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A Derivation of continuous time version of GRU1

In this section we derive the continuous-time version of the GRU model. Note that our definition2

of the GRU differs from the original version, presented in [3], by inverting the role of the u⟨t⟩ and3

1−u⟨t⟩ terms in the updates equations for y⟨t⟩ (a change in sign). This substitution does not change4

the behavior of the model but simplifies the notation in the continuous-time version of the model.5

We first rewrite the dynamics of a layer of GRU units at time step t from Eq. (1) of the main text,6

separating out the input and recurrent weights:7

u⟨t⟩=σ
(
Uux

⟨t⟩+Vuy
⟨t−1⟩+bu

)
, r⟨t⟩=σ

(
Urx

⟨t⟩+Vry
⟨t−1⟩+br

)
,

z⟨t⟩=g
(
Uzx

⟨t⟩+Vz

(
r⟨t⟩⊙y⟨t−1⟩

)
+bz

)
, y⟨t⟩=u⟨t⟩⊙z⟨t⟩+(1−u⟨t⟩)⊙y⟨t−1⟩,

(S1)

we can write this as8

y⟨t⟩−y⟨t−1⟩=−u⟨t⟩⊙y⟨t−1⟩+u⟨t⟩⊙z⟨t⟩. (S2)
Note that u here is equivalent to ũ=1−u used in the standard GRU model. Eq. (S2) is in the form9

of a forward Euler discretization of a continuous time dynamical system. Defining y(t)≡y⟨t−1⟩, we10

get r(t)≡r⟨t⟩,u(t)≡u⟨t⟩,z(t)≡z⟨t⟩. Let ∆t define an arbitrary time step. Then Eq. (S2) becomes:11

y(t+∆t)−y(t)=−u(t)⊙(y(t)+z(t))∆t (S3)

Dividing by ∆t and taking limit ∆t→0, we get:12

ẏ(t)=−u(t)⊙(y(t)−z(t)), (S4)

where ẏ(t)≡ dy(t)
dt is the time derivative of y(t).13

B Full details of the continuous time EGRU14

In this section we establish the continuous time version of the EGRU model. To describe the event15

generating mechanism and state dynamics it is convenient to express the dynamical system equations16

in therms of the activations aX.17

We first rewrite Eqs. (3) & (4) of the main text, as:18

faX
≡ τsȧX+aX +bX =0, X∈{u,r,z} (S5)

fc ≡ τmċ(t)+u(t)⊙(c(t)−z(t)) = τmċ(t)−F (t,au,ar,az,c)=0. (S6)

We write the event transitions for c at network event ek∈e, ek=(sk,nk), where sk are the continuous19

(real-valued) event times, and nk denotes which unit got activated, and using the superscript .− (.+)20

to the quantity just before (after) the event, as:21

c−nk
(sk)=ϑnk

, c+nk
(sk)=0, c+m(sk)=c−m(sk). (S7)
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where m ̸=nk denotes all the units connected to unit nk that are not activated. At the time of this event,22

the activations aX,m (X∈{u,r,x}) experiences a jump in its state value, given by:23

a+u,m(sk)=a−u,m(sk)+vu,mnk
×c−nk

(sk), (S8)

a+r,m(sk)=a−r,m(sk)+vr,mnk
×c−nk

(sk), (S9)

a+z,m(sk)=a−z,m(sk)+vz,mnk
×rnk

×c−nk
(sk), (S10)

a+X,nk
(sk)=a−X,nk

(sk). (S11)

External inputs also come in as events ẽk ∈ ẽ, ẽk =(sk,ik), where sk are the continuous (real-valued)24

event times, and ik denotes the index of the input component that got activated. Only the activations25

aX,l for the l-th unit experience a transition/jump on incoming external input events, as follows:26

a+X,l(sk)=a−X,l(sk)+uX,lnk
×xik(sk), (S12)

where xik(sk)=(x(sk))ik is the ik-th component of the input x at time sk. The internal state c remains27

the same on the external input event. That is, c+l =c−l .28

C Derivation of event-based learning rule for EGRU29

In this section we derive the event-based updates for the network weights. The update questions yield30

different results for the recurrent weights (VX), biases (bX) and input weights (UX), which are derived31

in the remainder of this section. To increase readability important terms are highlighted in color.32

