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A.1 Preliminary lemmas540

For any sequence g̃1, . . . , g̃T of conditional densities and any finite sequence ζ1:T := (ζt)
T
t=1 of541

O → R functions, let542

ρT,g̃1:T (ζ1:T ) :=

(
1

T

T∑
t=1

‖ζt‖22,g̃t

)1/2

.

For any conditional density g̃ : (a, x)A×X 7→ g̃(a | x), let543

ρT,g̃(f1:T ) := ρT,g̃1:T (f1:T ),

where we set g̃t := g̃ for every t ∈ [T ].544

Lemma 4. Any ρT,g̃1:T as defined above is a pseudonorm over the vector space (O → R)T .545

Lemma 5. Consider g∗ and g1, . . . , gT as defined in the main text. Suppose that assumption 1 holds.546

Then, for any finite sequence of functions (ζt)
T
t=1 ∈ (O → R)T ,547

ρT,g1:T

(
g∗

g1:T
ζ1:T

)
≤ γmax

T ρT,g∗(ζ1:T ).

If all elements of the sequence ζt are the same, that is, if there exists ζ : O → R such that ζt = ζ for548

every t ∈ [T ], then549

ρT,g1:T

(
g∗

g1:T
ζ1:T

)
≤ γavg

T ‖ζ‖2,g∗ .

Lemma 6. Let ζ11:T , . . . , ζ
N
1:T be J Ō1:T -predictable sequences of O → R functions, and let A be550

an ŌT -measurable event. Then, for any r > 0 and any b > 0 such that maxi∈[N ],t∈[T ] ‖ζit‖∞ ≤ b, it551

holds that552

E

[
max
i∈[N ]

1

T

N∑
t=1

(δOt − Pgt)ζit1(ρT,g1:T (ζi1:T ) ≤ r) | A

]

.r

√
log(1 +N/P [A])

t
+
B

t
log(1 +N/P [A]).

A.2 Proof of Theorem 1553

Proof of Theorem 1. We treat together both the general case where, for each f , ξ1:T (f) is an Ō1:T -554

predictable sequence, and the case where, for every f , there exists a deterministic ξ(f) : O → R555

such that ξt(f) = ξ(f) for every t ∈ [T ]. We refer to the former as case 1 and to the latter as case 2556

in the rest of the proof. In case 1, we let ρ̃T := ρmax
T , and in case 2, we let ρ̃T := ρ̄T .557

From a conditional expectation bound to a high probability bound. Let x > 0. We introduce558

the following event:559

A :=

{
sup
f∈F

MT (f) ≥ ψ(x)

}
,
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where560

ψ(x) :=C

{
r− +

√
γ̃T
T

∫ r

r−

√
log(1 +N[ ](ε,ΞT , ρT,g∗))dε

+
Bγmax

T

T
log(1 +N[ ](r,ΞT , ρT,g∗))

r

√
x

T
+
γmax
T x

T

}
,

where C is a universal constant to be discussed further down. Suppose we can show that561

E

[
sup
f∈F

MT (f) | A

]
≤ ψ

(
log

(
1 +

1

P [A]

))
.

Then, we will have that ψ(x) ≤ ψ(log(2/P [A])), that is P [A] ≤ 2e−x, which is the wished claim.562

Setting up the chaining decomposition. Let ε0 := r, and, for every j ≥ 0, let εj := ε02−j . For563

any j ≥ 0, let564

Bj :=
{

(λj,ks , υj,kt )Tt=1 : k ∈ [Nj ]
}

be a minimal (εj , ρT,g∗)-sequential bracketing of ΞT . For any f ∈ F , let k(j, f) ∈ [Nj ] be such that565

λj,k(j,f)s ≤ ξt(f) ≤ υj,k(j,f) for every t ∈ [T ],

and let ∆j,f
t := υ

j,k(j,f)
s − λj,k(j,f)s and uj,f := υ

j,k(j,f)
s . For any j ≥ 0, let N̄j :=

∏j
i=0Ni. For566

any j ≥ 0, and t ∈ [T ] let567

aj,t := εj

√
T

log(1 + N̄j/P [A])

√
γ̃T
γt

.

