗 ) · 𝑥)] ≤ 2𝜖 ,

with probability at least 1− 2𝛿. Hence, up to constants, the analysis concerning the feasibility of the757

true matrix 𝑊 ⋆ (see Item 1) will still hold for ̃︁𝑊 ⋆. From now on we can work with this matrix ̃︁𝑊 ⋆758

which enjoys the “well-conditionedness” property of the second item of the lemma.759

We will use the above lemma in order to prove Item 3 which controls the volume of the feasible760

region: it states that there exist 0 < 𝑟 < 𝑅 so that the feasible region of the convex program contains761

a ball of radius 𝑟 and is contained in a ball of radius 𝑅 (where the balls are with respect to the762

Frobenius norm). Moreover, 𝑟 = 2−poly(𝑑,𝑘,1/𝜖,log(1/𝛿)) and 𝑅 = 1.763

For the chosen 𝜑 ∈ (0, 1), the feasible set contains matrices 𝑊 ∈ R𝑘×𝑑 that satisfy ‖𝑊 −̃︁𝑊 ⋆‖𝐹 ≤764

2𝑟, 𝑟 to be decided. For any 𝑖 ̸= 𝑗, we have that the following properties hold:765

1. ‖̃︁𝑊 ⋆
𝑖 − ̃︁𝑊 ⋆

𝑗 ‖2 ≥ 2−poly(𝑑,𝑘,1/𝜖,log(1/𝛿)) (well-conditionedness).766

2. (̃︁𝑊 ⋆
𝑖 − ̃︁𝑊 ⋆

𝑗 ) · 𝑣𝑖𝑗 ≥ (1− 𝜑) ‖̃︁𝑊 ⋆
𝑖 − ̃︁𝑊 ⋆

𝑗 ‖2 (feasibility).767

3. ‖𝑊 − ̃︁𝑊 ⋆‖𝐹 ≤ 2𝑟 which implies that ‖𝑊𝑖 − ̃︁𝑊 ⋆
𝑖 ‖2 ≤ 2𝑟 for any 𝑖 ∈ [𝑘] (ball around768

feasible point).769

4. ‖𝑣𝑖𝑗‖2 = 1.770

Our goal is to prove that for a matrix in the above ball it holds (𝑊𝑖−𝑊𝑗)·𝑣𝑖𝑗 ≥ (1−𝜑) ‖𝑊𝑖−𝑊𝑗‖2.771

We have that772

(̃︁𝑊 ⋆
𝑖 − ̃︁𝑊 ⋆

𝑗 ) · 𝑣𝑖𝑗 = (̃︁𝑊 ⋆
𝑖 −𝑊𝑖) · 𝑣𝑖𝑗 + (𝑊𝑗 − ̃︁𝑊 ⋆

𝑗 ) · 𝑣𝑖𝑗 + (𝑊𝑖 −𝑊𝑗) · 𝑣𝑖𝑗

≤ ‖̃︁𝑊 ⋆
𝑖 −𝑊𝑖‖2 + ‖𝑊𝑗 − ̃︁𝑊 ⋆

𝑗 ‖2 + (𝑊𝑖 −𝑊𝑗) · 𝑣𝑖𝑗

≤ 4𝑟 + (𝑊𝑖 −𝑊𝑗) · 𝑣𝑖𝑗 .
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More to that773

‖𝑊𝑖 −𝑊𝑗‖2 = ‖𝑊𝑖 − ̃︁𝑊 ⋆
𝑖 + ̃︁𝑊 ⋆

𝑖 − ̃︁𝑊 ⋆
𝑗 + ̃︁𝑊 ⋆

𝑗 −𝑊𝑗‖2
≤ ‖𝑊𝑖 − ̃︁𝑊 ⋆

𝑖 ‖2 + ‖̃︁𝑊 ⋆
𝑖 − ̃︁𝑊 ⋆

𝑗 ‖2 + ‖̃︁𝑊 ⋆
𝑗 −𝑊𝑗‖2

≤ 4𝑟 + ‖̃︁𝑊 ⋆
𝑖 − ̃︁𝑊 ⋆

𝑗 ‖2 ,

and similarly: ‖𝑊𝑖 −𝑊𝑗‖2 ≥ ‖̃︁𝑊 ⋆
𝑖 − ̃︁𝑊 ⋆

𝑗 ‖2 − 4𝑟.774

Combining the above inequalities, we get that775

(𝑊𝑖 −𝑊𝑗) · 𝑣𝑖𝑗 ≥ (̃︁𝑊 ⋆
𝑖 − ̃︁𝑊 ⋆

𝑗 ) · 𝑣𝑖𝑗 − 4𝑟

≥ (1− 𝜑) ‖̃︁𝑊 ⋆
𝑖 − ̃︁𝑊 ⋆

𝑗 ‖2 − 4𝑟

≥ (1− 𝜑) (‖𝑊𝑖 −𝑊𝑗‖2 − 4𝑟)− 4𝑟

= (1− 𝜑) ‖𝑊𝑖 −𝑊𝑗‖2 − 8𝑟 .

We pick 𝑟 sufficiently small and of order 2−poly(𝑑,𝑘,1/𝜖,log(1/𝛿)) and get that 𝑊 is a feasible solution776

of the convex program. Moreover, we can select 𝑅 = 1 since ‖̃︁𝑊 ⋆‖𝐹 = 1 without loss of generality,777

since we can normalize the row differences of ̃︁𝑊 ⋆ with the norm ‖̃︁𝑊 ⋆‖𝐹 .778

Proof of Item 4. We apply the ellipsoid algorithm in order to solve the convex program 1 and779

compute a matrix ̃︁𝑊 ∈ R𝑘×𝑑. The algorithm ProperLSF outputs the linear sorting function780

ℎ(·) = 𝜎̃︁𝑊 (·).781

Lemma 9 (Efficiency of the Ellipsoid Algorithm [Vis21]). Suppose that 𝑃 ⊆ R𝑑 is a full-dimensional782

polytope that is contained in a 𝑑-dimensional Euclidean ball of radius 𝑅 > 0 and contains a 𝑑-783

dimensional Euclidean ball of radius 𝑟 > 0. Then, the ellipsoid method outputs a point ̃︀𝑥 ∈ 𝑃784

after 𝑂(𝑑2 log(𝑅/𝑟)) iterations. Moreover, every iteration can be implemented in 𝑂(𝑑2 + 𝑇sep) time,785

where 𝑇sep is the time required to answer a single query by the separation oracle.786

Assume that Item 3 holds true. Then the algorithm can be used with 𝑟 = 2−poly(𝑑,𝑘,1/𝜖,log(1/𝛿)) and787

𝑅 = 1. Hence, the ellipsoid algorithm will provide in time poly(𝑑, 𝑘, 1/𝜖, log(1/𝛿)) a point ̃︁𝑊 that788

lies in the feasible region of the convex program 15.789

790

Remark 2. We remark that both the improper (Algorithm 1) and the proper (Algorithm 2) learning791

algorithms hold for the more general case where the 𝑥-marginal lies in the class of isotropic792

log-concave distributions [LV07]: A distribution 𝒟𝑥 lies inside the class of isotropic log-concave793

distributions ℱLC over R𝑑 if 𝒟𝑥 has a probability density function 𝑓 over R𝑑 such that log 𝑓 is794

concave, its mean is zero, and its covariance is identity, i.e., E𝑥∼𝒟𝑥 [𝑥𝑥
⊤] = 𝐼 .795

A.2.1 The proof of Lemma 8796

We provide the following result.797

Lemma 10. Fix 𝜖, 𝛿 ∈ (0, 1). Let 𝑊 ⋆ ∈ R𝑘×𝑑 be the true parameter matrix. There exists a matrix798

𝑊 ∈ R𝑘×𝑑 such that, with probability at least 1− 𝛿:799

• Pr𝑥∼𝒩𝑑
[sgn((𝑊 ⋆

𝑖 −𝑊 ⋆
𝑗 ) · 𝑥) ̸= sgn((𝑊𝑖 −𝑊𝑗) · 𝑥)] ≤ 𝜖 for all 𝑖 ̸= 𝑗, and,800

• The bit complexity of 𝑊 is poly(𝑘, 𝑑, 1/𝜖, log(1/𝛿))801

Proof. The matrix 𝑊 will be the output of a linear program that can be used to learn the LSF 𝜎𝑊 ⋆(·)802

in the noiseless setting.803

5We remark that the runtime will also depend on the time required to answer a single query by the separation
oracle. We assume that this time is polynomial in the parameters of our problem and we opt not to track these
details in this work.
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Consider the unit sphere 𝒮𝑑−1 and a 𝛿0-cover of the unit sphere with parameter 𝛿0 > 0 to be decided.804

For any sample (𝑥, 𝜋) ∼ 𝒟 of the 0-noisy linear label ranking distribution, i.e., 𝑥 ∼ 𝒩𝑑 and805

𝜋 = 𝜎𝑊 ⋆(𝑥), we consider the rounded sample (̃︀𝑥, 𝜋) where ̃︀𝑥 is obtained by first projecting 𝑥 ∈ R𝑑806

to 𝒮𝑑−1 and then by obtaining the closest point of ̂︀𝑥 in the cover. The cover’s size is 𝑂(1/𝛿0)
𝑑.807

Let us fix 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 and set 𝑦𝑖𝑗 = sgn(𝜋(𝑖) − 𝜋(𝑗)). For a training set {(𝑥(𝑡), 𝜋(𝑡))}𝑡∈[𝑁 ] of808

size 𝑁 , we create the following linear system L𝑖𝑗 with variables 𝑊 ∈ R𝑘×𝑑:809

𝑦
(𝑡)
𝑖𝑗 (𝑊𝑖 −𝑊𝑗) · ̃︀𝑥(𝑡) ≥ 0 , 𝑡 ∈ [𝑁 ] (L𝑖𝑗) .

Consider the concatenation of the linear systems L = ∪𝑖<𝑗L𝑖𝑗 . The number of equations in the linear810

system of equations L is 𝑁 ·
(︀
𝑘
2

)︀
.811

We first have to show that, with high probability, the system L is feasible, i.e., there exists 𝑊 that812

satisfies the system’s equations. Note that if we replace ̃︀𝑥(𝑡) with the original points 𝑥(𝑡), the true813

matrix 𝑊 ⋆ is a solution to the system. We now have to study the rounded linear system.814

Claim 7. The (rounded) linear system L is feasible with high probability.815

Proof. In order to show the feasibility of L, we will use the anti-concentration properties of the816

Gaussian.817

Fact 1 ([DKM05]). Let 𝒫 be the standard normal distribution over R𝑑. For any fixed unit vector818

𝑎 ∈ R𝑑 and any 𝛾 ≤ 1,819

𝛾/4 ≤ Pr
𝑥∼𝒫

[︂
|𝑎 · 𝑥

‖𝑥‖2
| ≤ 𝛾√

𝑑

]︂
≤ 𝛾 .