C.1 Gradient updates for the recurrent weights VX33

We first split the integral Eq. (7) across events as:34

L=

N∑
k=0

∫ sk+1

sk

ℓc(c(t),t)+λc ·fc+
∑

X∈{u,r,z}

λaX
·faX

dt . (S13)

Then taking the derivative of the full loss function, we get:35

dL
dvji

=
d

dvji


N∑

k=0

∫ sk+1

sk

ℓc(c(t),t)+λc ·fc+
∑

X∈{u,r,z}

λaX
·faX

dt
 . (S14)

By application of Leibniz integral rule we get,36

d

dvji

∫ sk+1

sk

ℓc(c(t),t)dt=ℓc(c,sk+1)
dsk+1

dvji
−ℓc(c,sk)

dsk
dvji

+

∫ sk+1

sk

∂ℓc
∂c

· ∂c

∂vji
dt . (S15)

and37

d

dvji

∫ sk+1

sk

λc ·fcdt (S16)

=

∫ sk+1

sk

λc ·
dfc
dvji

dt=

∫ sk+1

sk

λc ·
{
τm

d

dt

∂c

∂vji
+

∂F

∂vji

}
dt (S17)

= τm

[
λc ·

∂c

∂vji

]sk+1

sk

(S18)

− τm

∫ sk+1

sk

λ̇c ·
∂c

∂vji
+λc ·

(∂F

∂c

)T
∂c

∂vji
+

∑
X∈{u,r,z}

(
∂F

∂aX

)T
∂aX

∂vji

dt , (S19)

where we first apply Gronwall’s theorem [5], then integration by parts, and MT denotes the transpose38

of matrix M . ℓc(c(t),t) is the instantaneous loss evaluated at time t. Similarly,39

d

dvji

∫ sk+1

sk

∑
X∈{u,r,z}

λaX
·faX

dt=
∑

X∈{u,r,z}

∫ sk+1

sk

λaX
·
{
τs

d

dt

∂aX

∂vji
+

∂aX

∂vji

}
dt (S20)

=τs

[
λaX

· ∂aX

∂vji

]sk+1

sk

−τs

∫ sk+1

sk

{
λ̇aX

· ∂aX

∂vji
+λaX

· ∂aX

∂vji

}
dt , (S21)
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since ∂b
∂vji

=0.40

Substituting these values into Eq. (S14), and setting the coefficients of terms with ∂c
∂vji

and ∂aX

∂vji
to zero41

(using the fact that we can choose the adjoint variables freely due to fc and faX
being everywhere zero42

by definition), we get the dynamics of the adjoint variable described in Eq. (8). The adjoint variable43

is usually integrated backwards in time starting from t= T , also due to its dependence on the loss44

values (See Fig. S2). The initial conditions for the adjoint variables is defined as λc=λaX
=0.45

Setting the coefficients of terms with ∂c
∂vji

and ∂aX

∂vji
to zero allows us to write the parameter updates as:46

dL
dvji

=

N∑
k=0

{(
l−c −l+c

) ds

dvji
+τs

∑
X

(
λ−
aX
· ∂a

−
X

∂vji
−λ+

aX
· ∂a

+
X

∂vji

)
+τm

(
λ−
c · ∂c

−

∂vji
−λ+

c · ∂c
+

∂vji

)}
(S22)

=

N∑
k=0

ξX,ijk (S23)

To define the required jumps at event times for the adjoint variables, we start with finding the47

relationship between ∂c−

∂vji
and ∂c+

∂vji
. Eqs. (S7) define sk as a differentiable function of vji under the48

condition ċ−nk
̸=0 and ċ+nk

̸=0 due to the implicit function theorem [16, 17].49

c−nk
−ϑnk

=0 (S24)

∂c−nk

∂vji
+
dc−nk

ds

∂s

∂vji
=0 (S25)

∂c−nk

∂vji
+ċ−nk

∂s

∂vji
=0 (S26)

∂s

∂vji
=

−1

ċ−nk

∂c−nk

∂vji
, (S27)

where we write
dc−nk

ds ≡ ċ−nk
and ċ−nk

̸=0. Similarly,50

c+nk
=0 (S28)

∂c+nk

∂vji
+ċ+nk

∂s

∂vji
=0 (S29)

which allows us to write51

∂c+nk

∂vji
=

ċ+nk

ċ−nk

∂c−nk

∂vji
(S30)