Let J ≥ 0 such that εJ+1 < r− ≤ εJ . The integer J will be the maximal depth of the chains in our568

chaining decomposition. For any t ∈ [T ], f ∈ F , let569

τt(f) := inf
{
j ≥ 0 : ∆j,f

t > aj,t

}
∧ J,

be the depth at which we truncate the chains, adaptively depending on the value of ∆j,f
t , so that570

∆j,f
t 1(τt(f) > j) is no larger than aj,t in supremum norm at any depth j.571

For any f ∈ F and any t ∈ [T ], the following chaining decomposition holds:572

ξt(f) =

J∑
j=0

(ξt(f)− uj,f ∧ uj−1,f )1(τt(f) = j)︸ ︷︷ ︸
tip of the chain

+

J∑
j=1

{
(uj,f ∧ uj−1,f − uj−1,f )1(τt(f) = j) + (uj,f − uj−1,f )1(τt(f) > j)

}
︸ ︷︷ ︸

links of the chain

+ u0,ft︸︷︷︸
root of then chain

.

Control of the tips.573
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• Case j = J . We have that574

1

T

T∑
t=1

(δOt − Pgt)
g∗

gt
(ξt(f)− uJ,ft ∧ uJ−1,ft )1(τt(f) = J)

≤ 1

T

T∑
t=1

Pgt
g∗

gt
∆J,f
t

=
1

T

T∑
t=1

‖∆J,f
t ‖1,g∗

≤

(
1

T

T∑
t=1

‖∆J,f
t ‖22,g∗

)1/2

≤εJ .
Therefore575

E

[
sup
f∈F

1

T

T∑
t=1

(δOt−Pgt
g∗

gt
)(ξt(f)− uJ,ft ∧ uJ−1,ft )1(τt(f) = J) | A

]
≤ εJ .

• Case j < J .576

1

T

T∑
t=1

(δOt − Pgt)
g∗

gt
(ξt(f)− uj,ft ∧ u

j−1,f
t )1(τt(f) = j)

≤ 1

T

T∑
t=1

Pgt
g∗

gt
∆j,f
t 1(τt(f) = j)

≤ 1

T

T∑
t=1

Pg∗
(∆j,f

t )2

aj,t

≤ε2j
1

T

T∑
t=1

1

aj,t

=εj

√
log(1 + N̄j/P [A])

T

1√
γ̃T

1

T

∑
t=1

γt

≤εj

√
γ̃T log(1 + N̄j/P [A])

T
.

(The last inequality is an equality in case 2).577

Control of the links. We start with bounding the ρT,g1:T pseudo-norm of the IS weighted links.578

We have that579

ρT,g1:T

((
g∗

gt
(uj,ft ∧ u

j−1,f
t − uj−1,ft

)T
t=1

)

≤ρT,g1:T

((
g∗

gt
(uj,ft − u

j−1,f
t

)T
t=1

)
≤
√
γ̃T ρT,g∗

(
uj,f1:T − u

j−1,f
1:T

)
≤
√
γ̃T

{
ρT,g∗

(
uj,f1:T − ξ1:T (f)

)
+ ρT,g∗

(
ξ1:T (f)− uj−1,f1:T

)}
.
√
γ̃T εj ,

where we have used lemma 5 is the third line and where the fourth line above follows from the580

triangle inequality.581
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We now bound the supremum norm of the links. For every t ∈ [T ],582

(uj,ft ∧ u
j−1,f
t − uj,ft )1(τt(f) = j)

=(uj,ft ∧ u
j−1,f
t − ξt(f))1(τt(f) = j)

− (uj−1,ft − ξ(f))1(τt(f) = j).

