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Abstract1

Node embedding methods map network nodes to low dimensional vectors that can2

be subsequently used in a variety of downstream prediction tasks. The popularity3

of these methods has significantly increased in recent years, yet, their robustness to4

perturbations of the input data is still poorly understood. In this paper, we assess5

the empirical robustness of node embedding models to random and adversarial6

poisoning attacks. Our systematic evaluation covers representative embedding7

methods based on Skip-Gram, matrix factorization, and deep neural networks. We8

compare edge addition, deletion and rewiring strategies computed using network9

properties as well as node labels. We also investigate the effect of label homophily10

and heterophily on robustness. We report qualitative results via embedding visu-11

alization and quantitative results in terms of downstream node classification and12

network reconstruction performances. We found that node classification suffers13

from higher performance degradation as opposed to network reconstruction, and14

that degree-based and label-based attacks are on average the most damaging.15

1 Introduction16

In recent years, the design of robust machine learning models has become an important topic and17

attracted significant amounts of research attention [1–4]. The term ‘robust’ refers to the ability of18

a model to provide consistent and accurate predictions under small perturbations in the input data.19

These perturbations can appear in the form of random noise, out of distribution (OOD) data, or20

partially observed inputs [5]. They can affect models at train or evaluation times and be random21

or adversarial in nature. For a more complete overview of robustness in machine learning we refer22

the reader to [6]. In this manuscript, we empirically study both random and adversarial attack23

scenarios where perturbations are either a consequence of noise or specifically crafted to reduce24

model performance. We further focus our analysis on attacks affecting the models at training time25

exclusively, also know as the poisoning scenario [7].26

Simultaneously, node representation learning or node embedding models have become increasingly27

popular for bridging the gap between traditional machine learning and network structured data28

[8–10]. These approaches map network nodes to real-valued vectors that can be subsequently29

used in downstream prediction tasks, such as classification [11] and regression [12]. Training30

of these models can be performed in a semi-supervised or unsupervised fashion. In the former,31

embeddings are optimized for a particular downstream task while in the latter, general purpose32

embeddings are obtained. Robustness is an important feature for representation learning models as33

well. One would generally prefer small changes in the input networks to have a minimal impact34

on the vector representations learned and subsequently on downstream performance. Moreover,35

with the deployment of these models in safety-critical environments (e.g., [13]) and on the web36

(where adversaries are common) [14, 15], robustness evaluation has become ever more essential.37

Unfortunately, the robustness of unsupervised node embedding approaches is poorly understood.38

Some recent studies (e.g., [16]) have analyzed specific cases of semi-supervised models based on39

the Graph Neural Network or particular shallow models (e.g., [17]). Other studies evaluate the40

performance of unsupervised random walk approaches under poison attacks [7]. However, methods41

from other paradigms for unsupervised network embeddings, such as matrix factorization and deep42

neural models, have not received much attention yet.43
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We perform a systematic empirical analysis of the robustness of foundational works in the field of44

node embeddings. The 10 unsupervised approaches we evaluate include Node2vec [18], GraRep45

[19], and SDNE [20], which have inspired many other methods based on the same principles, e.g.,46

[21–23]. The evaluated models can be categorized into Skip-Gram, matrix factorization, and deep47

neural approaches, and we compare their robustness on two important downstream tasks: node48

classification and network reconstruction. We evaluate robustness under randomized and adversarial49

attacks targeting the network edges. Within the adversarial attacks we direct our analysis to heuristic-50

based approaches, as opposed to optimization based attacks. The former heuristically target network51

properties such as assortativity or degree. These attacks are significantly more computationally52

efficient that optimization attacks, where an optimization problem must be solved to identify the most53

damaging changes to the network. Additionally, heuristic-based attacks provide more interpretable54

results in terms of the edges being targeted and have also been shown to effectively lead to structural55

collapse in networks [24]. Further, we focus our evaluation on the important global attack scenario,56

where changes can be performed anywhere on the graph structure provided a fixed attack budget.57

