

Motion Forecasting with Unlikelihood Training in Continuous Space

Limitation of MLE on Motion Forecasting

- Maximum likelihood estimation (MLE) encourages the prediction to be geometrically close to the ground truth.
- However, maintaining the geometrical nearness only is not good enough. Trajectories can be close to the ground truth geometrically but unlikely to happen due to context violation.

• We propose an unlikelihood training [1,2] objective that can explicitly encourage the model to follow the contextual information.

Unlikelihood Training

- Design an unlikelihood loss L_{unlike} to minimize the likelihood of contextviolated (negative) trajectories $Y_{i,neg}$ besides the original loss L_{orig} .
- Negative trajectories are sampled from the model predicted distribution and selected out by a context checker.
- Our loss can be combined with models that predict a trajectory distribution $p_{\theta}(\boldsymbol{Y}_i | \boldsymbol{X}_i)$ as output.

 $L_{\text{unlike}} = \mathbb{E}_{\mathbf{X}_i, \sim \mathbb{D}, \mathbf{Y}_{i, neg} \sim p_{\text{neg}}(\mathbf{Y}_i | \mathbf{X}_i)} [\log p_{\theta}(\mathbf{Y}_{i, neg} | \mathbf{X}_i)]$ $L = L_{\text{orig}} + \gamma L_{\text{unlike}}$

Context Checker

- A map-based checker to judge whether a given trajectory is compliant with context including the drivable region and the driving direction.
- Checker is disable when the ground truth trajectory violates the context to allow context-violated prediction when necessary.

(a) negative case

(b) positive case

Deyao Zhu¹, Mohamed Zahran^{1,2}, Li Erran Li^{3,4}, Mohamed Elhoseiny¹

¹KAUST, ²Udacity, ³AWS AI, Amazon and ⁴Columbia University

Gradient Analysis

- Assume a single-mode prediction case that the future position $y_{at,t}$ at time step *t* is modeled by a simple Gaussian distribution $N(y_t | \hat{\mu}_t, \hat{\sigma}_t I)$.
- With a single negative position $y_{neg,t}$, the gradients of a simple learning objective with an MLE loss and an unlikelihood loss w.r.t. $\hat{\mu}_t$ and $\hat{\sigma}_t$ are

$$\frac{\partial L_t}{\partial \hat{\boldsymbol{\mu}}_t} = -\frac{1}{\hat{\sigma}_t^2} ((\boldsymbol{y}_{gt,t} - \hat{\boldsymbol{\mu}}_t) + (\hat{\boldsymbol{\mu}}_t - \boldsymbol{y}_{neg,t}))$$
$$\frac{\partial L}{\partial \hat{\sigma}_t} = -\frac{1}{\hat{\sigma}_t^3} (||\boldsymbol{y}_{gt,t} - \hat{\boldsymbol{\mu}}_t||^2 - ||\boldsymbol{y}_{neg,t} - \hat{\boldsymbol{\mu}}_t||^2)$$

• The gradients push $\hat{\mu}_t$ towards $y_{gt,t}$ and away from $y_{neg,t}$. When $y_{gt,t}$ is closer to $\hat{\mu}_t$ than $y_{neg,t}$, $\hat{\sigma}_t$ will shrink to exclude the negative region and become a better estimation to the true data distribution.

Experimental Results

• When incorporating our method with Trajectron++ [5] in nuScenes [3] dataset, we avoids 16% context-violated prediction and improves the prediction accuracy performance by more than 8%.

Model	FDE-Full	ADE-Full	Context-Violation-Rate	minFDE10	minADE10
Ground Truth	-	-	5.44%	-	-
Trajectron++	$2.74{\pm}0.10$	$1.04{\pm}0.05$	$10.59\%{\pm}0.54\%$	$1.68 {\pm} 0.05$	$0.68{\pm}0.02$
Trajectron++ with L_{unlike}	$2.51{\pm}0.06$	$0.95{\pm}0.03$	$8.85\% \pm 0.32\%$	$1.52{\pm}0.07$	$0.61{\pm}0.02$
Relative Improvement	+8%	+9%	+ 16%	+10%	+10%

• When combining our method with Gaussian LaneGCN, a distribution variant of LaneGCN [6], in Argoverse [4] dataset, we avoids 56% of context-violated prediction. ADE-Full and FDE-Full are reduced by 8% and 6%, respectively.