Using the definition of τt(f), we obtain583

0 ≤ (uj,ft ∧ u
j−1,f
t − ξt(f))1(τt(f) = j) ≤ (uj−1,ft − ξt(f))1(τt(f) = j) ≤ aj−1,t . aj,t,

and584

0 ≤ (uj−1,ft − ξt(f))1(τt(f) = j) ≤ aj−1,t . aj−1,t.

Therefore,585

max
t∈[T ]

∥∥∥∥g∗gt
(
uj,ft ∧ u

j−1,f
t − uj−1,ft

)
1(τt(f) = j)

∥∥∥∥
∞

. γtaj,t = bj

where586

bj := εj

√
T γ̃T

log(1 + N̄j/P [A])

Similarly, we have587

0 ≤ (uj,ft − ξt(f))1(τt(f) > j) ≤ aj,t and 0 ≤ (uj−1,ft − ξt(f))1(τt(f) > j) ≤ aj−1,t,
and therefore, for every t ∈ [T ]588 ∥∥∥∥g∗gt

(
uj−1,ft − uj−1,ft

)
1(τt(f) > j)

∥∥∥∥
∞

. γtaj,t = bj

Denote589

vj,ft :=
g∗

gt

{
(uj,ft ∧ u

j−1,f
t − uj,ft )1(τt(f) = j) + (uj,ft − u

j−1,f
t )1(τt(f) > j)

}
.

Observe that as f varies over F , vj,f1:T varies over a collection of at most Nj ×Nj−1 ≤ N̄j elements.590

Therefore, lemma 6 yields591

E

[
sup
f∈F

1

T

T∑
t=1

(δOt − Pgt)
g∗

gt
vj,ft

]

.εj

√
γ̃T log(1 + N̄j/P [A])

T
+
bj
T

log(1 + N̄j/P [A])

.εj

√
γ̃T log(1 + N̄j/P [A])

T
.

Control of the root. For any f such that ρT,g∗((ξt(f))Tt=1) ≤ r, we have that592

ρT,g1:T (((g∗/gt)u
0,f
t )Tt=1)

≤
√
γ̃T ρT,g∗(u0,f1:T )

≤
√
γ̃T (ρT,g∗(u0,f1:T − ξ1:T (f)) + ρT,g∗(ξ1:T (f)).

Without loss of generality, we can assume that maxt∈[T ] ‖u0,ft ‖∞ ≤ B, since thresholding to B593

preserves the bracketing property. Therefore, maxt∈[T ] ‖(g∗/gt)u0,ft ‖∞ ≤ γmax
T Bε.594

Then, from lemma 6,595

E

[
sup

{
1

T

T∑
t=1

(δOt − Pgt)ξt(f) : f ∈ F , ρT,g∗((ξt(f))Tt=1) ≤ r

}]

≤
√
γ̃T
T

√
log

(
(1 +

N̄0

P [A]

)
+
Bγmax

T

T
log

(
1 +

N̄0

P [A]

)
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Adding up the bounds. We obtain596

E

[
sup
f∈F

MT (f) | A

]
.

√
γ̃T
T

√
log

(
(1 +

N̄0

P [A]

)
+

B

δT
log

(
1 +

N̄0

P [A]

)
︸ ︷︷ ︸

root contribution

+

√
γ̃T
T

J∑
j=1

εj log

(
1 +

N̄j
P [A]

)
︸ ︷︷ ︸

links contribution

+

√
γ̃T
T

J−1∑
j=0

εj log

(
1 +

N̄j
P [A]

)
+ εJ︸ ︷︷ ︸

tip contribution

.εJ +

√
γ̃T
T

J∑
j=0

εj log

(
1 +

N̄j
P [A]

)
+
Bγmax

T

T
log

(
1 +

N̄0

P [A]

)
.

We use the classical technique from finite adaptive chaining proofs to bound the sum in the second597

term with an integral [see e.g. 8, 57]. We obtain598

J∑
j=0

εj log

(
1 +

N̄j
P [A]

)
.
∫ r

r−

√
log(1 +N[ ](ε,ΞT , ρT,g∗))dε+ log

(
1 +

1

P [A]

)
.