Contributions. Our main contribution is a systematic analysis of node embedding robustness. We58

evaluate a total of 10 unsupervised node embedding approaches based on three different learning59

paradigms. We employ a total of 6 small and mid-sized networks and compare 14 different poison60

attack strategies. Further, we investigate the differences between randomized and adversarial attacks61

and compare edge addition, deletion and rewiring strategies. We also investigate adversarial robustness62

under node label homophily, where nodes with similar labels tend to be connected to each other,63

and heterophily, where nodes of different labels are more often connected. This constitutes the first64

empirical evaluation of this magnitude on node embedding robustness.65

The remainder is organized as follows: in Section 2 we present the related work and in Section 366

we introduce the embedding methods and attack strategies evaluated. In Section 4, we discuss the67

experimental evaluation and results and finally, in Section 5 we outline our main conclusions.68

2 Related Work69

A large body of research has shown that traditional machine learning models and more recently deep70

neural models can be easily misled into providing wrong answers with high confidence [25, 26].71

Work on identifying and protecting against these adversarial attacks has particularly developed in the72

computer vision field. Here, several works including [27, 28], have shown how changes unperceivable73

to the human eye can result in dramatic performances drops or misclassifications. Later, adversarial74

attacks were introduced in the field of network science [5]. In [24], the authors show how structural75

properties of networks can collapse as a result of attacks. The authors further provide a framework for76

simulating attacks and defenses on networks. With the popularization of node embedding methods77

authors have also investigated adversarial attacks on semi-supervised [16, 29] and unsupervised [17]78

approaches. While there are some empirical studies comparing the performance of these types of79

methods (e.g., [30]), there is little research comparing their robustness. With the present work, our80

aim is to fill this gap and provide a fist empirical study and overview on the robustness to random and81

adversarial attacks of unsupervised node embedding approaches.82

3 Methods83

In this section we introduce the node embeddings approaches evaluated and the attack strategies used84

to poison the input networks. Regarding notation, in what follows we will use G = (V,E) to refer85

to an undirected graph with vertex set V = {v1, . . . , vN}, N = |V| and edge set E ⊆ (V ×V),86

M = |E|. We will represent edges or connected node-pairs as unordered pairs {vi, vj} ∈ E.87

And refer to pairs {vi, vj} /∈ E as non-edges or unconnected node-pairs. Node embeddings are88

denoted as X = (x1,x2, . . . ,xN ), X ∈ IRN×d where xi is the d-dimensional vector representation89

corresponding to node vi.90

3.1 Node embedding methods91

For our experimental evaluation we have selected 10 representative methods spanning three different92

embedding learning paradigms, namely Skip-Gram, matrix factorization and deep neural networks.93

Next, we introduce each paradigm and the corresponding methods.94

2



A Systematic Evaluation of Node Embedding Robustness

Table 1: Poison attacks evaluated and their types: (D) deterministic, (ND) non-deterministic.

Edge addition Edge deletion Edge rewiring

Name Type Name Type Name Type

add_rand ND del_rand ND rew_rand ND
add_deg ND del_deg D - -
add_pa ND del_pa D - -
add_da ND del_da D - -
add_dd ND del_dd D - -
add_ce ND del_di ND DICE ND

Skip-Gram. These approaches capture node similarities in the graph through random walks and95

leverage the Skip-Gram model [31] to obtain node representations that maximize the posterior96

probability of observing neighboring nodes in the walks. From this category we evaluate: Deepwalk97

[32], the seminal work that proposed fixed length random walks to capture node similarities and98

Skip-Gram (approximated via hierarchical softmax) for learning the embedding matrix X; Node2vec99

[18], which introduced more flexible random walks controlled by in/out and return parameters and100

approximates Skip-Gram via negative sampling; LINE [33], where the authors leverage first and101

second order proximities to learn representations; And finally, VERSE [11], which minimizes the102

KL-divergence between a similarity metric on G (by default Personalized PageRank) and a vector103

similarity on X.104

Matrix Factorization. Factorization methods take as input node similarities encoded in the graph105