Let us focus on the pair 1 ≤ 𝑖 < 𝑗 ≤ 𝑘. We first observe that scaling all samples to lie on the unit820

sphere does not affect the feasibility of the system. It suffices to focus on that single halfspace with821

normal vector 𝑣𝑖𝑗 = 𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ∈ R𝑑 and consider the probability of the event that the collection of822

the 𝑁 rounded points {̃︀𝑥(𝑡)}𝑡 with labels {𝑦(𝑡)𝑖𝑗 }𝑡, that come from 𝑁 Gaussian vectors {𝑥(𝑡)}𝑡 which823

are linearly separable (with labels {𝑦(𝑡)𝑖𝑗 }𝑡), becomes non-linearly separable. For this it suffices to824

control the probability that the rounding procedure flips the label of the data point. Using the union825

bound, we have that, if the rounding has accuracy 𝛿0, the described bad event has probability826

Pr
𝑥(1),...,𝑥(𝑁)∼𝒩𝑑

[∃𝑡 ∈ [𝑁 ] : sgn(𝑣𝑖𝑗 ·̃︀𝑥(𝑡)) ̸= sgn(𝑣𝑖𝑗 ·𝑥(𝑡))] ≤ 𝑁 · Pr
𝑥∼𝒩𝑑

[|𝑣𝑖𝑗 · 𝑥/‖𝑥‖2| ≤ 2𝛿0] ≤ 𝑁 ·𝑂(𝛿0
√
𝑑) ,

where we remark that the first event is scale invariant and so we can assume that the normal vector is827

unit, the first inequality follows from the fact that it suffices to control the mass assigned to a strip of828

width 2𝛿0 (due to the discretization) and the second inequality follows from Fact 1. We now have to829

select the discretization. Let 𝛿 ∈ (0, 1). By choosing 𝛿0 = 𝑂( 𝛿
𝑁

√
𝑑𝑘2

), the bad event for all the pairs830

𝑖 < 𝑗 occurs with probability at most 𝛿, i.e., with probability at least 1− 𝛿, each one of the 𝑁 drawn831

i.i.d. samples does not fall in any one of the
(︀
𝑘
2

)︀
“bad” strips.832

We can now consider the case that the system L is feasible (with the target matrix 𝑊 ⋆ being833

a feasible point) that occurs with probability 1 − 𝛿. The class of homogenous halfspaces in 𝑑834

dimensions has VC dimension 𝑑; therefore, the sample complexity of learning halfspaces using ERM835

is 𝑂((𝑑 + log(1/𝛿))/𝜖). Moreover, in the realizable case, we can implement the ERM using e.g.,836

linear programming and find a solution in poly(𝑑, 1/𝜖, log(1/𝛿)) time. We next focus on the quality837

of the solution which will give the desired sample complexity.838

Claim 8. Assume that the algorithm draws 𝑁 = ̃︀𝑂(𝑑+log(𝑘/𝛿)
𝜖 ) i.i.d. samples of the form (𝑥, 𝜋) with839

𝑥 ∼ 𝒩𝑑 and 𝜋 = 𝜎𝑊 ⋆(𝑥). For any 𝑖 ̸= 𝑗 and with probability at least 1− 2𝛿, the solution 𝑊 of840

the linear system L satisfies841

Pr
𝑥∼𝒩𝑑

[sgn((𝑊 ⋆
𝑖 −𝑊 ⋆

𝑗 ) · 𝑥) ̸= sgn((𝑊𝑖 −𝑊𝑗) · 𝑥)] ≤ 𝜖 .

Proof. Since the matrix 𝑊 satisfies the sub-system L𝑖𝑗 , the result follows using a union bound on842

the events that (i) the linear system is feasible and (ii) the ERM is a successful PAC learner.843
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Claim 9. Consider the solution 𝑊 of the linear system. Then, 𝑊 has bounded bit complexity of844

order poly(𝑑, 𝑘, 1/𝜖, log(1/𝛿)).845

Proof. We will make use of the following result that relates the size of the input and the output of a846

linear program using Cramer’s rule.847

Lemma 11 ([Sch98, Pap81]). Let 𝐴 ∈ Z𝑚×𝑛, 𝑏 ∈ Z𝑚, 𝑐 ∈ Z𝑛. Consider a linear program min 𝑐·𝑥848

subject to 𝐴𝑥 ≤ 𝑏 and 𝑥 ≥ 0. Let 𝑈 be the maximum size of 𝐴𝑖𝑗 , 𝑏𝑖, 𝑐𝑗 . The output of the linear849

program has size 𝑂(𝑚(𝑛𝑈 + 𝑛 log(𝑛))) bits.850

We will apply the above lemma (which holds even by dropping the constraint 𝑥 ≥ 0) to our setting851

where 𝐴𝑤 ≥ 0 where 𝑤 = (𝑊𝑖)𝑖∈[𝑘] ∈ Q𝑘𝑑, i.e., 𝑤 is the vectorization of the matrix 𝑊 . Moreover,852

𝐴 is the matrix containing the 𝑁 (rounded) Gaussian samples ̃︀𝑥(𝑡). We have that the matrix 𝐴 has853

dimension 𝑁
(︀
𝑘
2

)︀
× 𝑘𝑑 and each entry 𝐴𝑖𝑗 is an integer and has size at most 𝑈 = poly(𝑑, 𝑘) (since854

the samples are rounded on the 𝛿0-cover of the sphere. Recall that the labels 𝑦(𝑡)𝑖𝑗 ∈ {−1,+1} and855 ̃︀𝑥(𝑡) lie in the unit sphere. In particular, each row of the matrix 𝐴 has 2𝑑 non-zero entries and is856

associated with a tuple (𝑖, 𝑗, 𝑡) for 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 and 𝑡 ∈ [𝑁 ]. Then, it holds that the output has857

size at most 𝑂(𝑁𝑘2(𝑑𝑈 + 𝑑𝑘 log(𝑑𝑘))) bits. So, we get that the output 𝑊 can be described using858

at most poly(𝑑, 𝑘, 1/𝜖, 𝑈, log(1/𝛿)) = poly(𝑑, 𝑘, 1/𝜖, log(1/𝛿)) bits (due to the size of the entries of859

the matrix 𝐴).860

Combining the above claims, we conclude the proof.861

As a corollary of the bounded bit complexity, we obtain the following key result.862

Corollary 1. Let 𝜖 > 0. Assume that 𝑊 ∈ R𝑘×𝑑 has bit complexity at most poly(𝑑, 𝑘, 1/𝜖, log(1/𝛿)).863

Then, for any 𝑖, 𝑗 ∈ [𝑘] with 𝑖 ̸= 𝑗, it holds that ‖𝑊𝑖 −𝑊𝑗‖2 > 2−poly(𝑑,𝑘,1/𝜖,log(1/𝛿)).864

Proof. First, we can assume that 𝑊𝑖 ̸= 𝑊𝑗 for any 𝑖 ̸= 𝑗; in case of equal rows, we obtain a865

low-dimensional instance. Then, since any vector 𝑊𝑖 has bounded bit complexity, we have that the866

difference of any two such vectors, provided that it is non-zero, has a lower bound in its norm, i.e.,867

‖𝑊𝑖 −𝑊𝑗‖2 > 2−poly(𝑑,𝑘,1/𝜖,log(1/𝛿)) for any 𝑖, 𝑗 ∈ [𝑘].868

B Learning in Top-1 Disagreement from Label Rankings869

Let us set 𝜎1(𝑊𝑥) = argmax𝑖∈[𝑘] 𝑊𝑖 · 𝑥 for 𝑥 ∈ R𝑑. The main result of this section follows.870

Theorem 5 (Proper Top-1 Learning Algorithm). Fix 𝜂 ∈ [0, 1/2) and 𝜖, 𝛿 ∈ (0, 1). Let 𝒟 be an871

𝜂-noisy linear label ranking distribution satisfying the assumptions of Definition 2. There exists an872

algorithm that draws 𝑁 = 𝑂
(︁

𝑑𝑘
√
log 𝑘

𝜖(1−2𝜂)6 log(𝑘/𝛿)
)︁

samples from 𝒟, runs in poly(𝑁) time and, with873

probability at least 1 − 𝛿, outputs a Linear Sorting function ℎ : R𝑑 → S𝑘 that is 𝜖-close in top-1874

disagreement to the target.875

Proof. Note that the MassartLTF algorithm (see Lemma 6) has the guarantee that it returns a vector876

𝑤 so that877

Pr
𝑥∼𝒩𝑑

[sgn(𝑤 · 𝑥) ̸= sgn(𝑤⋆ · 𝑥)] ≤ 𝜖 ,

with probability 1 − 𝛿, where 𝑤⋆ is the target normal vector. Since the above misclassification878

probability with respect to 𝒩𝑑 is directly connected with the angle 𝜃(𝑤,𝑤⋆), we get that we can879

control the angle between 𝑤 and 𝑤⋆ efficiently. Moreover, in our setting, for a matrix 𝑊 ∈ R𝑘×𝑑,880

there exist
(︀
𝑘
2

)︀
homogeneous halfspaces with normal vectors 𝑊𝑖 −𝑊𝑗 and so we can control the881

angles 𝜃(𝑊𝑖 −𝑊𝑗 ,𝑊
⋆
𝑖 −𝑊 ⋆

𝑗 ). In order to deduce the sample complexity bound of Theorem 5,882

we show the next lemma which essentially bounds the top-1 misclassification error using the angles883

of these 𝑂(𝑘2) halfspaces. We apply Lemma 12 with 𝑈 = 𝑊 and 𝑉 = 𝑊 ⋆ and so we can take884

𝜖′ = 𝜖/(𝑘
√
log 𝑘) and invoke the proper learning algorithm of Algorithm 2. This completes the885

proof.886
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We continue with the proof of our key lemma.887

Lemma 12 (Misclassification Error). Consider two matrices 𝑈 ,𝑉 ∈ R𝑘×𝑑 and let 𝒩𝑑 be the888

standard Gaussian in 𝑑 dimensions. We have that889

Pr
𝑥∼𝒩𝑑

[𝜎1(𝑈𝑥) ̸= 𝜎1(𝑉 𝑥)] ≤ 𝑐 · 𝑘 ·
√︀

log 𝑘 ·max
𝑖 ̸=𝑗

𝜃(𝑈𝑖 −𝑈𝑗 ,𝑉𝑖 − 𝑉𝑗) ,

where 𝑐 > 0 is some universal constant.890

Proof. We have that891

Pr
𝑥∼𝒩𝑑

[𝜎1(𝑈𝑥) ̸= 𝜎1(𝑉 𝑥)] =
∑︁
𝑖∈[𝑘]

Pr
𝑥∼𝒩𝑑

[𝜎1(𝑈𝑥) = 𝑖, 𝜎1(𝑉 𝑥) ̸= 𝑖] .

We have that 𝒞(𝑖)
𝑈 = 1{𝑥 : 𝜎1(𝑈𝑥) = 𝑖} =

∏︀
𝑗 ̸=𝑖 1{(𝑈𝑖 − 𝑈𝑗) · 𝑥 ≥ 0} is the set indicator of892

a homogeneous polyhedral cone as the intersection of 𝑘 − 1 homogeneous halfspaces. Similarly,893

we consider the cone 𝒞(𝑖)
𝑉 = {𝑥 : 𝜎1(𝑉 𝑥) = 𝑖}. Hence, we have that {𝑥 : 𝜎1(𝑉 𝑥) ̸= 𝑖}894

is the complement of a homogeneous polyhedral cone. Let us define 𝐶
(𝑖)
𝑈 : R𝑑 ↦→ {0, 1} and895

𝐶
(𝑖)
𝑉 : R𝑑 ↦→ {0, 1} be the associated indicator functions of the two cones. We have that896

Pr
𝑥∼𝒩𝑑

[𝜎1(𝑈𝑥) = 𝑖, 𝜎1(𝑉 𝑥) ̸= 𝑖] = Pr
𝑥∼𝒩𝑑

[𝐶
(𝑖)
𝑈 (𝑥) = 1, 𝐶

(𝑖)
𝑉 (𝑥) = 0] .

Finally, we have that897

𝒞(𝑖)
𝑈 ∩

(︁
𝒞(𝑖)
𝑉

)︁𝑐
= 𝒞(𝑖)

𝑈 ∖ 𝒞(𝑖)
𝑉 ⊆ 𝒞(𝑖)

𝑈 ∖ 𝒞(𝑖)
𝑉 ∪ 𝒞(𝑖)

𝑉 ∖ 𝒞(𝑖)
𝑈 .