Therefore,599

E

[
sup
f∈F

MT (f) | A

]
.r− +

√
γ̃T
T

∫ r

r−

√
log(1 +N[ ](ε,ΞT , ρT,g∗))dε

+
Bγmax

T

T
log(1 +N[ ](r,ΞT , ρT,g∗))

+

√
γ̃T
T

√
log

(
1 +

1

P [A]

)
+
Bγmax

T

T
log

(
1 +

1

P [A]

)
.

Therefore, for an appropriate choice of the universal constant C in the definition of ψ, we have that600

E

[
sup
f∈F

MT (f) | A

]
≤ ψ

(
log

(
1 +

1

P [A]

))
,

which, from the first paragraph of the proof, implies the wished claim.601

B Proof of theorem 4602

Proof. We begin with stating a few basic facts. From the range condition on Y and F , the loss
diameters assumption (Assumption 3) holds with r0 = B = M , and

√
M and 4M are envelopes for

F and `(F), respectively. From the assumption 6 on the entropy of F , we then have

logN[ ](
√
Mε,F , ‖ · ‖2,g∗) . ε−p.

Since f 7→ `(f, ·) is
√
M -Lispchitz (Lemma 2), Lemma 1 yields that

logN[ ](4Mε, `(F), ‖ · ‖2,g∗) . N[ ](
√
Mε, `(F ), ‖ · ‖2,g∗) . ε−p.

Therefore, Assumption 2 holds with envelope 4M .603

Let, for any f ∈ F ,604

MT (f) :=
1

T

T∑
t=1

(PQ0,gt − δOt)(`(f, ·)− `(f1, ·)).

We distinguish the case p ∈ (0, 2) and the case p > 2.605
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Case p ∈ (0, 2). From convexity of f 7→ `(f, ·), and from convexity of the set F , the following606

implication holds: for any r > 0,607

∃f ∈ F , R∗(f)−R∗(f1) ≥ r2 and R̂T (f)− R̂T (f1) ≤ 0,

=⇒ ∃f ∈ F , R∗(f)−R∗(f1) = r2 and R̂T (f)− R̂T (f1) ≤ 0.

For any r > 0, let ρ := r/
√
M , so that if r2 is an excess risk, ρ2 is the corresponding envelope-608

standardized excess risk. For any ρ > 0, we have609

P
[
R∗(f̂T )−R∗(f1) ≥Mρ2

]
≤P

[
sup

{
MT (f) : f ∈ F , R∗(f)−R∗(f1) = Mρ2

}
≥Mρ2

]
≤P

[
sup {MT (f) : f ∈ F , ‖`(f)− `(f1)‖2,g∗ .Mρ} ≥Mρ2

]
,

where we have used the variance bound from Lemma 2 to obtain the last inequality. From Theorem 1,610

there exists C > 0 such that, for any r > 0, x > 0, it holds with probability at most 2e−x that611

sup {MT (f) : f ∈ F , ‖`(f)− `(f1)‖2,g∗ .Mρ}
≤ψt(Mρ)

:=C

(√
γavg
T

T
M

∫ ρ

0

√
log(1 +N[ ](ε, `(F), ‖ · ‖2,g∗))dε

+
Mγmax

T
log(1 +N[ ](Mρ, `(F), ‖ · ‖2,g∗)) +Mρ

√
γavg
T x

T
+
Mγmax

T x

T

)
.

Therefore, if ρ is such that Mρ2 is larger than Ψt(Mρ), then, it holds that R∗(f)−R∗(f1) ≤Mρ2612

with probability at least 1− 2e−x. Using the entropy bound, we obtain613

Ψt(Mρ)

M
.

√
γavg
T

T
ρ1−

p
2 +

γmax
T ρ−p

T
+ ρ

√
γavg
T x

T
+
γmax
T x

T
.

Therefore, to have ρ2 & Ψt(Mρ)/M , it suffices to have614

ρ2 & max

{√
γavg
T

T
ρ1−

p
2 ,
γmax
T ρ−p

T
, ρ

√
γavg
T x

T
,
γmax
T x

T

}
,

that is615

ρ ≥ max

{(
γmax
T

T

) 1
2+p

,

√
γmax
T x

T

}
.