Model	ADE-Full	FDE-Full	Context-Vio.	ADE-1	FDE-1
Ground Truth	-	-	0.85%	-	-
Gaussian LaneGCN	1.81	3.49	9.0%	1.38	3.03
Gaussian LaneGCN with L_{unlike}	1.67	3.29	4.0%	1.38	3.01
Relative Improvement	+8%	+6%	+ 56%	0%	+1%

• Experimental results show that our unlikelihood loss help improve the quality of the predicted distribution by making it more accurate and reducing the context-violated prediction.

References

- [1] S. Welleck, I. Kulikov, S. Roller, E. Dinan, K. Cho, and J. Weston. Neural text generation with unlikelihood training. arXiv preprint arXiv:1908.04319.2019
- [2] M. Li, S. Roller, I. Kulikov, S. Welleck, Y. Boureau, K. Cho, and J. Weston. Don't Say That! Making Inconsistent Dialogue Unlikely with Unlikelihood Training. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL), 2020 [3] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom. nuScenes: A multimodal
- dataset for autonomous driving. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020. [4] M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett, D. Wang, P. Carr, S. Lucey, D. Ramanan, et al. Argoverse: 3d tracking and forecasting with rich maps. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019 [5] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone. Trajectron++: Multi-agent generative trajectory forecasting with heterogeneous data
- for control. In Proceedings of the European Conference on Computer Vision (ECCV), 2020. [6] M. Liang, B. Yang, R. Hu, Y. Chen, R. Liao, S. Feng, and R. Urtasun. Learning lane graph representations for motion forecasting. In Proceedings of the European Conference on Computer Vision (ECCV), 2020.

Ablation Study

• The Influence of Our Loss Without Map Input: The effect of L_{unlike} without map input to the model on nuScenes. Results indicate that model can obtain contextual information from L_{unlike} even without map input.

Map Input	L_{unlike}	FDE-Full	ADE-Full
-	-	2.89±0.11	1.08±0.03
-	+	2.67±0.08	1.01±0.02
+	-	2.74±0.10	1.04±0.05
+	+	2.51±0.06	0.95±0.03

Remove Context-Violated Prediction Directly: Our method performs better than simply removing the context-violated prediction and still allow context-violation when nessary. This indicates that our unlikelihood loss helps models to understand the context better.

Method	ADE-Full	FDE-Full
Trajectron++ Trajectron++ with Removing Violation Trajectron++ with L _{unlike}	$\begin{array}{c} 1.04 \pm 0.05 \\ 0.98 \pm 0.04 \\ \textbf{0.95} \pm \textbf{0.03} \end{array}$	$\begin{array}{c} 2.74 \pm 0.10 \\ 2.55 \pm 0.10 \\ \textbf{2.51} \pm \textbf{0.06} \end{array}$

Qualitative results

• Qualitative results on nuScenes with Trajectron++ (left) and on Argoverse with Gaussian LaneGCN (right). White points denote the ground truth. Our loss helps reduce the context-violation prediction.

(a) Trajectron++ + Unlikelihood (Ours) (b) Trajectron++

(b) Gaussian LaneGCN

Summary

- We propose continuous unlikelihood training for vehicle motion forecasting that encourages models to use contextual information by minimizing the likelihood of context-violated trajectories.
- Our method can be incorporated into state-of-the-art models that predict the future as distributions.
- Experimental results show that our method can improve the quality of the predicted distribution by avoiding maximally 56% context-violated prediction and improving 9% prediction performance.