Laplacian, incidence matrices, adjacency matrices (A) and their polynomials, etc. and compute low106

dimensional embeddings by factorizing the selected matrix. We evaluate the following methods107

that are based on this paradigm: GraRep [19], HOPE [34], NetMF [35] and M-NMF [36]. GraRep108

factorizes high order polynomials of A, HOPE can factorize different similarity matrices provided109

they can be expressed as a composition of two sparse proximity matrices. NetMF decomposes the110

DeepWalk transition matrix via SVD and lastly, M-NMF computes embeddings via non-negative111

matrix factorization and incorporates community structure in this process.112

Deep Neural Networks. Deep neural models, from auto-encoders to Siamese networks or CNNs,113

have also been used to obtain node representations from a graph’s link structure in an unsupervised114

fashion. Among these types of methods we evaluate SDNE [20], a deep neural model that captures115

first and second order proximity in the graph, and PRUNE [12], a Siamese network architecture able116

to preserve global node ranking and community structure.117

3.2 Network attacks118

We subdivide network attacks into randomized and adversarial and further into three main types119

based on the changes to the network structure. These changes are edge addition, edge deletion and120

edge rewiring. Table 1 summarizes all attacks and below we briefly describe each.121

Randomized Attacks. These attacks are designed to simulate random errors or failures in the122

networks. We consider edge addition (add_rand), deletion (del_rand) and rewiring (rew_rand). In123

the first case, pairs of nodes, vi, vj ∈ V are selected uniformly at random and added to E iff vi 6= vj124

and {vi, vj} /∈ E. For deletion attacks edges {vi, vj} ∈ E are selected uniformly at random and125

removed from E iff di ≥ 2 ∧ dj ≥ 2. Here di and dj represent the degrees of node vi and vj ,126

respectively. In rewire attacks we use del_rand to remove a certain number of edges {vi, vj} ∈ E127

and then reconnect each vi to a new node vk such that vk 6= vj and {vi, vk} /∈ E.128

Adversarial Attacks. We also consider a particular type of heuristic-based adversarial attacks129

which target specific network properties such as node degrees, network assortativity, and node130

labels. As already discussed, the importance of these attacks steams from their higher computational131

efficiency, explainability and capacity to collapse the network structure. Other optimization-based132

adversarial attacks are beyond the scope of the present paper.133

For all edge addition attacks we ensure that the newly generated pairs do not exist already in the134

graph, i.e., {vi, vj} /∈ E, and that they do not form selfloops, i.e., vi 6= vj . For the degree-based135
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(add_deg) and preferential attachment (add_pa) edge addition strategies we sample nodes uniformly136

and based on degree, respectively, and connect them to destination nodes sampled based on degree.137

For the degree assortativity (add_da) and disassortativity (add_dd) attacks, we generate edges which138

increase and respectively, decrease this property. We use the definition of assortativity from [37] (Eq.139

(21)). For add_da we generate edges {vi, vj} where di ≈ dj and for add_dd edges where di � dj .140

The add_ce strategy applies only to attributed graphs and adds a set of random edges connecting141

nodes of dissimilar labels, exclusively.142

Unless otherwise specified, edge deletion attacks ensure that the input networks do not become143

disconnected after the attack. For del_deg and del_pa we first sort all edges based on the appropriate144

metric, i.e., di + dj for del_deg and di × dj for del_pa, and later remove the top edges that can be145

removed without disconnecting the network. For del_da and del_dd we compute the assortativity146

contribution of each edge according to Eq. (21) in [37] and once again take the top candidates while147

avoiding disconnections. Lastly the add_di strategy applies exclusively to attributed graphs and148

randomly selects edges for removal where the incident nodes share the same label.149