We can hence apply Lemma 13 for the cones 𝒞(𝑖)
𝑈 , 𝒞(𝑖)

𝑉 for each 𝑖 ∈ [𝑘].898

Lemma 13 (Cone Disagreement). Let 𝐶1 : R𝑑 ↦→ {0, 1} be the indicator function of the homoge-899

neous polyhedral cone defined by the 𝑘 unit vectors 𝑣1, . . . ,𝑣𝑘 ∈ R𝑑, i.e., 𝐶1(𝑥) =
∏︀𝑘

𝑖=1 1{𝑣𝑖 ·𝑥 ≥900

0}. Similarly, define 𝐶2 : R𝑑 ↦→ {0, 1} to be the homogeneous polyhedral cone with normal vectors901

𝑢1, . . . ,𝑢𝑘. It holds that902

Pr
𝑥∼𝒩𝑑

[𝐶1(𝑥) ̸= 𝐶2(𝑥)] ≤ 𝑐
√︀
log(𝑘) max

𝑖∈[𝑘]
𝜃(𝑣𝑖,𝑢𝑖) ,

where 𝑐 > 0 is some universal constant.903

Proof. To simplify notation, denote 𝜃 = max𝑖∈[𝑘] 𝜃(𝑣𝑖,𝑢𝑖). We first observe that it suffices to prove904

the upper bound on the probability of 𝐶1(𝑥) ̸= 𝐶2(𝑥) for sufficiently small values of 𝜃. Indeed, if905

we have that the bound is true for 𝜃 smaller than some 𝜃0 we can then form a path of sufficiently large906

length 𝑁 (in particular we need 𝜃/𝑁 ≤ 𝜃0) starting from the vectors 𝑣1, . . . ,𝑣𝑘 to the final vectors907

𝑢1, . . . ,𝑢𝑘, where at each step we only rotate the vectors by at most 𝜃/𝑁 ≤ 𝜃0. By the triangle908

inequality, we immediately obtain that the probability that 𝐶1(𝑥) ̸= 𝐶2(𝑥) is at most equal to the909

sum of the probabilities of the intermediate steps which is at most
∑︀𝑁

𝑖=1 𝑐
√︀
log(𝑘) 𝜃

𝑁 = 𝑐
√︀

log(𝑘)𝜃.910

Notice in the above argument the constant 𝜃0 can be arbitrarily small and may also depend on 𝑘 and911

𝑑.912

We define the indicator of the positive orthant in 𝑘 dimensions to be 𝑅(𝑡) =
∏︀𝑘

𝑖=1 1{𝑡𝑖 ≥ 0}. Using913

this notation, we have that the cone indicator can be written as 𝐶1(𝑥) = 𝑅(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) =914

𝑅(𝑉 𝑥), where 𝑉 is the 𝑘 × 𝑑 matrix whose 𝑖-th row is the vector 𝑣𝑖. Moreover, we define the 𝑖-th915

face of the cone 𝑅(𝑉 𝑥) to be916

𝐹𝑖(𝑉 𝑥) = 𝑅(𝑉 𝑥) 1{𝑣𝑖 · 𝑥 = 0} .

We will first handle the case where only one of the normal vectors 𝑣𝑖 changes. We show the following917

claim.918

Claim 10. Let 𝑣1, . . . ,𝑣𝑘 ∈ R𝑑 and 𝑟 ∈ R𝑑 with 𝜃(𝑣1, 𝑟) ≤ 𝜃 for some sufficiently small 𝜃 ∈919

(0, 𝜋/2). It holds that920

Pr
𝑥∼𝒩𝑑

[𝑅(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) ̸= 𝑅(𝑟 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥)] ≤ 𝑐 · 𝜃 · Γ(𝐹1)

√︃
log

(︂
1

Γ(𝐹1)
+ 1

)︂
,

where 𝐹1 is the face with 𝑣1 · 𝑥 = 0 of the cone 𝑅(𝑉 𝑥) and 𝑐 is some universal constant.921
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𝑟

𝑣1𝑞

Figure 1: The vectors 𝑟,𝑣1 and 𝑞 and the disagreement region of the halfspaces with normal vectors
𝑟 and 𝑣1.

Proof. We have922

Pr
𝑥∼𝒩𝑑

[𝑅(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) ̸= 𝑅(𝑟 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥)]

= E
𝑥∼𝒩𝑑

[|𝑅(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥)−𝑅(𝑟 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥)|]

= E
𝑥∼𝒩𝑑

[𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) |1{𝑣1 · 𝑥 ≥ 0} − 1{𝑟 · 𝑥 ≥ 0}|] .

We have that |1{𝑣1 · 𝑥 ≥ 0} − 1{𝑟 · 𝑥 ≥ 0}| = 1{(𝑣1 · 𝑥)(𝑟 · 𝑥) < 0}, i.e., this is the event923

that the halfspaces 1{𝑣1 · 𝑥 ≥ 0} and 1{𝑟 · 𝑥 ≥ 0} disagree. Let 𝑞 be the normalized projection924

of 𝑟 onto the orthogonal complement of 𝑣1, i.e., 𝑞 = proj𝑣⊥
1
𝑟/‖proj𝑣⊥

1
𝑟‖2. We have that 𝑣1925

and 𝑞 is an orthonormal basis of the subspace spanned by the vectors 𝑣1 and 𝑟. We have that926

𝑟 = cos 𝜃(𝑣1, 𝑟)𝑣1 + sin 𝜃(𝑣1, 𝑟)𝑞. Moreover, we have that the region (𝑣1 · 𝑥)(𝑟 · 𝑥) < 0 is equal927

to928

{0 < 𝑣1 · 𝑥 < −(𝑞 · 𝑥) tan 𝜃(𝑣1, 𝑟)} ∪ {−(𝑞 · 𝑥) tan 𝜃(𝑣1, 𝑟) < 𝑣1 · 𝑥 < 0} .

Thus, we have that the disagreement region (𝑣1 · 𝑥)(𝑟 · 𝑥) < 0 is a subset of the region {|𝑣1 · 𝑥| ≤929

|𝑞 · 𝑥| tan 𝜃(𝑣1, 𝑟)}. Since tan 𝜃(𝑣1, 𝑟) ≤ 𝜃 and we have that 𝜃 is sufficiently small we can also930

replace the above region by the larger region: {|𝑣1 · 𝑥| ≤ 2𝜃|𝑞 · 𝑥|}. Therefore, we have931

E
𝑥∼𝒩𝑑

[𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) 1{(𝑣1 · 𝑥)(𝑟 · 𝑥) < 0}}]

≤ E
𝑥∼𝒩𝑑

[𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) 1{|𝑣1 · 𝑥| ≤ 2𝜃|𝑞 · 𝑥|}] .

The derivative of the above expression with respect to 𝜃 is equal to932

E
𝑥∼𝒩𝑑

[︂
𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) 𝛿

(︂
|𝑣1 · 𝑥|
2|𝑞 · 𝑥|

− 𝜃

)︂]︂
,

where 𝛿(𝑡) is the Dirac delta function. At 𝜃 = 0 and using the property that 𝛿(𝑡/𝑎) = 𝑎𝛿(𝑡), we have933

that the above derivative is equal to934

2 E
𝑥∼𝒩𝑑

[𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) |𝑞 · 𝑥| 𝛿(|𝑣1 · 𝑥|)] .

Notice that, if we did not have the term |𝑞 · 𝑥|, the above expression would be exactly equal to two935

times the Gaussian surface area of the face with 𝑣1 · 𝑥 = 0, i.e., it would be equal to 2Γ(𝐹1). We936

now show that this extra term of |𝑞 · 𝑥| can only increase the above surface integral by at most a937
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logarithmic factor. We have that938

E
𝑥∼𝒩𝑑

[𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) |𝑞 · 𝑥| 𝛿(|𝑣1 · 𝑥|)] =
∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|𝑑𝜇(𝑥)

≤
∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|1{|𝑞 · 𝑥| ≤ 𝜉}𝑑𝜇(𝑥) +
∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|1{|𝑞 · 𝑥| ≥ 𝜉}𝑑𝜇(𝑥)

≤ 𝜉

∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)𝑑𝜇(𝑥) +

∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|1{|𝑞 · 𝑥| ≥ 𝜉}𝑑𝜇(𝑥) ,

where 𝑑𝜇(𝑥) is the standard surface measure in R𝑑. The first term above is exactly equal to the939

Gaussian surface area of the face 𝐹1. To bound from above the second term we can use the fact that940

the face 𝐹1 is a subset of the hyperplane 𝑣1 · 𝑥 = 0, i.e., it holds that 𝐹1 ⊆ {𝑥 : |𝑣1 · 𝑥| = 0}. To941

simplify notation we may assume that 𝑣1 = 𝑒1 and 𝑞 = 𝑒2 (recall that 𝑣1 and 𝑞 are orthogonal unit942

vectors), and in this case we obtain943 ∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|1{|𝑞 · 𝑥| ≥ 𝜉}𝑑𝜇(𝑥) ≤
∫︁
𝑥1=0

𝜑𝑑(𝑥)|𝑥2|1{|𝑥2| ≥ 𝜉}𝑑𝜇(𝑥)

=
1√
2𝜋

∫︁ +∞

−∞
|𝑥2|1{|𝑥2| ≥ 𝜉}𝑒

−𝑥2
2/2

√
2𝜋

𝑑𝑥2

=
1

𝜋
𝑒−𝜉2/2 .

Combining the above bounds we obtain that the derivative with respect to 𝜃 of the expression944

E𝑥∼𝒩𝑑
[𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) 1{|𝑣1 · 𝑥| ≤ 2𝜃|𝑞 · 𝑥|}] is equal to945

𝑑

𝑑𝜃

(︁
E

𝑥∼𝒩𝑑

[𝑅(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) 1{|𝑣1 · 𝑥| ≤ 2𝜃|𝑞 · 𝑥|}]
)︁⃒⃒⃒

𝜃=0
≤ 2𝜉Γ(𝐹1) +

2𝑒−𝜉2/2

𝜋
.

By picking 𝜉 =
√︀
2 log(1 + 1/Γ(𝐹1)), the result follows since up to introducing 𝑜(𝜃) error we can946

bound the term Pr𝑥∼𝒩𝑑
[𝑅(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) ̸= 𝑅(𝑟 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥)] by its derivative with947

respect to 𝜃 (evaluated at 0) times 𝜃.948

We can complete the proof of Lemma 13 using Claim 10. In order to bound the disagreement of the949

cones 𝐶1 and 𝐶2 we can start from 𝐶1 and change one of its vectors at a time so that we can use950

Claim 10 that can handle this case. For example, at the first step, we can swap 𝑣1 for 𝑢1 and use the951

triangle inequality to obtain that952

Pr
𝑥∼𝒩𝑑

[𝐶1(𝑥) ̸= 𝐶2(𝑥)] ≤ Pr
𝑥∼𝒩𝑑

[𝑅(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) ̸= 𝑅(𝑢1 · 𝑥,𝑣2 · 𝑥 . . . ,𝑣𝑘 · 𝑥)]

+ Pr
𝑥∼𝒩𝑑

[𝑅(𝑢1 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) ̸= 𝑅(𝑢1 · 𝑥,𝑢2 · 𝑥 . . . ,𝑢𝑘 · 𝑥)]

≤ 𝑐 · 𝜃 Γ(𝐹1)
√︀

log(1/Γ(𝐹1) + 1)

+ Pr
𝑥∼𝒩𝑑

[𝑅(𝑢1 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) ̸= 𝑅(𝑢1 · 𝑥,𝑢2 · 𝑥 . . . ,𝑢𝑘 · 𝑥)] ,

where 𝐹1 = 𝐹1(𝑉 𝑥) is the face with 𝑣1 · 𝑥 = 0 of the cone 𝐶1. Notice that we have replaced 𝑣1 by953

𝑢1 in the above bound. Our plan is to use the triangle inequality and continue replacing the vectors of954

𝐶1 by the vectors of 𝐶2 sequentially. To make this formal we define the matrix 𝐴(𝑖) ∈ R𝑘×𝑑 whose955

first 𝑖− 1 rows are the vectors 𝑢1, . . . ,𝑢𝑖−1 and its last 𝑘 − 𝑖+ 1 rows are the vectors 𝑣𝑖, . . . ,𝑣𝑘,956

i.e.,957

𝐴
(𝑖)
𝑗 =

{︂
𝑢𝑗 if 1 ≤ 𝑗 ≤ 𝑖− 1,

𝑣𝑗 if 𝑖 ≤ 𝑗 ≤ 𝑘 .

Notice that 𝐴(1) = 𝑉 and 𝐴(𝑘+1) = 𝑈 . Using the triangle inequality we obtain that958

Pr
𝑥∼𝒩𝑑

[𝐶1(𝑥) ̸= 𝐶2(𝑥)] ≤
𝑘∑︁

𝑖=1

Pr
𝑥∼𝒩𝑑

[𝑅(𝐴(𝑖)𝑥) ̸= 𝑅(𝐴(𝑖+1)𝑥)].

