
• Assume a single-mode prediction case that the future position 𝑦!"," at time 
step 𝑡 is modeled by a simple Gaussian distribution 𝑁 𝑦" �̂�" , '𝜎" 𝑰). 

• With a single negative position 𝑦$%!,", the gradients of a simple learning 
objective with an MLE loss and an unlikelihood loss w.r.t. �̂�" and '𝜎" are

• The gradients push �̂�" towards 𝑦!"," and away from 𝑦$%!,". When 𝑦!"," is 
closer to �̂�" than 𝑦$%!,", '𝜎" will shrink to exclude the negative region and 
become a better estimation to the true data distribution.

• When incorporating our method with Trajectron++ [5] in nuScenes [3] 
dataset, we avoids 16% context-violated prediction and improves the 
prediction accuracy performance by more than 8%.

• When combining our method with Gaussian LaneGCN, a distribution 
variant of LaneGCN [6], in Argoverse [4] dataset, we avoids 56% of 
context-violated prediction. ADE-Full and FDE-Full are reduced by 8% and 
6%, respectively.

• Experimental results show that our unlikelihood loss help improve the 
quality of the predicted distribution by making it more accurate and 
reducing the context-violated prediction.

Motion Forecasting with Unlikelihood Training in Continuous Space

Limitation of MLE on Motion Forecasting
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• Maximum likelihood estimation (MLE) encourages the prediction to be 
geometrically close to the ground truth. 

• However, maintaining the geometrical 
nearness only is not good enough.
Trajectories can be close to the ground 
truth geometrically but unlikely to 
happen due to context violation.

• We propose an unlikelihood training [1,2] objective that can explicitly 
encourage the model to follow the contextual information.

• We propose continuous unlikelihood training for vehicle motion 
forecasting that encourages models to use contextual information by 
minimizing the likelihood of context-violated trajectories.

• Our method can be incorporated into state-of-the-art models that predict 
the future as distributions.

• Experimental results show that our method can improve the quality of 
the predicted distribution by avoiding maximally 56% context-violated 
prediction and improving 9% prediction performance.

• Design an unlikelihood loss 𝐿&$'()% to minimize the likelihood of context-
violated (negative) trajectories 𝒀(,$%! besides the original loss 𝐿*+(!. 

• Negative trajectories are sampled from the model predicted distribution 
and selected out by a context checker.

• Our loss can be combined with models that predict a trajectory distribution 
𝑝,(𝒀(|𝑿() as output.

Unlikelihood Training

Context Checker
• A map-based checker to judge whether a given trajectory is compliant with 

context including the drivable region and the driving direction.

• Checker is disable when the ground truth trajectory violates the context to 
allow context-violated prediction when necessary.
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Gradient Analysis Ablation Study
• The Influence of Our Loss Without Map Input: The effect of 𝐿&$'()%

without map input to the model on nuScenes. Results indicate that model 
can obtain contextual information from 𝐿&$'()% even without map input.

• Remove Context-Violated Prediction Directly: Our method performs 
better than simply removing the context-violated prediction and still allow 
context-violation when nessary. This indicates that our unlikelihood loss 
helps models to understand the context better.

• Qualitative results on nuScenes with Trajectron++ (left) and on 
Argoverse with Gaussian LaneGCN (right). White points denote the 
ground truth. Our loss helps reduce the context-violation prediction.