Finally, DICE [7] is an adversarial attack where one randomly decides if an edge will be removed or150

added to the network with equal probability. If an edge is to be removed, this is done according to the151

add_di strategy, and if it is to be added, it is done following add_ce.152

It is important to note that all edge deletion attacks with the exception of add_di are deterministic153

while the remaining addition and rewire attacks are non-deterministic.154

4 Experiments155

In this section we present the experimental setup, networks used and the results obtained. All our156

experiments were carried out on a single machine equipped with two 12 Core Intel(R) Xeon(R) Gold157

processors, 1TB of RAM and an RTX 3090 GPU.158

To ensure reproducibility of results, we have employed and extended the capabilities of the EvalNE159

toolbox [38]. This Python framework allows users to asses the performance and robustness of network160

embedding approaches for downstream node classification, network reconstruction, link prediction161

and sign prediction. In the framework we have integrated a variety of random and adversarial162

poison attack strategies, including those introduced in Section 3.2 and Table 1. In EvalNE, complete163

evaluation pipelines and hyperparameters are specified through configuration files which can be164

used at any time to replicate results. These configuration files together with the rest of our code are165

available online at https://tinyurl.com/5n8tsmrs.166

4.1 Preliminaries and Setup167

As pointed out in Section 1, the main goal of this paper is to investigate the robustness of node168

embedding approaches to poison attacks. To this end we report changes in downstream node169

classification and network reconstruction performances for different attacks on the input graphs. Next,170

we summarize the main goals and evaluation pipelines for both tasks and the overall evaluation setup.171

Node Classification. Given an input graph and labels for a subset of the vertices, the goal in node172

classification is to infer the labels of the remaining vertices. To evaluate node classification robustness173

we proceed as follows. (1) We start by attacking an input network G with a specific strategy (from174

Table 1) and budget b. The budget defines the number of edges an attacker can add, delete or rewire175

in the network, expressed as a fraction of the total edges. For example, b = 0.1 indicates 10% of176

all edges in E. (2) The attacked network Ĝ = (V, Ê) is then provided as input to different node177

embedding approaches, which yield a representation matrix X containing the vertex representations178

as its rows. As shown by Mara et. al. [30], gains from optimizing the hyperparameters of these models179

are marginal, and thus, we resort to fixed default values 1. We also fix the embedding dimensionality180

d = 128. (3) Given a number of training nodes Ntr (also defined as a fraction of all nodes in V), a181

multi-class one-versus-rest logistic regression model with 5-fold cross validation is trained to predict182

node labels from node representations. (4) We repeat the previous step 3 times with different node183

samples and report average results. For some experiments we will report results independent of184

1Exact hyperparameter values for each method as well as the implementations used are reported in our
EvalNE configuration files.
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Table 2: Main statistics of the networks used for evaluation. The average degree is indicated by 〈k〉
and the assortativity coefficient by r.

Network Type Task # Nodes # Edges # Labels 〈k〉 r

Citeseer Citation NC 2110 3668 6 3.48 0.01
Cora Citation NC 2485 5069 7 4.08 -0.07
PolBlogs Web NR 1222 16714 - 27.35 -0.22
Facebook Social NR 4039 88234 - 43.69 0.06
IIP Collaboration Viz 219 630 3 5.75 -0.22
StudentDB Relational Viz 395 3423 7 17.33 -0.34

the value of Ntr. In these cases we additionally average results over several values of Ntr. (5).185

Finally, and unless otherwise specified, for the non-deterministic attacks listed in Table 1 we repeat186

the complete process 3 times with varying random seeds resulting in different sets of edges being187

removed in step 1). We report node classification performance in terms of f1_micro and f1_macro.188

Network Reconstruction. In this task the aim is to investigate how well the link structure of an189

input network can be recovered from the node representations. To this end node representations are190

first learned from the input network. Then, node pair representations are derived by applying a binary191

operator on the node representations. Finally, a binary classifier is trained to discriminate edges from192

non-edges. High quality representations are expected to result in the classifier scores of edges being193

higher than those of non-edges.194

We evaluate robustness on this task akin to node classification. (1) We attack the input network195