25



Since the matrices 𝐴(𝑖) and 𝐴(𝑖+1) only differ on one row, we can use Claim 10 to obtain the959

following bound:960

Pr
𝑥∼𝒩𝑑

[𝐶1(𝑥) ̸= 𝐶2(𝑥)] ≤ 𝑐 · 𝜃 ·
𝑘∑︁

𝑖=1

Γ(𝐹𝑖(𝐴
(𝑖)𝑥))

√︃
1

Γ(𝐹𝑖(𝐴(𝑖)𝑥))
+ 1 .

We now observe that the Gaussian surface area Γ(𝐹𝑖(𝐴
(𝑖)𝑥)) is a continuous function of the matrix961

𝐴(𝑖). By flattening the matrix 𝐴(𝑖) (since it is isomorphic to a vector 𝑧 ∈ R𝑛2

) and letting 𝑆𝑧 be the962

induced surface {𝑥 : 𝑅(𝐴(𝑖)𝑥) = 1 ∧ 𝑣𝑖 · 𝑥 = 0}, it suffices to show that963

lim
𝑤→𝑧

∫︁
𝜑𝑛(𝑥)1{𝑥 ∈ 𝑆𝑤}𝑑𝜇(𝑥) =

∫︁
𝜑𝑛(𝑥)1{𝑥 ∈ 𝑆𝑧}𝑑𝜇(𝑥) ,

by the smoothness of the surface 𝑆𝑧 . Consider a sequence of functions (𝑔𝑚) and vectors (𝑤𝑚) so964

that 𝑔𝑚(𝑥) = 𝜑𝑛(𝑥)1{𝑥 ∈ 𝑆𝑤𝑚
} and lim𝑚→∞ 𝑤𝑚 = 𝑧. Note that |𝑔𝑚(𝑥)| ≤ 1 everywhere.965

Hence, by the dominated convergence theorem, we have that966

lim
𝑚→∞

∫︁
𝑔𝑚(𝑥)𝑑𝜇(𝑥) =

∫︁
lim

𝑚→∞
𝑔𝑚(𝑥)𝑑𝜇(𝑥) =

∫︁
𝜑𝑛(𝑥) lim

𝑚→∞
1{𝑥 ∈ 𝑆𝑤𝑚

}𝑑𝜇(𝑥) .

Since the sequence consists of smooth surfaces, we have that lim𝑚→∞ 1{𝑥 ∈ 𝑆𝑤𝑚
} = 1{𝑥 ∈ 𝑆𝑧}967

and so the Gaussian surface area is continuous with respect to the matrix 𝐴(𝑖) for any 𝑖 ∈ [𝑘].968

Also, as 𝜃 → 0, we have that 𝐴(𝑖) → 𝑉 . This is because the sequence of matrices 𝐴(𝑖) de-969

pends only on the vectors 𝑢𝑗 and 𝑣𝑗 for 𝑗 ∈ [𝑘] and the following two properties hold true:970

𝜃 = max𝑗∈[𝑘] 𝜃(𝑣𝑗 ,𝑢𝑗) and all the vectors are unit. Hence, as 𝜃 tends to zero, they tend to be-971

come the same vectors and so any matrix 𝐴(𝑖) tends to become 𝑉 . Therefore, taking this limit we972

obtain that for 𝜃 → 0 it holds that973

lim
𝜃→0

Pr𝑥∼𝒩𝑑
[𝐶1(𝑥) ̸= 𝐶2(𝑥)]

𝜃
≤ 𝑐 ·

𝑘∑︁
𝑖=1

Γ(𝐹𝑖(𝑉 𝑥))
√︀

log (1/Γ(𝐹𝑖(𝑉 𝑥)) + 1) . (1)

We will now use the following lemma that shows that the surface area of any homogeneous polyhedral974

cone is independent of the number of faces 𝑘 and in fact is at most 1 for all 𝑘.975

Lemma 14 (Gaussian Surface Area of Homogeneous Cones [Naz03]). Let 𝐶 be a cone with apex at976

the origin (i.e., an intersection of arbitrarily many halfspaces all of whose boundaries contain the977

origin). Then 𝐶 has Gaussian surface area Γ(𝐶) at most 1.978

Using Lemma 14 we obtain that
∑︀𝑘

𝑖=1 Γ(𝐹𝑖(𝑉 𝑥)) ≤ 1. Next, we observe that, when979

the positive numbers 𝑎1, . . . , 𝑎𝑘 satisfy
∑︀𝑘

𝑖=1 𝑎𝑖 ≤ 1, it holds that
∑︀𝑘

𝑖=1 𝑎𝑖
√︀

log(1/𝑎𝑖) ≤980 √︁∑︀𝑘
𝑖=1 𝑎𝑖 log(1/𝑎𝑖) ≤

√︀
log(𝑘) (using the fact that the uniform distribution maximizes the entropy).981

Using this fact and Equation (1), we obtain982

lim
𝜃→0

Pr𝑥∼𝒩𝑑
[𝐶1(𝑥) ̸= 𝐶2(𝑥)]

𝜃
≤ 𝑐
√︀
log(𝑘) .

Thus, we have shown that, for sufficiently small 𝜃, it holds that Pr𝑥∼𝒩𝑑
[𝐶1(𝑥) ̸= 𝐶2(𝑥)] ≤983

𝑐
√︀

log(𝑘)𝜃, but, as we discussed in the start of the proof, the general bound follows directly from the984

bound for sufficiently small values of 𝜃 > 0.985

C Learning in Top-𝑟 Disagreement from Label Rankings986

We prove the next result which corresponds to a proper learning algorithm for LSF in the presence of987

bounded noise with respect to the top-𝑟 disagreement.988

Theorem 6 (Proper Top-𝑟 Learning Algorithm). Fix 𝜂 ∈ [0, 1/2), 𝑟 ∈ [𝑘] and 𝜖, 𝛿 ∈ (0, 1). Let 𝒟 be989

an 𝜂-noisy linear label ranking distribution satisfying the assumptions of Definition 2. There exists990

an algorithm that draws 𝑁 = ̃︀𝑂 (︁ 𝑑 𝑟𝑘
𝜖(1−2𝜂)6 log(1/𝛿)

)︁
samples from 𝒟, runs in poly(𝑁) time and,991

with probability at least 1− 𝛿, outputs a Linear Sorting function ℎ : R𝑑 → S𝑘 that is 𝜖-close in top-𝑟992

disagreement to the target.993
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The main result of this section is the next lemma, which directly implies the above theorem (using994

the same steps as the proof of Theorem 5).995

Lemma 15 (Top-𝑟 Misclassification). Let 𝑟 ∈ [𝑘]. Consider two matrices 𝑈 ,𝑉 ∈ R𝑘×𝑑 and let 𝒩𝑑996

be the standard Gaussian in 𝑑 dimensions. We have that997

Pr
𝑥∼𝒩𝑑

[𝜎1..𝑟(𝑈𝑥) ̸= 𝜎1..𝑟(𝑉 𝑥)] ≤ 𝑐 · 𝑘 · 𝑟 ·
√︀
log(𝑘𝑟) ·max

𝑖 ̸=𝑗
𝜃(𝑈𝑖 −𝑈𝑗 ,𝑉𝑖 − 𝑉𝑗) ,

where 𝑐 > 0 is some universal constant.998

Proof. Let us set 𝜎1..𝑟(𝑊𝑥) denote the ordering of the top-𝑟 alternatives in the ranking 𝜎(𝑊𝑥).999

Moreover, recall that 𝜎ℓ(𝑊𝑥) denotes the alternative in the ℓ-th position of the ranking 𝜎(𝑊𝑥). For1000

two matrices 𝑈 ,𝑉 ∈ R𝑘×𝑑, we have that1001

Pr
𝑥∼𝒩𝑑

[𝜎1..𝑟(𝑈𝑥) ̸= 𝜎1..𝑟(𝑉 𝑥)] =

𝑘∑︁
𝑗=1

Pr
𝑥∼𝒩𝑑

[︃
𝑟⋃︁

ℓ=1

{𝑗 = 𝜎ℓ(𝑈𝑥), 𝑗 ̸= 𝜎ℓ(𝑉 𝑥)}

]︃
.

The first step is to understand the geometry of the set
⋃︀𝑟

ℓ=1{𝑥 : 𝑗 = 𝜎ℓ(𝑈𝑥)} = {𝑥 : 𝑗 ∈1002

𝜎1..𝑟(𝑈𝑥)} for 𝑗 ∈ [𝑘]. We have that this set is equal to1003

𝒯 (𝑗)
𝑈 =

⋃︁
𝑆⊆[𝑘]:|𝑆|≤𝑟−1

⋂︁
𝑖∈𝑆

{𝑥 : (𝑈𝑖 −𝑈𝑗) · 𝑥 ≥ 0} ∩
⋂︁
𝑖/∈𝑆

{𝑥 : (𝑈𝑖 −𝑈𝑗) · 𝑥 ≤ 0} .

In words, 𝒯 (𝑗)
𝑈 iterates over any possible collection of alternatives that can win the element 𝑗1004

(they lie in the set of top elements 𝑆) and the remaining elements lose when compared with 𝑗1005

(they lie in the complement set [𝑘] ∖ 𝑆). Overloading the notation, let us define the mapping1006

𝑇 (𝑡) = 𝑇 (𝑡1, ..., 𝑡𝑘) =
∑︀

𝑆⊆[𝑘]:|𝑆|≤𝑟−1

∏︀
𝑖∈𝑆 1{𝑡𝑖 ≥ 0}

∏︀
𝑖/∈𝑆 1{𝑡𝑖 ≤ 0}. Using this mapping,1007

we can define the indicator of the set 𝑇 (𝑗)
𝑈 as 𝑇 ((𝑈1 − 𝑈𝑗) · 𝑥, . . . , (𝑈𝑘 − 𝑈𝑗) · 𝑥). The top-𝑟1008

disagreement Pr𝑥∼𝒩𝑑
[𝑗 ∈ 𝜎1..𝑟(𝑈𝑥), 𝑗 /∈ 𝜎1..𝑟(𝑉 𝑥)] is equal to:1009

Pr
𝑥∼𝒩𝑑

[𝑇 ((𝑈1 −𝑈𝑗) · 𝑥, ..., (𝑈𝑘 −𝑈𝑗) · 𝑥) = 1, 𝑇 ((𝑉1 − 𝑉𝑗) · 𝑥, ..., (𝑉𝑘 − 𝑉𝑗) · 𝑥) = 0] .

So we have that1010

Pr
𝑥∼𝒩𝑑

[𝜎1..𝑟(𝑈𝑥) ̸= 𝜎1..𝑟(𝑉 𝑥)] =

𝑘∑︁
𝑗=1

Pr
𝑥∼𝒩𝑑

[𝑇𝑗(𝑈𝑥) = 1, 𝑇𝑗(𝑉 𝑥) = 0] ≤
𝑘∑︁

𝑗=1

Pr
𝑥∼𝒩𝑑

[𝑇𝑗(𝑈𝑥) ̸= 𝑇𝑗(𝑉 𝑥)] .

In order to show the desired bound, it suffices to prove the following two lemmas.1011

Lemma 16 (Disagreement Region). Consider a positive integer 𝑟 ≤ 𝑘. For any 𝑗 ∈ [𝑘], it holds that1012

lim
𝜃→0

Pr𝑥∼𝒩𝑑
[𝑇𝑗(𝑈𝑥) ̸= 𝑇𝑗(𝑉 𝑥)]

𝜃
≤ 𝑐 ·

∑︁
𝑖∈[𝑘]

Γ(𝐹 𝑗
𝑖 )

⎯⎸⎸⎷log

(︃
1

Γ(𝐹 𝑗
𝑖 )

+ 1

)︃
,

where 𝑐 > 0 is some constant and 𝐹 𝑗
𝑖 is the surface {𝑥 : 𝑗 ∈ 𝜎1..𝑟(𝑉 𝑥)} ∩ {𝑥 : 𝑉𝑖 · 𝑥 = 𝑉𝑗 · 𝑥}1013

for the matrix 𝑉 ∈ R𝑘×𝑑.1014

and,1015

Lemma 17. Let 𝐹 𝑗
𝑖 , 𝑟, 𝑘 as in the previous lemma. It holds that1016 ∑︁

𝑖∈[𝑘]

∑︁
𝑗∈[𝑘]

Γ(𝐹 𝑗
𝑖 ) ≤ 2𝑘𝑟 .