Case p > 2. We have that616

R∗(f̂T )−R∗(f1)

≤ sup
f∈F

MT (f)

.Mρ− +

√
γavg
T

T

∫ M

Mρ−

√
log(1 +N[ ](ε, `(F), ‖ · ‖2,g∗))dε

+
γmax
T M

T
log(1 +N[ ](M, `(F), ‖ · ‖2,g∗)) +M

√
γavg
T x

T
+
Mγmax

T x

T

.r− +

√
γavg
T

T
M

∫ 1

ρ−

√
log(1 +N[ ](Mu, `(F), ‖ · ‖2,g∗))du

+
γmax
T M

T
+M

√
γavg
T x

T
+
Mγmax

T x

T

.Mρ− +

√
γavg
T

T
M × (ρ−)−(p/2−1) +

γmaxM

T
+M

√
γavg
T x

T
+M

γmax
T x

T

.M

(
γavg
T

T

) 1
p

+
γmax
T M

T
+M

√
γavg
T x

T
+
Mγmax

T x

T
,

where we obtained the last line by optimizing ρ−.617
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C Proof of the variance bound under margin condition618

Proof of Lemma 3. By assumption there exists f1 ∈ F such that R∗(f1) = EpXµ∗(X). Applying619

Assumption 7 with u = 0 shows that we necessarily have |argmina∈A µ(X, a)| = 1 almost surely.620

Therefore, almost surely, f1(X, a∗(X)) = 1 and f1(X, a) = 0 for a 6= a∗(X).621

Now fix any f ∈ F . Given X , let A ∈ A be random variable draw from f(X, ·). We will henceforth
denote expectations and probabilities as wrt (X,A) ∼ pX × f . For brevity we will also denote
A∗ = a∗(X). Note that

‖`(f, ·)− `(f1, ·)‖22,g∗ ≤M2P (A∗ 6= A)

and that

‖Λ‖22,g∗
(
R∗(f)−R∗(f1)

‖Λ‖2,g∗

)α
= M2(E [µ(X,A)− µ(X,A∗)] /M)ν/(ν+1).

Denoting ∆ = mina∈A\{a∗(X)} µ(X, a)− µ∗(X), Assumption 7 says that for some κ > 0 we have622

P (∆ ≤ u) ≤ (κu/M)ν , where 1∞ = 1 and x∞ = 0 for x ∈ [0, 1).623

Fix u > 0. Then624

E [µ(X,A)− µ(X,A∗)] = E [(µ(X,A)− µ(X,A∗))1(A 6= A∗)]

≥ E [(µ(X,A)− µ(X,A∗))1(A 6= A∗,∆ > u)]

≥ uP (A 6= A∗,∆ > u)

= u (P (A 6= A∗)− P (A 6= A∗,∆ ≤ u))

≥ u (P (A 6= A∗)− P (∆ ≤ u))

≥ u (P (A 6= A∗)− (κu/M)ν) .

Set u = ((ν + 1)κ/M)−1/νP (A 6= A∗)
1/ν and obtain

E [µ(X,A)− µ(X,A∗)] ≥ ν(ν + 1)−(ν+1)/ν(κ/M)−1P (A 6= A∗)
(ν+1)/ν

,

whence

P (A 6= A∗) ≤ ν−ν/(ν+1)(ν + 1) ((κ/M)E [µ(X,A)− µ(X,A∗)])
ν/(ν+1)

.