G with a given strategy and budget b. (2) We compute node representations for Ĝ with different196

methods for which we use fixed default hyperparameters. (3) Representations of node pairs {vi, vj}197

are combined into node-pair representations using the Hadamard product, i.e., xi,j = xi · xj . 2 (4) A198

binary Logistic Regression with 5-fold cross validation is trained using representations corresponding199

to edges and non-edges in Ĝ. (5) The classifiers performance is tested using representations of edges200

and non-edges of the original unattacked graph G. For computational efficiency, we approximate the201

performance using 5% of all possible node-pairs in G. (6) We again repeat the complete process 3202

times for non-deterministic attacks. For this task we report AUC and average precision scores.203

Experimental Setup. Our evaluation setup is structured as follows. First, in Section 4.3.1 we204

investigate the performance of node embedding approaches under random attacks. In this case, we205

use the add_rand and del_rand strategies and vary the attack budget b ∈ [0.1, 0.2, ..., 0.9]. For node206

classification specifically, we report average results over Ntr ∈ [0.1, 0.5, 0.9], 3 node shuffles for each207

Ntr value, and 3 experiment repetitions for non-deterministic attacks. For network reconstruction208

we only perform the 3 experiment repetitions for non-deterministic attacks. We then also investigate209

the effect of the number of labeled nodes for node classification by comparing the results obtained210

for Ntr = 0.1 to Ntr = 0.5 and Ntr = 0.9. Second, in Section 4.3.2 we evaluate adversarial211

robustness. We use a similar setup with the following exceptions: we compare all attacks from Table 1212

(random attacks are used as baselines) and the budget is fixed to b = 0.2. Third, in Section 4.3.3 we213

compare addition, deletion and rewiring attacks. For both downstream tasks we compare add_rand,214

del_rand and rew_rand and for node classification we additionally compare add_ce, del_di and215

DICE. Other parameters are set as for the adversarial attack experiment. In this section we also216

investigate differences between deletion attacks that disconnect and those that do not disconnect the217

input networks. Lastly, in Section 4.3.4 we compare adversarial attacks on node classification under218

homophily and heterophily of node labels.219

4.2 Data220

To conduct our experiments we use a total of 6 small and mid sized networks from different domains.221

Specifically, for node classification we use Citeseer [39] and Cora [40], two citation networks where222

nodes denote publications, edges represent citations between them and node labels indicate the main223

research field of each paper. For network reconstruction we use PolBlogs [41], a network of political224

blogs connected to each other via hyperlinks, and Facebook [42], a network of individuals and225

2With the exception of PRUNE, where we use xi,j = (xi + xj)/2.
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Figure 1: Robustness to randomized attacks for different budget values. The x-axis shows budgets
as a fraction of all edges in the graph. Negative values represent edge deletion and positives edge
addition attacks. Figure 1a presents f1_micro scores for node classification on Citeseer. Figure 1b
shows AUCs for network reconstruction of Facebook. In Figures 1c and 1d we show average
node classification performances for different fractions of labeled nodes Ntr on Citeseer and Cora,
respectively. Shaded areas denote 95% confidence intervals and the y-axis present f1_micro scores.

their social relations on the platform. Lastly, we perform qualitative and visualization experiments226

on the internet industry partnership (IIP) [43] and the StudentDB [44] networks. In the former,227

nodes represent companies, edges represent relations such as alliance or partnership and node labels228

indicate the company’s main business area, i.e., user content, infrastructure or commerce. The latter,229

StudentDB, is a k-partite network representing a snapshot of the Antwerp University relational230

database. Nodes represent entities such as students, courses, tracks, etc., and edges are binary231

relations, e.g., student-in-track, course-in-track, etc.3 Node labels indicate the type of each nodes. In232

