
Frame Mining: a Free Lunch for Learning Robotic
Manipulation from 3D Point Clouds

Supplementary Material

S.1 Supplementary Video and Code1

Our supplementary video can be viewed at this link, which includes visualizations of learned trajec-2

tories for different methods. For FM-MA, we fuse both the robot-base frame and the end-effector3

frame(s). For each task, an agent is trained on multiple objects.4

Our code can be viewed at this github link.5

S.2 Architecture of the other two FrameMiners6

Fig. S1 shows architectures of the other two FrameMiners, FrameMiner-FeatureConcat (FM-FC)7

and FrameMiner-TransformerGroup (FM-TG).8
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Figure S1: Architectures of FrameMiner-FeatureConcat and FrameMiner-TransformerGroup.

S.3 More Details of Manipulation Tasks9

Task Descriptions:10

• In OpenCabinetDoor, a single-arm mobile agent needs to approach a cabinet, use the handle to11

fully open the designated cabinet door, and then keep the door static for a while.12

• In OpenCabinetDrawer, a single-arm mobile agent needs to approach a cabinet, use the handle to13

fully open the designated cabinet drawer, and then keep the drawer static for a while.14
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https://youtu.be/CF-BwAx-P1A
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• In PushChair, a dual-arm mobile agent needs to approach the chair, push the chair to a target15

location, and then keep the chair static for a while.16

• In MoveBucket, a dual-arm mobile agent needs to approach the bucket, move the bucket to a target17

platform, place the bucket onto the platform, and then keep the bucket static for a while.18

• In PickObject, a single-arm fixed-base agent needs to grasp an object from the table, lift it up to a19

certain target height, and keep it static for a while.20

Simulations are fully physical. For OpenCabinetDoor, OpenCabinetDrawer, PushChair, and Move-21

Bucket, there are 66, 49, 26, and 29 different objects (designated parts) during training, respectively.22

Observations and Actions:23

For all ManiSkill tasks, the proprioceptive robot state includes:24

• Positions of all (two if single-arm, four if dual-arm) fingers25

• Velocities of all (two or four) fingers26

• x, y position of the mobile robot base27

• Mobile robot base’s rotation around the z-axis28

• x, y velocity of the mobile robot base29

• Angular velocity of the mobile robot base around the z-axis30

• Joint angles of the robot, excluding the joints in the mobile base31

• Joint velocities of the robot, excluding the joints in the mobile base32

• Indicator of whether each joint receives an external torque33

The action space includes:34

• x, y velocity of the mobile robot base35

• Angular velocity of the mobile robot base around the z-axis36

• Height of the robot body37

• Joint velocities of the robot, excluding joints of the mobile base and the gripper fingers38

• Joint positions of the gripper fingers39

Joint positions of the gripper fingers are controlled by position PID. All other action components are40

controlled by velocity PID.41

For the PickObject task, the proprioceptive robot state includes:42

• Joint angles of the robot,43

• Joint velocities of the robot,44

• 1D gripper joint position,45

• Target xyz positions of object.46

The action space includes 3 DoF end-effector position and 1 DoF gripper joint position.47

For all tasks, input point cloud features include xyz coordinates, RGB colors, and one-hot segmen-48

tation masks for each part category.49

S.4 Detailed Experimental Settings and Hyperparameters50

For our visual backbones, our PointNets are implemented with a three-layer MLP with dimensions51

[64, 128, 300] followed by a max-pooling layer. We do not apply any spatial transformation to52

the inputs. Our SparseConvNets are implemented as a SparseResNet10 using TorchSparse [1].53

SparseResNet10 has a 4-stage pipeline with kernel size 3 and hidden channels [64, 128, 256, 512]54

respectively. We use kernel size 3 and stride 2 for downsampling. Initial voxel size is 0.05. Final55

features in the final-stage voxels are maxpooled as output visual feature.56
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All of our agents are trained with PPO (hyperparameters in Tab. S1). Each policy MLP that outputs57

actions has dimensions [192, 128, action dim]. For FM-MA that uses input-dependent joint-specific58

weights to fuse action proposals from different frames, the MLP has dimension [192, n×m], where59

n is the number of frames and m is the dimension of action space. For FM-TG that uses Transformer60

to fuse features from different frames, the Transformer has 3 layers with hidden dimension 300 and61

feed-forward dimension 1024. For all network variants, the value head takes the concatenation of all62

visual features from all frames as input and passes through an MLP with dimensions [192, 128, 1] to63

output value prediction.64

For each task, we train an agent for a fixed number of environment steps. Specifically, for OpenCab-65

inetDoor, OpenCabinetDrawer, and MoveBucket, we train for 15 million steps. For PushChair, we66

train for 20 million steps. For PickObject, we train for 4 million steps. Success rates are calculated67

among 300 evaluation trajectories.68

Hyperparameters Value

Optimizer Adam
Discount (γ) 0.95

λ in GAE 0.95
PPO clip range 0.2

Coefficient of the entropy loss term of PPO cent 0.0
Advantage normalization True

Reward normalization True
Number of threads for collecting samples 5

Number of samples per PPO update 40000
Number of epochs per PPO update 2
Number of samples per minibatch 330

Gradient norm clipping 0.5
Max KL 0.2

Policy learning rate 3e-4 (non FM-TG); 1e-4 (FM-TG)
Value learning rate 3e-4

Table S1: Hyperparameters for PPO.

S.5 More Details of Real-World Experiments69
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Figure S2: RGB images and 3D point clouds cap-
tured in both simulation and the real world. Col-
ored point clouds for better illustration.

Fig. S2 shows the captured RGB images and70

point clouds in both simulation and the real71

world (by RealSense camera). For both simula-72

tion and the real-world environment, the ground73

points are removed using z-coordinate thresh-74

old or RANSAC, and the distant points are75

clipped. To reduce the sim-to-real gap, we only76

use xyz coordinates as our input point cloud77

feature, and we discard RGB colors.78

We also demonstrate our real-world experi-79

ments at the end of our supplementary video.80
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