Similarly, starting from c+m=c−m, we can derive52

∂c+m
∂vji

=
∂c−m
∂vji

− 1

ċ−nk

∂c−nk

∂vji

(
ċ−m−ċ+m

)
(S31)

For the activations aX, we use Eqs. (S8)–(S11) to derive the relationships between ∂aX

∂vji

+
and ∂aX

∂vji

−
.53

Thus, we have:54

∂a+X,m
∂vji

=
∂a−X,m
∂vji

− 1

τs

vmnk
r−X,nk

c−nk

ċ−nk

∂c−nk

∂vji
+δink

δjmc−nk
+c−nk

vmnk

∂r−X,nk

∂vji
−c−nk

vmn

ṙ−X,nk

ċ−nk

∂c−nk

∂vji
(S32)

∂a+X,nk

∂vji
=

∂a−X,nk

∂vji
(S33)

where rX =0 if X∈{u,r} and rX =r if X={z}.55
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Substituting Eqs. (S30),(S31),(S33), (S32) into Eq. (S22), we get:56

ξX,ijk=

∂c−nk

∂vji

−1

ċ−nk

(
ℓ+c −ℓ−c

)
+τm

(
λ−
c,nk

−
ċ+nk

ċ−nk

λ+
c,nk

)
+τm

1

ċ−nk

∑
m̸=nk

λ+
c,m

(
ċ−m−ċ+m

)
(S34)

+
∑

X

r−X,nk
c−nk

ċ−nk

∑
m ̸=nk

vmnλ
+
aX,m+τs

∑
X

ṙ−X,nk
c−nk

ċ−nk

∑
m ̸=nk

vmnλ
+
aX,m

 (S35)

+τm
∑
m̸=nk

∂c−m
∂vji

(
λ−
c,m−λ+

c,m

)
(S36)

τs
∑

X

∂a−X,nk

∂vji

(λ−
aX,nk

−λ+
aX,nk

)
−c−nk

G′(a−X,nk
)
∑
m ̸=nk

vmnλaX,m
+

 (S37)

τs
∑

X

∑
m̸=nk

∂a−X,m
∂vji

(
λ−
aX,m−λ+

aX,m

)
(S38)

−τsδink
r−X,nk

c−nk

∑
m̸=nk

δjmλ+
aX,m

 (S39)

where we use rX =G(aX) to denote G(ar) = r and G(az) =G(au) = 1, δab is the kronecker delta57

defined as:58

δab=

{
1 if a=b,
0 otherwise (S40)

Setting the coefficients of ∂c−

∂vji
and ∂a−

X

∂vji
to 0 (again, using our ability to choose the adjoint variables59

freely), we can get both ξX,ijk and the transitions for the adjoint variables.60

For the parameter updates we get:61

ξijk=−τsδink
r−X,nk

c−nk

∑
m ̸=nk

δjmλ+
aX,m (S41)

=−τsr
−
X,ic

−
i λ

+
aX,j

. (S42)

The jumps/transitions of the adjoint variables are:62

λ+
aX,m=λ−

aX,m (S43)

λ+
aX,nk

=λ−
aX,nk

−c−nk
G′(aX,nk

)
∑
m ̸=nk

vmnλ
+
aX,m (S44)

λ+
c,m=λ−

c,m (S45)

τmċ+nk
λ+
c,nk

=−(ℓ+c −ℓ−c )+τmċ−nk
λ−
c,nk

+τm
∑
m̸=nk

λ+
c,m(ċ−m−ċ+m)

+τsc
−
nk

∑
X

(
ṙ−X,nk

+
r−X,nk

τs

) ∑
m ̸=nk

vmnλ
+
aX,m , (S46)

where (ℓ+c − ℓ−c ) denotes the jumps in the instantaneous loss around event time sk. Thus, all the63

quantities on the right hand side of Eq. (S22) can be calculated from known quantities.64

C.2 Gradient updates for biases bX65

Proceeding similarly for the biases bX for each of X∈{u,r,z} (dropping the subscript X for simplicity):66

dL
dbi

=
d

dbi


N∑

k=0

∫ sk+1

sk

ℓc(c(t),t)+λc ·fc+
∑

X∈{u,r,z}

λaX
·faX

dt
 . (S47)
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the ξbias
X,ik term can be shown to be:67