Table 2 we summarize the main statistics of each network.233

4.3 Experimental Results234

4.3.1 Randomized attacks235

We start in Figure 1a with the node classification performance under random edge attacks and varying236

attack budgets. In the chart, negative budget values indicate edge deletion and positives indicate237

edge addition. In this case we allow edge deletions to disconnect the original networks. We report238

f1_micro scores for the Citeseer network (f1_macro results as well as those for the Cora network239

are similar and provided in Appendix A.2). From the figure we first note different general behaviors240

for edge deletion and addition attacks. Deletions cause a consistent performance degradation until241

complete collapse at 90% edge deletion. Addition presents a sharper loss in performance for relatively242

low budget values (b ≤ 0.2) which starts to become less severe around (b = 0.4). Thus, in the low243

budget regime −0.2 < b < 0.2, commonly analyzed in the literature, edge addition attacks degrade244

performance more than edge deletions. Outside of this range, however, edge deletions are more245

severe. From Figure 1a, we also observe that Skip-Gram methods are in general more robust to edge246

addition attacks than other approaches while for edge deletion the results are similar across the board.247

In Figure 1b we present the AUC scores for reconstructing the original Facebook network G, from the248

attacked graph Ĝ. The plot indicates almost perfect edge recovery under random attacks with AUCs249

close to 1. Most of the evaluated methods show high robustness for a wide range of budget values.250

3Further details on the IIP and StudentDB networks are provided in Appendix A.1.
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Figure 2: Comparison of adversarial edge deletion and addition attacks on node classification and
network reconstruction for b = 0.2. Figures 2a and 2b show deletion and addition attacks on node
classification for Citeseer. Colors indicate the fraction of train nodes Ntr. Figures 2a and 2b show
similar results for network reconstruction on both Facebook and PolBlogs networks combined.

Some notable exceptions are Node2vec, LINE and SDNE, which consistently lose performance251

as more edges are added to the network. For the PolBlogs dataset presented in Appendix A.2, we252

observe similar robustness to edge addition and deletion. A notable exception in this case is HOPE253

which significantly degrades performance for strong edge deletion attacks b ≤ −0.6. The overall high254

robustness of the evaluated methods on network reconstruction is an interesting finding particularly255

given the fact that attacks on this downstream task affect methods twice. First at embedding learning256

time and later while training the binary classifier (the edge and non-edge train labels are extracted257

from the attacked graph Ĝ).258

We now focus our attention to the impact of the number of labeled nodes available for node clas-259

sification (Ntr). In Figures 1c and 1d we compare the average performance over all methods and260

experiment repetitions for Ntr ∈ [0.1, 0.5, 0.9]. For both Citeseer and Cora we observe similarly low261

performances when only a relatively small amount of labeled nodes are available i.e., Ntr = 0.1.262

For larger values (Ntr ≥ 0.5) the performances are very similar. We also observe that as networks263

become denser (as we move right on the x-axis in each plot) the difference between low and high264

values of Ntr become more significant. This indicates that node embedding methods will generally265

not provide robust predictions when few labeled nodes are available and this situation will worsen the266

denser the network is.267

4.3.2 Adversarial attacks268

We now compare the effect of different heuristic-based adversarial attacks on node classification.269

Figures 2a and 2b summarize the results on the Citeseer network for edge deletion and addition270

attacks, respectively. In both cases we present decreases in f1_micro caused by different attacks with271

budget b = 0.2, as compared to the performance on the non-attacked graph. Firstly, if we compare272
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Figure 3: Comparison of edge addition, rewiring and deletion attacks for both downstream tasks. The
leftmost and center figures present f1_micro scores for random and node label based attacks on node
classification. The rightmost figure shows AUC results for random attacks on network reconstruction.

across graphs we observe that edge additions decrease performance more than deletions across all273

methods for this particular budget value. This is also consistent with our observations from Figure 1a274

for random attacks on node classification. Among the edge deletion attacks we see that del_dd is,275

from an adversarial perspective, the most effective strategy. With this attack, we are targeting edges276

from high degree to low degree nodes further increasing the uncertainty regarding the latter. On the277

other hand, for edge addition the most effective strategies are connecting edges with different labels278

together (add_ce) or connecting nodes with similar degrees to each other (add_deg). It is interesting279

to note that attacks with full knowledge of the node labels del_di and add_ce are not significantly280

stronger than others e.g., degree based attacks. The colors in both figures indicate different fractions281

of labeled nodes. We observe that most of the variance in performance comes from the experiments282

with Ntr = 0.1 (blue points) and that these are also mostly concentrated in the lower ends of the283

boxplots. The results for Ntr ≥ 0.5 are in general very similar.284

In Figures 2c and 2d we present similar results for network reconstruction. In this case we show the285

combined performances for both Facebook and PolBlogs datasets. The experiments reveal that edge286

deletion attacks are marginally stronger than edge additions. In particular, deleting edges based on287

degree is the most effective adversarial technique of the ones we have evaluated. Overall, we also288

observe much less variance in performance compared to the results on node classification.289