Applying these two lemmas, we get that1017

𝑍 := lim
𝜃→0

∑︀
𝑗∈[𝑘] Pr𝑥∼𝒩𝑑

[𝑇𝑗(𝑈𝑥) ̸= 𝑇𝑗(𝑉 𝑥)]

𝜃
≤ 𝑐 ·

∑︁
𝑗∈[𝑘]

∑︁
𝑖∈[𝑘]

Γ(𝐹 𝑗
𝑖 )

⎯⎸⎸⎷log

(︃
1

Γ(𝐹 𝑗
𝑖 )

+ 1

)︃
.
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Let us set Γ′(𝐹 𝑗
𝑖 ) = Γ(𝐹 𝑗

𝑖 )/(2𝑘𝑟). Then we have that1018

𝑍 ≤ 2𝑐𝑘𝑟 ·
∑︁
𝑗∈[𝑘]

∑︁
𝑖∈[𝑘]

Γ′(𝐹 𝑗
𝑖 )

⎯⎸⎸⎷log

(︃
1

2𝑘𝑟 · Γ′(𝐹 𝑗
𝑖 )

+ 1

)︃
.

It suffices to bound the quantity1019 ∑︁
𝑗∈[𝑘]

∑︁
𝑖∈[𝑘]

Γ′(𝐹 𝑗
𝑖 )

⎯⎸⎸⎷log

(︃
1

Γ′(𝐹 𝑗
𝑖 )

+ 1

)︃
= 𝑂

(︁
𝑘𝑟
√︀

log(𝑘𝑟)
)︁
,

where we used a similar “entropy-like” inequality as we did in the top-1 case. This yields (by recalling1020

that it is sufficient to consider only the case of arbitrarily small angles, as in the top-1 case) that1021

Pr
𝑥∼𝒩𝑑

[𝜎1..𝑟(𝑈𝑥) ̸= 𝜎1..𝑟(𝑉 𝑥)] ≤ 𝑐 𝑟𝑘
√︀
log(𝑘𝑟) ·max

𝑖 ̸=𝑗
𝜃(𝑈𝑖 −𝑈𝑗 ,𝑉𝑖 − 𝑉𝑗) ,

for some universal constant 𝑐.1022

C.1 The proof of Lemma 161023

We proceed with the proof of the key lemma concerning the disagreement region. We first show the1024

following claim where we only change a single vector. Recall that1025

𝑇 (𝑉 𝑥) =
∑︁

𝑆:|𝑆|≤𝑟−1

∏︁
𝑖∈𝑆

1{𝑣𝑖 · 𝑥 ≥ 0}
∏︁
𝑖/∈𝑆

1{𝑣𝑖 · 𝑥 ≤ 0} .

We will be interested in the surface 𝐹1 := 𝐹1(𝑉 𝑥) = 𝑇 (𝑉 𝑥)1{𝑣1 · 𝑥 = 0}.1026

Claim 11. Let 𝑣1, . . . ,𝑣𝑘 ∈ R𝑑 and 𝑟 ∈ R𝑑 with 𝜃(𝑣1, 𝑟) ≤ 𝜃 for some sufficiently small 𝜃 ∈1027

(0, 𝜋/2). It holds that1028

Pr
𝑥∼𝒩𝑑

[𝑇 (𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) ̸= 𝑇 (𝑟 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥)] ≤ 𝑐 · 𝜃 · Γ(𝐹1)

√︃
log

(︂
1

Γ(𝐹1)
+ 1

)︂
,

where 𝐹1 is the surface 𝑇 (𝑉 𝑥) ∩ {𝑥 : 𝑣1 · 𝑥 = 0} and 𝑐 is some universal constant.1029

Proof. We first decompose the sum of 𝑇 (𝑉 𝑥) depending on whether 1 ∈ 𝑆 or not. Hence, we have1030

that 𝑇 (𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) = 𝑇+(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) + 𝑇−(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) where1031

𝑇+(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) =
∑︁

𝑆⊆[𝑘]:|𝑆|≤𝑟−1,1∈𝑆

∏︁
𝑖∈𝑆

1{𝑣𝑖 · 𝑥 ≥ 0}
∏︁
𝑖/∈𝑆

1{𝑣𝑖 · 𝑥 ≤ 0}

=
∑︁

𝑆⊆[𝑘]:|𝑆|≤𝑟−1,1∈𝑆

1{𝑣1 · 𝑥 ≥ 0} ·
∏︁

𝑖∈𝑆∖{1}

1{𝑣𝑖 · 𝑥 ≥ 0}
∏︁
𝑖/∈𝑆

1{𝑣𝑖 · 𝑥 ≤ 0}

= 1{𝑣1 · 𝑥 ≥ 0} ·
∑︁

𝑆⊆[𝑘]:|𝑆|≤𝑟−1,1∈𝑆

∏︁
𝑖∈𝑆∖{1}

1{𝑣𝑖 · 𝑥 ≥ 0}
∏︁
𝑖/∈𝑆

1{𝑣𝑖 · 𝑥 ≤ 0}

=: 1{𝑣1 · 𝑥 ≥ 0} ·𝐺+(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) ,
and similarly1032

𝑇−(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) = 1{𝑣1 · 𝑥 ≤ 0} ·
∑︁

𝑆⊆[𝑘]:|𝑆|≤𝑟−1,1/∈𝑆

∏︁
𝑖∈𝑆

1{𝑣𝑖 · 𝑥 ≥ 0}
∏︁

𝑖/∈𝑆∖{1}

1{𝑣𝑖 · 𝑥 ≤ 0}

=: 1{𝑣1 · 𝑥 ≤ 0} ·𝐺−(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) .
Notice that the indicator 𝐺𝑠 does not depend on the alternative 1 for 𝑠 ∈ {−,+}. Since 𝑇 : R𝑘 →1033

{0, 1}, we have that1034

Pr
𝑥∼𝒩𝑑

[𝑇 (𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) ̸= 𝑇 (𝑟 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥)]

= E
𝑥∼𝒩𝑑

[|𝑇 (𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥)− 𝑇 (𝑟 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥)|]

≤
∑︁

𝑠∈{−,+}

E
𝑥∼𝒩𝑑

[|𝑇 𝑠(𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥)− 𝑇 𝑠(𝑟 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥)|]

=
∑︁

𝑠∈{−,+}

E
𝑥∼𝒩𝑑

[𝐺𝑠(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) · |1{𝑠 · 𝑣1 · 𝑥 ≥ 0} − 1{𝑠 · 𝑟 · 𝑥 ≥ 0}|] .
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Let us focus on the case 𝑠 = +. The difference between the two indicators in the last line of the1035

above equation corresponds to the event that the halfspaces 1{𝑣1 ·𝑥 ≥ 0} and 1{𝑟 ·𝑥 ≥ 0} disagree.1036

Hence, we have that |1{𝑣1 · 𝑥 ≥ 0} − 1{𝑟 · 𝑥 ≥ 0}| = 1{(𝑣1 · 𝑥)(𝑟 · 𝑥) < 0}. Note that the above1037

indicator depends on both 𝑣1 and 𝑟. We would like to work only with one of these two vectors. To1038

this end, let us introduce 𝑞, the normalized projection of 𝑟 onto the orthogonal complement of 𝑣1, i.e.,1039

𝑞 = proj𝑣⊥
1
𝑟/‖proj𝑣⊥

1
𝑟‖2. We have that 𝑣1 and 𝑞 is an orthonormal basis of the subspace spanned1040

by the vectors 𝑣1 and 𝑟. Notice that 𝑟 = cos 𝜃(𝑣1, 𝑟)𝑣1 + sin 𝜃(𝑣1, 𝑟)𝑞, by the construction of 𝑞.1041

Our goal is to understand the structure of the region (𝑣1 · 𝑥)(𝑟 · 𝑥) < 0. This set is equal to1042

{0 < 𝑣1 · 𝑥 < −(𝑞 · 𝑥) tan 𝜃(𝑣1, 𝑟)} ∪ {−(𝑞 · 𝑥) tan 𝜃(𝑣1, 𝑟) < 𝑣1 · 𝑥 < 0} .

To see this, we have that (𝑣1 ·𝑥)(𝑟 ·𝑥) = (𝑣1 ·𝑥)(cos 𝜃(𝑣1, 𝑟)𝑣1 ·𝑥+sin 𝜃(𝑣1, 𝑟)𝑞 ·𝑥). This quantity1043

must be negative. The left-hand set considers the case where 𝑣1 ·𝑥 > 0 and so tan 𝜃(𝑣1, 𝑟)(𝑞 ·𝑥) <1044

−𝑣1 · 𝑥. We obtain the right-hand set in a similar way. Thus, we have that the disagreement region1045

(𝑣1 · 𝑥)(𝑟 · 𝑥) < 0 is a subset of the region {|𝑣1 · 𝑥| ≤ |𝑞 · 𝑥| tan 𝜃(𝑣1, 𝑟)}. Since tan 𝜃(𝑣1, 𝑟) ≤ 𝜃1046

and we have that 𝜃 is sufficiently small we can also replace the above region by the larger region:1047

{|𝑣1 · 𝑥| ≤ 2𝜃|𝑞 · 𝑥|}. Therefore, we have1048

E
𝑥∼𝒩𝑑

[︀
𝐺+(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) 1{(𝑣1 · 𝑥)(𝑟 · 𝑥) < 0}}

]︀
≤ E

𝑥∼𝒩𝑑

[︀
𝐺+(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) 1{|𝑣1 · 𝑥| ≤ 2𝜃|𝑞 · 𝑥|}

]︀
.

From this point, the proof goes as in the top-1 case. In total, we will get that1049

Pr
𝑥∼𝒩𝑑

[𝑇 (𝑣1 · 𝑥, . . . ,𝑣𝑘 · 𝑥) ̸= 𝑇 (𝑟 · 𝑥,𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥)]

= E
𝑥∼𝒩𝑑

[︀
(𝐺+(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥) +𝐺−(𝑣2 · 𝑥, . . . ,𝑣𝑘 · 𝑥)) |𝑞 · 𝑥| 𝛿(|𝑣1 · 𝑥|)

]︀
≤ 2

∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|𝑑𝜇(𝑥)

≤ 2

∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|1{|𝑞 · 𝑥| ≤ 𝜉}𝑑𝜇(𝑥) + 2

∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|1{|𝑞 · 𝑥| ≥ 𝜉}𝑑𝜇(𝑥)

≤ 2𝜉

∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)𝑑𝜇(𝑥) + 2

∫︁
𝑥∈𝐹1

𝜑𝑑(𝑥)|𝑞 · 𝑥|1{|𝑞 · 𝑥| ≥ 𝜉}𝑑𝜇(𝑥) ,

where 𝑑𝜇(𝑥) is the standard surface measure in R𝑑. Let us explain the first inequality above. Note1050

that the space induced by 𝐺−(𝑣2 ·𝑥, . . . ,𝑣𝑘 ·𝑥) contains the space induced by 𝐺+(𝑣2 ·𝑥, . . . ,𝑣𝑘 ·𝑥).1051

Hence, in the integration, we can integrate over the surface 𝐹1 = 𝑇 (𝑉 𝑥) ∩ 1{𝑥 : 𝑣1 · 𝑥 = 0}1052

twice. Essentially, this surface corresponds to 1{𝑣1 · 𝑥 = 0} ·
∑︀

𝑆⊆[𝑘]∖{1}:|𝑆|≤𝑟−1

∏︀
𝑖∈𝑆 1{𝑣𝑖 · 𝑥 ≥1053

0}
∏︀

𝑖/∈𝑆 1{𝑣𝑖 · 𝑥 ≤ 0}. Applying the steps of the top-1 case, we can obtain the desired bound in1054

terms of the Gaussian surface area of 𝐹1.1055

Next, for fixed 𝑗 ∈ [𝑘], we can apply the above claim sequentially (as we did in the end of the top-11056

case) to get1057

lim
𝜃→0

Pr𝑥∼𝒩𝑑
[𝑇𝑗(𝑈𝑥) ̸= 𝑇𝑗(𝑉 𝑥)]

𝜃
≤ 𝑐 ·

∑︁
𝑖∈[𝑘]

Γ(𝐹 𝑗
𝑖 )

⎯⎸⎸⎷log

(︃
1

Γ(𝐹 𝑗
𝑖 )

+ 1

)︃
,

for some small constant 𝑐 > 0.1058

C.2 The proof of Lemma 171059

Using the above result, we get that it suffices to control the value Γ(𝐹 𝑗
𝑖 ), where 𝐹 𝑗

𝑖 is the surface1060

of 𝑇𝑗(𝑉 𝑥) ∩ {𝑥 : 𝑉𝑖 · 𝑥 = 𝑉𝑗 · 𝑥} for the matrix 𝑉 and 𝑖, 𝑗 ∈ [𝑘]. We next have to control the1061

Gaussian surface area of the induced shape, i.e., the quantity1062

Γ({𝑥 : 𝑗 ∈ 𝜎1..𝑟(𝑉 𝑥)} ∩ {𝑥 : 𝑉𝑖 · 𝑥 = 𝑉𝑗 · 𝑥}) .