ξbias
X,ik=

∫ sk+1

sk

λaX,idt (S48)

with68

dL
dbi

=

N∑
k=0

ξbias
X,ik (S49)

C.3 Gradient updates for input weights UX69

Proceeding similarly for the input weights UX for each of X∈{u,r,z} (dropping the subscript X for70

simplicity):71

dL
dujx

=
d

dujx


N∑

k=0

∫ sk+1

sk

ℓc(c(t),t)+λc ·fc+
∑

X∈{u,r,z}

λaX
·faX

dt
 . (S50)

the ξinput
X,jxk term can be shown to be:72

ξinput
X,jxk=−τsλ

+
aX,j

xx (S51)

with73

dL
dujx

=

N∑
k=0

ξinput
X,jxk (S52)

D Details of experiments74

D.1 DVS128 Gesture recognition75

In this experiment we use Tonic library [10] to prepare the dataset. The recordings in the dataset are76

sliced by time without any overlap to produce samples of length 1.7 seconds. The data is denoised77

with a filter time of 10ms and normalised to [0;1] before being fed to the model. The positive and78

negative polarity events are represented by 2 separate channels. Our model consists of a preprocessing79

layer which performs downscaling and flattening transformations, followed by two RNN layers. Both80

RNN layers have the same number of hidden dimensions. Finally, a fully connected layer of size 1181

performs the classification. We use cross-entropy loss and Adam optimizer with default parameters82

(0.001 learning rate, β1=0.9, β2=0.999). The learning rate is scaled by 80% every 100 epochs.83

We use additional loss to regularize the output and increase sparsity of the network. The applied84

regularization losses are shown in Equation S55. Lreg is applied indirectly to the active outputs and85

Lact is applied on the auxiliary internal state c
⟨t⟩
i , the threshold parameter ϑi is detached from the86

graph in the second equation so the loss only affects the internal state. We set the regularization weights87

wreg and wv to 0.01 and 0.05 respectively.88

Fig. S3(a) shows comparison of training curves for LSTM, GRU and EGRU, mean activity of the89

EGRU network is also shown, the network achieved 80%+ sparsity without significant drop in accuracy.90

The activities of LSTM and GRU are not shown in Fig S3(a) since they are always 100%. In our91

experiments we calculate sparsity of these networks as average number of activations close to zero with92

an absolute tolerance of 1×10−8, however in Fig. S3(b) we show that even if we increase the absolute93

tolerance to 1×10−3, the sparsity of these networks is still an order of magnitude lower than EGRU.94

Lreg=wreg

(
1

N

1

nunits

N∑
n=1

nunits∑
1

H
(
c
⟨t⟩
i −ϑi

)
−0.05

)
(S53)

Lact=wv

(
1

N

1

nunits

N∑
n=1

nunits∑
i=1

ci−(ϑi−0.05)

)
(S54)

(S55)

where N spans mini-batch.95
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D.1.1 Ablation study96

We performed ablation studies, showing the performance of the EGRU models with variation of the gat-97

ing mechanism. All models in this study are a variation of our EGRU(1024) model. The results of these98

experiments are presented in Table S2. By using a scalar thresholdϑwhere all units share a same thresh-99

old parameter we find that the accuracy drops by 2% but the the activity sparsity is increased to 90%.100

Next, we evaluate a model with ‘hard reset’ where the auxiliary internal state c⟨t⟩i is set to 0 every time101

an event is emitted by an unit. We observe a drop in accuracy since this hard reset essentially ignores102

the input between t−1 and t. This drop in performance might be significant for applications which103

require high temporal resolution, which necessitates the term −y
⟨t−1⟩
i in Eq. (2).104

D.2 Sequential MNIST105

All the weights were initialised using Xavier uniform distribution, while the biases were initialised106

using a uniform distribution. The unit thresholds were initialised using a normal distribution with107

mean 0 and standard deviation of
√
2, but was transformed to be between 0 and 1 by passing through108

a standard sigmoid/logistic function after every update. In all the experiments, we used a batch size109

of 500, and trained the network with Adam with default parameters (0.001 learning rate, β1 = 0.9,110

