Frame Mining: a Free Lunch for Learning Robotic
Manipulation from 3D Point Clouds
Supplementary Material

S.1 Supplementary Video and Code

Our supplementary video can be viewed at this link, which includes visualizations of learned trajec-
tories for different methods. For FM-MA, we fuse both the robot-base frame and the end-effector
frame(s). For each task, an agent is trained on multiple objects.

Our code can be viewed at this github link.
S.2  Architecture of the other two FrameMiners

Fig. S1 shows architectures of the other two FrameMiners, FrameMiner-FeatureConcat (FM-FC)
and FrameMiner-TransformerGroup (FM-TG).
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Figure S1: Architectures of FrameMiner-FeatureConcat and FrameMiner-TransformerGroup.

S.3 More Details of Manipulation Tasks

Task Descriptions:

* In OpenCabinetDoor, a single-arm mobile agent needs to approach a cabinet, use the handle to
fully open the designated cabinet door, and then keep the door static for a while.

* In OpenCabinetDrawer, a single-arm mobile agent needs to approach a cabinet, use the handle to
fully open the designated cabinet drawer, and then keep the drawer static for a while.

Submitted to the 6th Conference on Robot Learning (CoRL 2022). Do not distribute.


https://youtu.be/CF-BwAx-P1A
https://github.com/anonymouscode12345680/corl_32_submission
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* In PushChair, a dual-arm mobile agent needs to approach the chair, push the chair to a target
location, and then keep the chair static for a while.

* In MoveBucket, a dual-arm mobile agent needs to approach the bucket, move the bucket to a target
platform, place the bucket onto the platform, and then keep the bucket static for a while.

* In PickObject, a single-arm fixed-base agent needs to grasp an object from the table, lift it up to a
certain target height, and keep it static for a while.

Simulations are fully physical. For OpenCabinetDoor, OpenCabinetDrawer, PushChair, and Move-
Bucket, there are 66, 49, 26, and 29 different objects (designated parts) during training, respectively.

Observations and Actions:
For all ManiSkill tasks, the proprioceptive robot state includes:

* Positions of all (two if single-arm, four if dual-arm) fingers

* Velocities of all (two or four) fingers

* X,y position of the mobile robot base

* Mobile robot base’s rotation around the z-axis

* X,y velocity of the mobile robot base

* Angular velocity of the mobile robot base around the z-axis

* Joint angles of the robot, excluding the joints in the mobile base

* Joint velocities of the robot, excluding the joints in the mobile base
* Indicator of whether each joint receives an external torque

The action space includes:

* X,y velocity of the mobile robot base

* Angular velocity of the mobile robot base around the z-axis

 Height of the robot body

* Joint velocities of the robot, excluding joints of the mobile base and the gripper fingers
* Joint positions of the gripper fingers

Joint positions of the gripper fingers are controlled by position PID. All other action components are
controlled by velocity PID.

For the PickObject task, the proprioceptive robot state includes:

* Joint angles of the robot,

* Joint velocities of the robot,

* 1D gripper joint position,
 Target xyz positions of object.

The action space includes 3 DoF end-effector position and 1 DoF gripper joint position.

For all tasks, input point cloud features include xyz coordinates, RGB colors, and one-hot segmen-
tation masks for each part category.

S.4 Detailed Experimental Settings and Hyperparameters

For our visual backbones, our PointNets are implemented with a three-layer MLP with dimensions
[64,128,300] followed by a max-pooling layer. We do not apply any spatial transformation to
the inputs. Our SparseConvNets are implemented as a SparseResNetl0 using TorchSparse [1].
SparseResNet10 has a 4-stage pipeline with kernel size 3 and hidden channels [64, 128, 256, 512]
respectively. We use kernel size 3 and stride 2 for downsampling. Initial voxel size is 0.05. Final
features in the final-stage voxels are maxpooled as output visual feature.
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All of our agents are trained with PPO (hyperparameters in Tab. S1). Each policy MLP that outputs
actions has dimensions [192, 128, action_dim|. For FM-MA that uses input-dependent joint-specific
weights to fuse action proposals from different frames, the MLP has dimension [192, n x m], where
n is the number of frames and m is the dimension of action space. For FM-TG that uses Transformer
to fuse features from different frames, the Transformer has 3 layers with hidden dimension 300 and
feed-forward dimension 1024. For all network variants, the value head takes the concatenation of all
visual features from all frames as input and passes through an MLP with dimensions [192, 128, 1] to
output value prediction.

For each task, we train an agent for a fixed number of environment steps. Specifically, for OpenCab-
inetDoor, OpenCabinetDrawer, and MoveBucket, we train for 15 million steps. For PushChair, we
train for 20 million steps. For PickObject, we train for 4 million steps. Success rates are calculated
among 300 evaluation trajectories.

Hyperparameters | Value
Optimizer Adam
Discount () 0.95
A in GAE 0.95
PPO clip range 0.2
Coefficient of the entropy loss term of PPO cent 0.0
Advantage normalization True
Reward normalization True
Number of threads for collecting samples 5
Number of samples per PPO update 40000
Number of epochs per PPO update 2
Number of samples per minibatch 330
Gradient norm clipping 0.5
Max KL 0.2
Policy learning rate | 3e-4 (non FM-TG); le-4 (FM-TG)
Value learning rate 3e-4
Table S1: Hyperparameters for PPO.
S.5 More Details of Real-World Experiments
Fig. S2 shows the captured RGB images and RGB image 3D Point Cloud
point clouds in both simulation and the real y

world (by RealSense camera). For both simula-
tion and the real-world environment, the ground
points are removed using z-coordinate thresh-
old or RANSAC, and the distant points are
clipped. To reduce the sim-to-real gap, we only
use xyz coordinates as our input point cloud
feature, and we discard RGB colors.

Simulation

We also demonstrate our real-world experi-
ments at the end of our supplementary video.

Real World
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