To this end, we give the next lemma.1063
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Lemma 18. Let 𝑟 ≤ 𝑘 with 𝑟, 𝑘 ∈ N. For any matrix 𝑉 ∈ R𝑘×𝑑 and 𝑖, 𝑗 ∈ [𝑘], there exists a matrix1064

𝑄 = 𝑄(𝑖) ∈ R𝑘×𝑑 which depends only on 𝑖 such that1065

Γ(𝐹 𝑗
𝑖 ) := Γ({𝑥 : 𝑗 ∈ 𝜎1..𝑟(𝑉 𝑥)} ∩ {𝑥 : 𝑉𝑖 · 𝑥 = 𝑉𝑗 · 𝑥}) ≤ 2 · Pr

𝑥∼𝒩𝑑

[𝑗 ∈ 𝜎1..𝑟(𝑄𝑥)] .

Before proving this result, let us see how to apply it in order to get Lemma 17. We will have that1066 ∑︁
𝑖∈[𝑘]

∑︁
𝑗∈[𝑘]

Γ(𝐹 𝑗
𝑖 ) =

∑︁
𝑖∈[𝑘]

∑︁
𝑗∈[𝑘]

Γ({𝑥 : 𝑗 ∈ 𝜎1..𝑟(𝑉 𝑥)} ∩ {𝑥 : 𝑉𝑖 · 𝑥 = 𝑉𝑗 · 𝑥})

≤ 2
∑︁
𝑖∈[𝑘]

∑︁
𝑗∈[𝑘]

Pr
𝑥∼𝒩𝑑

[𝑗 ∈ 𝜎1..𝑟(𝑄
(𝑖)𝑥)]

= 2
∑︁
𝑖∈[𝑘]

E
𝑥∼𝒩𝑑

[|𝜎1..𝑟(𝑄
(𝑖)𝑥)|]

= 2
∑︁
𝑖∈[𝑘]

𝑟

= 2𝑘𝑟 .

Proof of Lemma 18. For this proof, we fix 𝑖, 𝑗 ∈ [𝑘]. The first step is to design the matrix 𝑄. As a1067

first observation, we can subtract the vector 𝑉𝑖 from each weight vector and do not affect the resulting1068

orderings. Second, we can assume that the weight vectors that correspond to indices which 𝑗 beats1069

are unit. Let us be more specific Assume that initially we have that1070

(𝑉𝑗 − 𝑉ℓ) · 𝑥 ≥ 0 .

The first observation gives that1071

(𝑉𝑗 − 𝑉𝑖) · 𝑥 ≥ (𝑉ℓ − 𝑉𝑖) · 𝑥 .

Let us set ̃︀𝑄 the intermediate matrix with rows 𝑉𝑗 − 𝑉𝑖. The second observation states that the1072

inequalities where 𝑗 beats some index ℓ are not affected by normalization. Note that ̃︀𝑄𝑗 · 𝑥 = 0 and1073

hence ̃︀𝑄ℓ · 𝑥 ≤ 0. Hence, dividing with non-negative numbers will not affect the order of these two1074

values, i.e.,1075 ̃︀𝑄𝑗 · 𝑥
‖ ̃︀𝑄𝑗‖2

≥
̃︀𝑄ℓ · 𝑥
‖ ̃︀𝑄ℓ‖2

.

Note that the above ordering is 𝑥-dependent, since the indices that 𝑗 beats depend on 𝑥. However,1076

we can normalize any row of ̃︀𝑄 without affecting the fact that the element 𝑗 is top-𝑟 (since the sign1077

of the inner products is not affected by normalization). This transformation yields a matrix 𝑄 = 𝑄(𝑖)1078

and depends only on 𝑖 (crucially, it is independent of 𝑗). For simplicity, we will omit the index 𝑖 in1079

what follows. For this matrix, we have that1080

{𝑥 : 𝑗 ∈ 𝜎1..𝑟(𝑄𝑥),𝑄𝑗 · 𝑥 = 0} = {𝑥 : 𝑗 ∈ 𝜎1..𝑟(𝑉 𝑥),𝑉𝑖 · 𝑥 = 𝑉𝑗 · 𝑥} .

We will now prove that1081

Pr
𝑥∼𝒩𝑑

[𝑗 ∈ 𝜎1..𝑟(𝑄𝑥)] ≥ Γ(𝐹 𝑗
𝑖 )

2
.

Let us fix some 𝑥 and set 𝑥‖ = proj𝑄𝑗
𝑥 and 𝑥⊥ = proj𝑄⊥

𝑗
𝑥. We assume that 𝑥 lies in the set1082

{𝑥 : 𝑗 ∈ 𝜎1..𝑟(𝑄𝑥)}. This implies that there exist an index set 𝐼 of size at least 𝑘− 𝑟 so that if ℓ ∈ 𝐼1083

then1084

𝑄𝑗 · 𝑥‖ +𝑄𝑗 · 𝑥⊥ ≥ 𝑄ℓ · 𝑥‖ +𝑄ℓ · 𝑥⊥ .

Let us condition on the event1085

𝑄𝑗 · 𝑥⊥ ≥ 𝑄ℓ · 𝑥⊥ .

We hence get that1086

𝑄𝑗 · 𝑥‖ = (𝑄𝑗 ·𝑄𝑗) · (𝑄𝑗 · 𝑥) ≥ 𝑄ℓ · 𝑥‖ = (𝑄ℓ ·𝑄𝑗) · (𝑄𝑗 · 𝑥)
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Using that 𝑄𝑗 is unit, that the inner product between 𝑄ℓ and 𝑄𝑗 is at most one and that 𝑄𝑗 · 𝑥 is a1087

univariate Gaussian, we get that1088

Pr
𝑧∼𝒩 (0,1)

[𝑧 · (1−𝑄ℓ ·𝑄𝑗) ≥ 0] = 1/2 .

The above discussion implies that1089

Pr
𝑥∼𝒩𝑑

[𝑗 ∈ 𝜎1..𝑟(𝑄𝑥)] = Pr
𝑥∼𝒩𝑑

[(∀ℓ ∈ 𝐼)𝑄𝑗 · 𝑥‖ +𝑄𝑗 · 𝑥⊥ ≥ 𝑄ℓ · 𝑥‖ +𝑄ℓ · 𝑥⊥]

and so Pr𝑥∼𝒩𝑑
[𝑗 ∈ 𝜎1..𝑟(𝑄𝑥)] equals to1090

Pr
𝑥∼𝒩𝑑

[(∀ℓ ∈ 𝐼)𝑄𝑗 ·𝑥‖ ≥ 𝑄𝑗 ·𝑥‖ | (∀ℓ ∈ 𝐼)𝑄𝑗 ·𝑥⊥ ≥ 𝑄ℓ ·𝑥⊥]· Pr
𝑥∼𝒩𝑑

[(∀ℓ ∈ 𝐼)𝑄𝑗 ·𝑥⊥ ≥ 𝑄ℓ ·𝑥⊥] .

However, in the above product, we have that the first term is 1/2 and the second term is the probability1091

that 𝑗 ∈ 𝜎1..𝑟(𝑄𝑥⊥), i.e.,1092

Pr
𝑥∼𝒩𝑑

[𝑗 ∈ 𝜎1..𝑟(𝑄𝑥)] ≥ Pr[𝑗 ∈ 𝜎1..𝑟(𝑄𝑥⊥)]

2
= Γ(𝐹 𝑗

𝑖 )/2 ,

since the space in the RHS is low-dimensional and corresponds to the desired surface.1093

D Distribution-Free Lower Bounds for Top-1 Disagreement Error1094

We begin with some definitions concerning the PAC Label Ranking setting. Let 𝒳 be an instance1095

space and 𝒴 = S𝑘 be the space of labels, which are rankings over 𝑘 elements. A sorting function or1096

hypothesis is a mapping ℎ : 𝒳 → S𝑘. We denote by ℎ1(𝑥) the top-1 element of the ranking ℎ(𝑥). A1097

hypothesis class is a set of classifiers ℋ ⊂ S𝒳𝑘 .1098

Top-1 Disagreement Error. The top-1 disagreement error with respect to a joint distribution 𝒟 over1099

𝒳 × S𝑘 equals to the probability Pr(𝑥,𝜎)∼𝒟[ℎ1(𝑥) ̸= 𝜎−1(1)]. We mainly consider learning in the1100

realizable case, which means that there is ℎ⋆ ∈ ℋ which has (almost surely) zero error. Therefore, we1101

can focus on the marginal distribution 𝒟𝑥 over 𝒳 and denote the top-1 disagreement error of a sorting1102

function ℎ with respect to the true hypothesis ℎ⋆ by Err𝒟𝑥,ℎ⋆(ℎ) := Pr𝑥∼𝒟𝑥 [ℎ1(𝑥) ̸= ℎ⋆
1(𝑥)].1103

A learning algorithm is a function 𝒜 that receives a training set of 𝑚 instances, 𝑆 ∈ 𝒳𝑚, together1104

with their labels according to ℎ⋆. We denote the restriction of ℎ⋆ to the instances in 𝑆 by ℎ⋆|𝑆 . The1105

output of the algorithm 𝒜, denoted 𝒜(𝑆, ℎ⋆|𝑆) is a sorting function. A learning algorithm is proper1106

if it always outputs a hypothesis from ℋ.1107

The top-1 PAC Label Ranking sample complexity of a learning algorithm 𝒜 is the function1108

𝑚
(1)
𝒜,ℋ defined as follows: for every 𝜖, 𝛿 > 0, 𝑚(1)

𝒜,ℋ(𝜖, 𝛿) is the minimal integer such that for1109

every 𝑚 ≥ 𝑚
(1)
𝒜,ℋ(𝜖, 𝛿), every distribution 𝒟𝑥 on 𝒳 , and every target hypothesis ℎ⋆ ∈ ℋ,1110

Pr𝑆∼𝒟𝑚
𝑥
[Err𝒟𝑥,ℎ⋆(𝒜(𝑆, ℎ⋆|𝑆)) > 𝜖] ≤ 𝛿. In this case, we say that the learning algorithm (𝜖, 𝛿)-1111

learns the class of sorting functions ℋ with respect to the top-1 disagreement error. If no integer1112

satisfies the inequality above, define 𝑚
(1)
𝒜 (𝜖, 𝛿) = ∞. ℋ is learnable with 𝒜 if for all 𝜖 and 𝛿 the1113

sample complexity is finite. The top-1 PAC Label Ranking sample complexity of a class ℋ is1114

𝑚
(1)
PAC,ℋ(𝜖, 𝛿) = inf𝒜 𝑚

(1)
𝒜,ℋ(𝜖, 𝛿), where the infimum is taken over all learning algorithms. Clearly,1115

the above top-1 definition can be extended to the top-𝑟 setting.1116

In this section, we show the next result. We denote by ℒ𝑑,𝑘 the class of Linear Sorting functions in 𝑑1117

dimensions with 𝑘 labels.1118

Theorem 7. In the realizable PAC Label Ranking setting, any algorithm that (𝜖, 𝛿)-learns the class1119

ℒ𝑑,𝑘 with respect to the top-1 disagreement error requires at least Ω((𝑑𝑘 + log(1/𝛿))/𝜖) samples.1120

D.1 Top-1 Ranking Natarajan Dimension1121

In order to establish the above result, we introduce a variant of the standard Natarajan dimension1122

[Nat89, BDCBL92, DSBDSS11, DSS14]. For a ranking 𝜋, we will also let 𝐿1(𝜋) its top-1 element1123

and 𝐿3..𝑘(𝜋) the ranking after deleting its top-2 part.1124
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Definition 3 (Top-1 Ranking Natarajan Dimension). Let ℋ ⊆ S𝒳𝑘 be a hypothesis class of sorting1125

functions and let 𝑆 ⊆ 𝒳 . We say that ℋ 𝑁 -shatters 𝑆 if there exist two mappings 𝑓1, 𝑓2 : 𝑆 → S𝑘1126

such that for every 𝑦 ∈ 𝑆, 𝐿1(𝑓1(𝑦)) ̸= 𝐿1(𝑓2(𝑦)) and 𝐿3..𝑘(𝑓1(𝑦)) = 𝐿3..𝑘(𝑓2(𝑦)) and for every1127

𝑇 ⊆ 𝑆, there exists a sorting function 𝑔 ∈ ℋ such that1128

(𝑖) ∀𝑥 ∈ 𝑇, 𝑔(𝑥) = 𝑓1(𝑥), and (𝑖𝑖) ∀𝑥 ∈ 𝑆 ∖ 𝑇, 𝑔(𝑥) = 𝑓2(𝑥) .