β2 =0.999) on a cross-entropy loss function. We used gradient clipping with a max gradient norm111

of 0.25. All models were trained for 200 epochs. The outputs of all the units were convolved with112

an exponential filter with time constant of 10 time units i.e. with e
1
10 to calculate an output trace. The113

value of this trace at the last time step was used to predict the class through a softmax function.114

D.3 PTB Language modeling115

Our experimental setup largely follows [13]. In particular, we download and preprocess PennTreebank116

with their published code 1. Words are projected to a 400-dimensional dense vector by a linear117

transformation, followed by three RNN layers. The first two RNN layers feature the same hidden118

dimension, while the hidden dimension of the last RNN layer always equals the word vector embedding119

dimension. As common in language modeling, we apply cross entropy loss and use weight tying [6, 14].120

We apply the regularization strategies of [13]. Backpropagation through time is conducted with a121

variable sequence length. With 95% probability, the sequence length is drawn from N (70,5), and with122

5% probability the sequence length is drawn from N (35,5). We apply variational dropout [4] to the123

vocabulary with probability p=0.1, to the word embedding vectors with probability p=0.4 as well as124

to each layer output with probability pl. DropConnect [15] was applied to the hidden-to-hidden weight125

matricies with probability ph. While vocabulary dropout and embedding dropout where fixed for all126

models, we tuned layer-to-layer and hidden-to-hidden dropout rates for each model individually. We127

experimented with both Adam [7] and NT-AvSGD [13] optimization procedures. While Adam lead to128

competitive results for all models, only LSTM models converged using NT-AvSGD. When optimized129

with SGD based optimizers, both GRU and EGRU fell behind Adam optimized models. Thus, we130

optimized all models with Adam, and set momentum to 0 as reported in [12]. Weight decay was set131

to 1.2×10−6 as reported in [13]. Gradient clipping was applied to all models, where the magnitude132

of clipped gradients only made very small differences in results. We trained our models for 800 total133

epochs. The first 400 epochs were trained at constant learning rate λ. Then a cosine decay from λ134

to 0.1·λ was applied for the remaining 400 epochs.135

Parameter search was conducted exclusively on the PTB training and validation set. See table S4 for136

detailed hyperparameters of the best models.137

Our experiments exhibit both forward and backward sparsity also for the challenging task of language138

modeling. For this task, we don’t apply any explicit loss terms to improve sparsity. Figure S4 shows139

how sparsity evolves during the training process. It is evident that forward sparsity naturally evolves140

from EGRU, even without explicit sparsity regularization. The sparsity of the backward pass is141

governed by the width parameter ϵ of the pseudo-derivative. We experimented with different values142

of ϵ on PTB. As shown in figure S5 backward sparsity increases with smaller values of ϵ as expected.143

At the same, time convergence speed is slightly limited. For the sake of demonstrating competitive144

performance, we thus choose ϵ=1 for the language modeling results reported in this work.145

1https://github.com/salesforce/awd-lstm-lm
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reference architecture para- effective accu- activity backward
(# units) meters MAC racy sparsity sparsity

ours LSTM (867) 16.28M 20.97M 87.89% 0% -
ours GRU (1024) 15.75M 15.73M 88.07% 0% -
ours EGRU (512) 5.51M 4.19M 88.02% 83.79% 53.55%
ours EGRU (1024) 15.75M 10.54M 90.22% 82.53% 56.63%
ours EGRU+DA (1024) 15.75M 10.77M 97.13% 78.77% 58.20%

Table S1: Model performance over multiple runs for the DVS Gesture recognition task. Effective
number of MAC operations as described in section 3.5.

model accuracy activity sparsity

EGRU(1024) 90.2 82.5
without regularization 89.3 76.5
scalar ϑ 88.3 90.8
hard reset 87.2 90

Table S2

architecture parameters effective test activity backwards
(# units) MAC accuracy sparsity sparsity (%) at

(%) (%) epochs 20/50/100
(mean±std) (mean±std) (mean±std) (mean±std)

GRU (512)* 791K 795K 98.7±0.2 - -
GRU (590) 1.049M 1.054M 98.7±0.1 - -
EGRU (590) 1.048M 210K±51K 95.5±1.6 80.5±4.9 24.9±6.8 / 26.1±5.9 /

26.0±4.3

Table S3: Model performance over 4 runs for sequential MNIST task. Test scores are given as
percentage accuracy, where higher is better. (*) mean over 3 runs. The fourth run was unsuccessful
due to network instability.