We conclude that

‖`(f, ·)− `(f1, ·)‖22,g∗ .M2 (E [µ(X,A)− µ(X,A∗)] /M)
ν/(ν+1)

as desired.625

D Additional Details and Results for the Empirical Investigation626

Here we provide additional details and results for Section 6.627

D.1 Contextual Bandit Data from Multi-Class Classification Datasets628

To construct our data, we turn K-class classification tasks into a K-armed contextual bandit problems629

[15, 17, 51], which has the benefits of reproducibility using public datasets and being able to make630

uncontroversial comparisons using actual ground truth data with counterfactuals. We use the public631

OpenML Curated Classification benchmarking suite 2018 (OpenML-CC18; BSD 3-Clause license)632

[11], which has datasets that vary in domain, number of observations, number of classes and number633

of features. Among these, we select the classification datasets which have less than 60 features. This634

results in 51 classification datasets from OpenML-CC18 used for evaluation. Table 1 summarizes the635

characteristics of the 51 OpenML datasets used.636

Each dataset is a collection of pairs of covariates X and labels L ∈ {1, . . . ,K}. We transform each637

dataset to the contextual bandit problem as follows. At each round, we draw Xt, Lt uniformly at638

random with replacement from the dataset. We reveal the context Xt to the agent, and given an639

arm pull At, we draw and return the reward Yt ∼ N (1{At = Lt}, 1). To generate our data, we set640

T = 100000 and use the following ε-greedy procedure. We pull arms uniformly at random until each641
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Samples Count
< 1000 16

≥ 1000 and < 10000 25
≥ 10000 10

Classes Count
= 2 30

> 2 and < 10 15
≥ 10 6

Features Count
≥ 2 and < 10 14
≥ 10 and < 30 22
≥ 30 and ≤ 60 14

Table 1: Characteristics of the 51 OpenML-CC18 datasets used for evaluation.

(a) LASSO outcome model with cross-validated regularization parameter.

(b) Ridge outcome model with cross-validated regularization parameter.

(c) CART outcome model with unrestricted tree depth.

Figure 2: Comparison of weighted regression run on contextual-bandit-collected data. Each dot is
one of 51 OpenML-CC18 datasets. Lines denote ±1 standard error. Dots are blue when ISWERM is
clearly better, red when clearly worse, and black when indistinguishable within one standard error.

arm has been pulled at least once. Then at each subsequent round t, we fit µ̂t−1 using the data up to642

that time. Specifically, for each a, we take the data {(Xs, Ys) : 1 ≤ s ≤ t− 1, As = a} and pass it to643

a regression algorithm in order to construct µ̂t−1(·, a). In Section 6, we presented results where we644

use sklearn’s LinearRegression to fit µ̂t−1(·, a) (using sklearn defaults). In Appendix D.2, we645

repeat the experiments where we instead use sklearn’s DecisionTreeRegressor (using sklearn646

defaults). We set Ãt(x) = argmaxa=1,...,K µ̂t−1(a, x) and εt = t−1/3. We then let gt(a | x) =647

εt/K for a 6= Ãt(x) and gt(Ãt(x) | x) = 1 − εt + εt/K. That is, with probability εt we pull a648

random arm, and otherwise we pull Ãt(Xt).649

D.2 Additional Results650

In Section 6, we presented results where we use a linear-contextual ε-greedy bandit algorithm to651

collect the data. Here, we repeat our experiments when the data are instead collected by a tree-652

contextual ε-greedy bandit algorithm, as described in Appendix D.1 above. The results are shown653

in Fig. 2. The conclusions are generally the same: ISWERM compares favorably for fitting linear654

models, while all methods perform similarly for fitting tree models.655

D.3 Code and Execution Details656

The IPython notebook to reproduce the experimental results of the main paper and the appendix is657

included as an attachment in the Supplemental Material. One needs to obtain an OpenML API key to658
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run this code (instructions can be found at https://docs.openml.org/Python-guide/) and replace the659

string ’YOURKEY’ in summarize_openmlcc18() and in download_openmlcc18() functions with660

it. After that, if the notebook is executed as is, it reproduces Figure 1 (38h 26min on a single Intel661

Xeon machine with 32 physical cores/64 CPUs). Changing variable bandit_model from ’linear’662

to ’tree’ reproduces Figure 2 (56h 45min on a single Intel Xeon machine with 32 physical cores/64663

CPUs).664
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