The top-1 Ranking Natarajan dimension of ℋ, denoted 𝑑
(1)
𝑁 (ℋ) is the maximal cardinality of a set1129

that is 𝑁 -shattered by ℋ.1130

First, we connect LR PAC learnability to the top-1 disagreement error with the notion of top-1 ranking1131

Natarajan dimension.1132

Theorem 8 (Top-1-Natarajan Lower Bounds Sample Complexity). In the realizable PAC Label1133

Ranking setting, we have for every hypothesis class ℋ ⊆ S𝒳𝑘1134

𝑚
(1)
PAC,ℋ(𝜖, 𝛿) = Ω

(︃
𝑑
(1)
𝑁 (ℋ) + ln(1/𝛿)

𝜖

)︃
.

Proof. Let ℋ ⊆ S𝒳𝑘 be a hypothesis of sorting functions of top-1-Natarajan dimension 𝑑
(1)
𝑁 = 𝑑𝑁 .1135

Consider the binary hypothesis class ℋbin = {0, 1}[𝑑𝑁 ] which contains all the classifiers from1136

[𝑑𝑁 ] = {1, ..., 𝑑𝑁} to {0, 1}. It suffices to show the following.1137

Claim 12. It holds that 𝑚(1)
PAC,ℋ(𝜖, 𝛿) ≥ 𝑚PAC,ℋbin

(𝜖, 𝛿).1138

This is sufficient since we have that 𝑚PAC,ℋbin
(𝜖, 𝛿) = Ω

(︁
VC(ℋbin)+ln(1/𝛿)

𝜖

)︁
and VC(ℋbin) = 𝑑𝑁 .1139

Let us now prove the claim.1140

We assume that the instance space is the set 𝒳 . Assume that 𝐴 is a learning algorithm for the1141

hypothesis class ℋ ⊆ S𝒳𝑘 and 𝐴bin is a learning algorithm for the associated binary class ℋbin. It1142

suffices to show that 𝐴 requires at least as many samples as 𝐴bin. In fact, we will show that whenever1143

𝐴bin errs, so does 𝐴. Let 𝑆 = {𝑠1, ..., 𝑠𝑑𝑁
}, 𝑓0, 𝑓1 be the set and the two functions that witness that1144

the top-1-Natarajan dimension of ℋ is 𝑑𝑁 . Given a training set (𝑥𝑖, 𝑦𝑖)𝑖∈[𝑚] ∈ ([𝑑𝑁 ]×{0, 1})𝑚, we1145

set 𝑔 : 𝒳 → S𝑘 be equal to the output of the algorithm 𝐴 with input (𝑠𝑥𝑖
, 𝑓𝑦𝑖

(𝑥𝑖))𝑖∈[𝑚] ∈ (𝑆×S𝑘)𝑚.1146

We also set 𝑓 be the output of the algorithm 𝐴bin with input (𝑥𝑖, 𝑦𝑖)𝑖∈[𝑚] by setting 𝑓(𝑖) = 11147

if and only if 𝐿1(𝑔(𝑠𝑖)) = 𝐿1(𝑓1(𝑠𝑖)). We will show that whenever 𝐴bin errs, so does 𝐴. Fix1148

(𝑥𝑖, 𝑦𝑖) ∈ 𝑆 × {0, 1}. Assume that 𝐴bin(𝑥𝑖) ̸= 𝑦𝑖 and say 𝑦𝑖 = 0. Then 𝑓(𝑖) = 1 and so1149

𝐿1(𝑔(𝑠𝑖)) = 𝐿1(𝑓1(𝑠𝑖)) ̸= 𝐿1(𝑓0(𝑠𝑖)). This implies that 𝐴 errs. The case 𝑦𝑖 = 1 is similar.1150

D.2 Lower Bound for top-1 disagreement error for LSFs1151

Theorem 9 (Top-1 Natarajan Dimension of LSFs). Consider the hypothesis class ℒ𝑑,𝑘 = {𝜎𝑊 :1152

R𝑑 → S𝑘 : 𝜎𝑊 (𝑥) = argsort(𝑊𝑥),𝑊 ∈ R𝑘×𝑑}. Then, 𝑑(1)𝑁 (ℒ𝑑,𝑘) = Ω(𝑑𝑘).1153

Proof. Fix 𝑘 ∈ N. Let us consider the case 𝑑 = 2 that will correspond as the building block for1154

the general case 𝑑 > 2. Let us first choose the set of points: Set 𝑃 be the collection of pairs1155

𝑃 = {(2𝑖 − 1, 2𝑖)}𝑖∈[𝑏] for any 𝑖 ∈ [𝑏] with 𝑏 = ⌊𝑘/2⌋ and 𝑆 = {𝑥𝑚}𝑚∈𝑃 where these points1156

correspond to |𝑃 | equidistributed points on the unit sphere in R2. This set of points has size1157

|𝑃 | = Θ(𝑘) and we are going to 𝑁 -shatter it using ℒ2,𝑘.1158

Consider the matrix 𝑊 ∈ R𝑘×2 so that {𝑊𝑖}𝑖∈[𝑘] correspond to the rows of 𝑊 . The structure of1159

the problem relies on the hyperplanes with normal vectors (𝑊𝑖 −𝑊𝑗)𝑖̸=𝑗 and our choice of 𝑊 will1160

rely on these hyperplanes. For any 𝑚 = (2𝑖− 1, 2𝑖), we set 𝑊2𝑖−1,𝑊2𝑖 on the unit sphere so that1161

𝑊2𝑖−1 ·𝑊2𝑖 = 1− 𝜑 with 𝜑 ∈ (0, 1) sufficiently small (set arccos(1− 𝜑) = 2𝜋/(100𝑘)) and let1162

𝐶𝑚 be the cone generated by these two vectors with axis 𝐼𝑚. We place 𝑊2𝑖−1 so that the distance1163

between 𝑥𝑚 and the hyperplane 𝐼𝑚 is sufficiently small (say that the angle between 𝑥𝑚 and 𝐼𝑚 is1164

arccos(1− 𝜑)/100). Note that the normal vector of 𝐼𝑚 is 𝑊2𝑖−1 −𝑊2𝑖 and we place 𝑥𝑚 so that1165

it has positive correlation with this vector. This uniquely identifies the location of 𝑊2𝑖. Crucially,1166

each vector 𝑥𝑚 has the following properties: (i) 𝑥𝑚 is very close to the boundary of the hyperplane1167
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with normal vector (𝑊2𝑖−1 −𝑊2𝑖), (ii) 𝑊2𝑖−1 · 𝑥𝑚 > 𝑊2𝑖 · 𝑥 > 𝑊𝑗 · 𝑥𝑚 for any 𝑗 /∈ 𝑚 and1168

(iii) 𝑥𝑚 is far from any boundary induced by hyperplanes with normal vectors 𝑊𝑗 −𝑊𝑗′ for any1169

(𝑗, 𝑗′) ̸= 𝑚.1170

Since the points are well-separated on the unit sphere, for any 𝑚 = (2𝑖 − 1, 2𝑖) ∈ 𝑃 , we have1171

𝑊2𝑖−1 ·𝑊2𝑖 = 1−𝜑 ≈ 1 and for any other pair of indices (𝑖, 𝑗) /∈ 𝑃 , there exists 𝑐 = 𝑐(𝑘) ∈ (0, 1),1172

|⟨𝑊𝑖,𝑊𝑗⟩| ≤ 𝑐.1173

For any 𝑚 = (2𝑖− 1, 2𝑖) ∈ 𝑃 , we set 𝑊 ′
2𝑖−1−𝑊 ′

2𝑖 = 𝑅𝜃(𝑊2𝑖−1−𝑊2𝑖) for some 𝜃 to be chosen,1174

where 𝑅𝜃 is the 2× 2 rotation matrix. We choose 𝜃 so that each point 𝑥𝑚 for 𝑚 = (2𝑖− 1, 2𝑖) ∈ 𝑃1175

with (𝑊2𝑖−1 −𝑊2𝑖) · 𝑥𝑚 > 0 satisfies (𝑊 ′
2𝑖−1 −𝑊 ′

2𝑖) · 𝑥𝑚 < 0. The main idea is that since 𝑥𝑚1176

has the properties (i)-(iii) described above, the rankings induced by the vectors 𝑊𝑥𝑚 and 𝑊 ′𝑥𝑚1177

will be different in the first two positions but the same in the rest.1178

Given the training set {𝑥𝑚}𝑚∈𝑃 , we have to construct 𝑓0, 𝑓1 and verify that they satisfy the top-1179

1 Ranking Natarajan conditions. For 𝑚 = (2𝑖 − 1, 2𝑖), we have that 𝑓0(𝑥𝑚) = (2𝑖 − 1, 2𝑖, 𝜋)1180

and 𝑓1(𝑥𝑚) = (2𝑖, 2𝑖 − 1, 𝜋) for some ranking 𝜋 of size 𝑘 − 2 that depends on 𝑚. Specifically,1181

we will set 𝑓0(𝑥) = 𝜎(𝑊𝑥) and 𝑓1(𝑥) = 𝜎(𝑊 ′𝑥), where 𝜎 gives the decreasing ordering of1182

the elements of the input vector. By the choice of the set 𝑆 and 𝑊 ,𝑊 ′, it remains to show1183

that the 𝑘 − 2 last elements of the rankings 𝑓0(𝑥𝑚) (say 𝜋0) and of 𝑓1(𝑥𝑚) (say 𝜋1) are in the1184

same order, i.e., 𝐿3..𝑘(𝑓0(𝑥𝑚)) = 𝐿3..𝑘(𝑓1(𝑥𝑚)) . Assume that 𝑢 ≻ 𝑣 in 𝜋0. It suffices to show1185

that (𝑊 ′
𝑢 − 𝑊 ′

𝑣) · 𝑥𝑚 ≥ 0, i.e., the order of 𝑢 and 𝑣 is preserved when transforming 𝑊 to1186

𝑊 ′. We have that (𝑊𝑢 − 𝑊𝑣) · 𝑥𝑚 > 𝑐1 for some constant 𝑐1 > 0 (𝑐1 is the minimum over1187

(𝑢, 𝑣) ̸= 𝑚 = (2𝑖− 1, 2𝑖)). Hence, we can pick 𝜃 small enough so that (𝑊 ′
𝑢 −𝑊 ′