RNN cell val ppl val ppl hidden learning batch dropout dropout gradient
best mean±std units rate size ph pl clip

LSTM 61.0 61.2±0.2 1150 0.003 40 0.5 0.4 0.25
GRU 75.1 75.2±0.1 1350 0.001 80 0.5 0.4 0.25
EGRU 1350 0.0003 80 0.5 0.3 2.0
EGRU 2700 0.0003 80 0.5 0.3 2.0

Table S4: Best parameters for the trained models. Mean and uncertainty are calculated from 10 runs
with different random seeds.

reference architecture para- effective validation test activity
(# units) meters MAC sparsity

ours LSTM (1150) 24M 24M 63.6 59.7 -
ours GRU (1350) 24M 24M 74.8 70.1 -
ours EGRU (1350) 24M 5.4M 73.1 68.48 85.7%
ours EGRU (2700) 76M 8.4M 72.0 67.8 91.3%

Table S5: Model performance over multiple runs for PennTreebank. Validation and test scores are
given as perplexities, where lower is better. Sparsity refers to activity-sparsity of the EGRU output,
and effecive MAC operations consider the layer-wise sparsity in the forward pass.
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E Dataset licenses146

Penn Treebank [11] is subject to the Linguistic Data Consortium User Agreement147

for Non-Members 2. Following [13], we download Penn Treebank data from http:148

//www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz.149

LDC Not-For-Profit members, government members and nonmember licensees may150

use LDC data for noncommercial linguistic research and education only. For-profit151

organizations who are or were LDC members may conduct commercial technology152

development with LDC data received when the organization was an LDC for-profit153

member unless use of that data is otherwise restricted by a corpus-specific license154

agreement. Not-for-profit members, government members and nonmembers,155

including nonmember for-profit organizations, cannot use LDC data to develop or156

test products for commercialization, nor can they use LDC data in any commercial157

product or for any commercial purpose.158

The DVS128 Gesture Dataset [1] is released under the Creative Commons Attribution 4.0 license159

and can be retrieved from: https://research.ibm.com/interactive/dvsgesture/. We used160

Tonic library [10] for Pytorch to preprocess data and to apply transformations.161

The sequential MNIST task [8] is based on the MNIST dataset first introduced in [9].162

F Hardware and software details163

Most of our experiments were run on NVIDIA A100 GPUs. Some initial hyper-parameter searches164

were conducted on NVIDIA V100 and Quadro RTX 5000 GPUs. We used about 12,000 computational165

hours in total for training and hyper-parameter searches. All models and experiments were implemented166

in PyTorch. For the continuous time EGRU model, we also used the torchdiffeq [2] library.167

The machines used for the DVS128 gesture recognition task and for the PTB language modeling task168

feature 8x NVIDIA A100-SXM4 (40GB) GPUs, 2x AMD EPYC CPUs 7352 with 24 cores each, and169

1TB RAM on each compute node. For each run, we only use a single GPU, and a fraction of the cores170

and memory available on the node to run multiple experiments in parallel. The nodes operate Red171

Hat Enterprise Linux Server (release 7.9).172

2https://www.ldc.upenn.edu/data-management/using/licensing
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Figure S1: Illustrate the event-based state dynamics for two EGRU units (i and j) (A) Forward
dynamics. Information only propagates from units that generate an event. (B) Backward dynamics.
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Figure S2: Illustration of the scaling properties of the EGRU on a 14×14 sequential MNIST task.
As the size of the network increases, the network converges faster. Increasing the network size 10x
increases the speed of convergence 5x, while increasing the total amount of computation per sample
only 2x. The total amount of computation is adjusted for network size. The smaller subsampled 14x14
sMNIST task was chosen here for reasons of computational limitations.
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Figure S3: (a) mean training curves over 5 runs for DVS gesture task. (b) activity sparsity of LSTM
and GRU for DVS gesture task across various values of absolute tolerance to zero.

(a) (b)

Figure S4: EGRU with 1350 hidden units on the Penn Treebank language modeling task with
pseudo-derivative ϵ=1 . (a) layer-wise forward sparsity (b) layer-wise backward sparsity

Figure S5: Backward sparsity for EGRU with 1350 hidden units on the Penn Treebank language
modeling task with varying pseudo-derivative support ϵ
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