𝑣) · 𝑥𝑚 > 𝑐2 and1188

this can be done for any pair 𝑢, 𝑣 that does not correspond to 𝑚. This implies that 𝜋0 = 𝜋1 = 𝜋. In1189

particular, we have that1190

(𝑊 ′
𝑢 −𝑊 ′

𝑣) · 𝑥𝑚 = cos(𝜃) · (𝑊𝑢 −𝑊𝑣) · 𝑥𝑚 + sin(𝜃) · (𝑊 (1)
𝑢𝑣 𝑥(2)

𝑚 −𝑊 (2)
𝑢𝑣 𝑥(1)

𝑚 ) > 𝑐2 > 0

for some 𝜃 sufficiently small, where 𝑊 (𝑡)
𝑢𝑣 is the 𝑡-th entry of the vector 𝑊𝑢 −𝑊𝑣 for 𝑡 ∈ {1, 2} and1191

𝑥𝑚,𝑊𝑢,𝑊𝑣 are unit vectors.1192

For any subset 𝑇 of 𝑆, it remains to choose a linear classifier in ℒ2,𝑘 (which is allowed to depend1193

on 𝑇 ). For any 𝑇 ⊆ 𝑆 = {𝑥𝑚}𝑚∈𝑃 , we consider the matrix 𝑊 ∈ R𝑘×2 so that for the 𝑖-th row1194

𝑊 𝑖 = 𝑊𝑖1{𝑖 ∈ 𝑚 ∈ 𝑇} + 𝑊 ′
𝑖 1{𝑖 ∈ 𝑚 ∈ 𝑆 ∖ 𝑇} for any 𝑖 ∈ [𝑘]. This is valid since the pairs1195

𝑚 ∈ 𝑃 partition [𝑘]. We have to show the following two properties: (i) 𝜎(𝑊𝑥) = 𝑓0(𝑥) for 𝑥 ∈ 𝑇1196

and (ii) 𝜎(𝑊𝑥) = 𝑓1(𝑥) for 𝑥 ∈ 𝑆 ∖ 𝑇 .1197

Assume that 𝑚 = (2𝑖− 1, 2𝑖) and 𝑥𝑚 ∈ 𝑇 . We have that 𝑓0(𝑥𝑚) = (2𝑖− 1, 2𝑖, 𝜋) and 𝑊 2𝑖−1 −1198

𝑊 2𝑖 = 𝑊2𝑖−1 − 𝑊2𝑖 and so 2𝑖 − 1 ≻ 2𝑖 in the ranking 𝜎(𝑊𝑥𝑚). It remains to show that the1199

remaining
(︀
𝑘
2

)︀
− 1 pairwise comparisons are the same in the two rankings. Let us consider a pair of1200

points 𝑢 ̸= 𝑣 so that 𝑢 ≻ 𝑣 in 𝑓0(𝑥𝑚). It suffices to show that 𝑢 ≻ 𝑣 in 𝜎(𝑊𝑥𝑚).1201

1. If 𝑢, 𝑣 are so that 𝑊 𝑢 −𝑊 𝑣 = 𝑊𝑢 −𝑊𝑣 , the result holds.1202

2. If 𝑢, 𝑣 are so that 𝑊 𝑢 −𝑊 𝑣 = 𝑊𝑢 −𝑊 ′
𝑣: In this case, 𝑢 and 𝑣 lie in a different pair of1203

𝑃 and this implies that the correct direction is preserved if 𝜃 is appropriately chosen. For1204

𝜃 as above, it holds that (𝑊𝑢 −𝑅𝜃𝑊𝑣) · 𝑥𝑚 has the same sign as (𝑊𝑢 −𝑊𝑣) · 𝑥𝑚. In1205

particular,1206

𝑊𝑢·𝑥𝑚−𝑅𝜃𝑊𝑣·𝑥𝑚 = 𝑊𝑢·𝑥𝑚−(cos(𝜃)𝑊 (1)
𝑣 −sin(𝜃)𝑊 (2)

𝑣 )𝑥(1)
𝑚 −(sin(𝜃)𝑊 (1)

𝑣 +cos(𝜃)𝑊 (2)
𝑣 )𝑥(2)

𝑚 ,

and so1207

(𝑊𝑢 −𝑊 ′
𝑣) · 𝑥𝑚 = cos(𝜃) · (𝑊𝑢 −𝑊𝑣) · 𝑥𝑚 + sin(𝜃)(𝑊 (2)

𝑣 𝑥(1)
𝑚 −𝑊 (1)

𝑣 𝑥(2)
𝑚 ) > 0 .

3. If 𝑢, 𝑣 are so that 𝑊 𝑢 −𝑊 𝑣 = 𝑊 ′
𝑢 −𝑊 ′

𝑣 , the analysis for the inner product with 𝑥𝑚 will1208

be similar.1209

We now have to extend this proof for 𝑑 > 2. We will “tensorize” the above construction as follows.1210

Let 𝑆 = {𝑦𝑚𝑗}𝑚∈[𝑏],𝑗∈[𝑑/2] with |𝑆| = ⌊𝑘/2⌋ · ⌊𝑑/2⌋. We first define the points of 𝑆: For 𝑠 ∈ [𝑑],1211
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set 𝑦𝑚𝑗 [𝑠] = 𝑥𝑚[1]1{𝑠 = 2𝑗 − 1} + 𝑥𝑚[2]1{𝑠 = 2𝑗} with 𝑦𝑚𝑗 ∈ R𝑑, i.e., 𝑦𝑚𝑗 has the values of1212

𝑥𝑚 at the consecutive entries indicated by 𝑚 = (2𝑖− 1, 2𝑖) ∈ 𝑃 and zeros at the other positions.1213

We have to show that the set 𝑆 is 𝑁 -shattered. Given 𝑇 ⊆ 𝑆, we are going to create the matrix1214

𝑊 ∈ R𝑘×𝑑. For illustration, think of each row of the matrix as having 𝑑/2 blocks of size two. If1215

𝑦𝑚𝑗 ∈ 𝑇 with 𝑚 = (2𝑖−1, 2𝑖), set the two associated rows (indicated by 𝑚) of 𝑊 with 𝑊2𝑖−1,𝑊2𝑖1216

at the 𝑗-th block and with 𝑊 ′
2𝑖−1,𝑊

′
2𝑖 otherwise. We will have that 𝜎(𝑊𝑦) = 𝑓0(𝑦) if 𝑦 ∈ 𝑇 and1217

𝜎(𝑊𝑦) = 𝑓1(𝑦) otherwise and the analysis is the same as the 𝑑 = 2 case.1218

E Examples of Noisy Ranking Distributions1219

Definition 4 (Mallows model [Mal57]). Consider 𝑘 alternatives and let 𝜋 ∈ S𝑘, 𝜑 ∈ [0, 1]. The1220

Mallows distribution ℳMal(𝜋, 𝜑) with central ranking 𝜋 and spread parameter 𝜑 is a probability1221

measure over S𝑘 with density Pr𝜎∼ℳMal(𝜋,𝜑)[𝜎] that is proportional to 𝜑𝑑(𝜎,𝜋), where 𝑑 is a ranking1222

distance.1223

We focus on Mallows models accociated with the Kendall’s Tau distance 𝑑 = 𝑑𝐾𝑇 (the standard1224

distance, not the normalized one), which measures the number of discordant pairs.1225

Fact 2. When 𝜑 < 1, the Mallows model ℳMal(𝜋, 𝜑) is a ranking distribution with bounded noise1226

at most 1+𝜑
4 < 1/2.1227

Proof. The following property holds [Mal57]1228

Pr
𝜎∼ℳMal(𝜋,𝜑)

[𝜎(𝑖) < 𝜎(𝑗)|𝜋(𝑖) < 𝜋(𝑗)] =
𝜋(𝑗)− 𝜋(𝑖) + 1

1− 𝜑𝜋(𝑗)−𝜋(𝑖)+1
− 𝜋(𝑗)− 𝜋(𝑖)

1− 𝜑𝜋(𝑗)−𝜋(𝑖)
≥ 1

2
+

1− 𝜑

4
.

1229

The Bradley-Terry-Luce model [BT52, Luc12] is the most studied pairwise comparisons model. In1230

his seminal paper, Mallows [Mal57] also studied the following natural ranking distribution:1231

Definition 5 (Bradley-Terry-Mallows [Mal57]). Consider a score vector 𝑤 ∈ R𝑘
+ with 𝑘 distinct1232

entries and let 𝜋 be the ranking induced by the values of 𝑤 in decreasing order. The Bradley-Terry-1233

Mallows distribution ℳBTM(𝑤) with central ranking 𝜋 is a probability measure over S𝑘 with density1234

Pr𝜎∼ℳBTM(𝑤)[𝜎] that is proportional to
∏︀

𝑖≻𝜎𝑗
𝑤𝑖

𝑤𝑖+𝑤𝑗
.1235

Lemma 19. There exists a real number 0 < 𝜂 < 1/2 so that the Bradley-Terry-Mallows distribution1236

ℳBTM(𝑤) is a ranking distribution with bounded noise at most 𝜂.1237

Proof. In the standard Bradley-Terry-Luce model, the pairwise comparison between the alternatives1238

𝑖, 𝑗 is a Bernoulli random variable with Pr[𝑖 ≻ 𝑗] = 𝑤𝑖/(𝑤𝑖 + 𝑤𝑗). The Bradley-Terry-Mallows1239

distribution can be considered as the Bradley-Terry-Luce model conditioned on the event that all the1240

pairwise comparisons are consistent to a ranking. Hence, we have that1241

Pr
𝜎∼ℳBTM(𝑤)

[𝜎] =
1

𝑍(𝑘,𝑤)

∏︁
𝑖≻𝜎𝑗

𝑤𝑖

𝑤𝑖 + 𝑤𝑗
.

Let us set 𝒜𝑖≻𝑗 = {𝜎 ∈ S𝑘 : 𝜎(𝑖) < 𝜎(𝑗)}. We are interested in the following probability1242

Pr
𝜎∼ℳBTM(𝑤)

[𝑖 ≻𝜎 𝑗|𝑤𝑖 > 𝑤𝑗 ] = Pr
𝜎∼ℳBTM(𝑤)

[𝜎(𝑖) < 𝜎(𝑗)|𝑤𝑖 > 𝑤𝑗 ] =
1

𝑍(𝑘,𝑤)

∑︁
𝜎∈𝒜𝑖≻𝑗

∏︁
𝑝≻𝜎𝑞

𝑤𝑝

𝑤𝑝 + 𝑤𝑞
.

Note that in order to show the desired property, it suffices to show that1243 ∑︁
𝜎∈𝒜𝑖≻𝑗

∏︁
𝑝≻𝜎𝑞

𝑤𝑝

𝑤𝑝 + 𝑤𝑞
>

∑︁
𝜎∈𝒜𝑖≺𝑗

∏︁
𝑝≻𝜎𝑞

𝑤𝑝

𝑤𝑝 + 𝑤𝑞
.

First, observe that there exists a correspondence mapping 𝜎 ∈ 𝒜𝑖≻𝑗 to 𝒜𝑖≺𝑗 , where one flips the1244

elements 𝑖 and 𝑗. Hence, it suffices to show that the mass of the ranking (𝑢𝑎)𝑖(𝑢𝑏)𝑗(𝑢𝑐) is larger than1245

the one of the ranking (𝑢𝑎)𝑗(𝑢𝑏)𝑖(𝑢𝑐), where 𝑢𝑎, 𝑢𝑏, 𝑢𝑐 are permutations of length between 0 and1246

34



𝑘 − 2 with elements in [𝑘] ∖ {𝑖, 𝑗}. For the two above rankings, the only terms of the product that are1247

not identical are the following1248

𝑤𝑖

𝑤𝑖 + 𝑤𝑗

∏︁
𝑥∈𝑢𝑏

𝑤𝑖

𝑤𝑖 + 𝑤𝑥

𝑤𝑥

𝑤𝑥 + 𝑤𝑗
>

𝑤𝑗

𝑤𝑖 + 𝑤𝑗

∏︁
𝑥∈𝑢𝑏

𝑤𝑗

𝑤𝑗 + 𝑤𝑥

𝑤𝑥

𝑤𝑥 + 𝑤𝑖
,

since 𝑤𝑖 > 𝑤𝑗 and so the result follows.1249
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