4.3.3 Other attacks290

In Figure 3 we compare edge addition, rewiring and deletion attacks on both downstream tasks. The291

attack budget is fixed to 0.2 and we show combined results for the two networks used in each task292

(marker color denotes the data used). We observe that for node classification rewiring attacks perform293

best (central boxes in the left and middle plots in Figure 3). This is also the case if we look at each294

individual dataset with results for Cora (orange dots) being significantly higher than those on Citeseer295

(blue dots). For network reconstruction we have much less data available, considering that we do296

not need to test different train sizes and shuffles per size. In this case the results indicate similar297

performances for all attack types. We further observe that results on the Facebook network are overall298

higher than on PolBlogs. The f1_macro and average precision scores for each task also corroborate299

this findings and are presented in Appendix A.3.300

We further investigate how strong a role network connectivity plays in adversarial attacks. We301

compare random and degree attacks constrained to not disconnecting the input networks and their302

unconstrained counterparts. We find that constrained attacks are on average, over all methods303

and networks 5% less effective. Specifically, for random attacks the f1_micro performance without304

disconnections is 0.651±0.166 (mean and standard deviation) and with disconnections 0.612±0.161.305

Similarly, for degree based attacks average performance reaches 0.637± 0.163 when disconnections306

are prevented and 0.606± 0.164 when they are not.307
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Figure 4: Correctly and incorrectly classified
nodes for the homophilic IIP network for vary-
ing attack budgets.

Figure 5: Correctly and incorrectly classified
nodes for the heterophilic StudentDB network
for varying attack budgets.

4.3.4 Homophily and heterophily assumptions308

In this section we investigate adversarial attacks on node classification under the assumptions of label309

homophily and label heterophily. For this experiment we make use of the IIP and StudentDB datasets.310

The former is an example of a homophilic network where 70.9% of all edges connect nodes of the311

same label. On the other hand, the StudentDB is an example of a strongly heterophilic network where312

no edges connect nodes sharing the same label. We restrict our evaluation to the best performing313

node embedding approach i.e., node2vec, and discuss results for the strongest adversarial attack from314

Section 4.3.2 i.e., add_ce (results for other attacks are presented in Appendix A.4).315

We start our evaluation by attacking both networks with budgets b ∈ [0.0, 0.2, 0.6]. We then learn316

node embeddings and perform downstream node classification for each network and attack budget.317

We proceed to record the correctly and incorrectly classified nodes at validation time in each case.318

Figure 4 presents three identical spring-layout representations of the IIP network, one for each319

attack budget. The nodes in each subplot are colored according to their status as correctly or320

incorrectly classified for that budget. From the Figure we can visually confirm that, as the attack321

strength increases, the misclassification rate (mr in the figure) also increases. This is also confirmed322

numerically by the mr value presented above each plot.323

In Figure 5 we present the same information for the StudentDB network. In this case, as the attack324

strength increases the misclassification rate decreases (as can be seen both visually and through325

the mr values). This seemingly counter intuitive behavior can be explained by the fact that our326

attack introduces new edges in the graph. This results in a more compact representation and, in turn,327

lower margins for the node label classifier. It is important to note that classification performance328

increases despite the fact that the edges added are uninformative (they connect nodes with different329

labels further reinforcing heterophily). When other attacks are used such as random or degree-based330

edge additions, which can potentially be more informative as they might increase homophily, the331

misclassification margin decreases even further (see results in Appendix A.4). In our experiments we332

have also seen that edge deletion attacks do not have the same effect of lowering the misclassification333

rate as they further reduce the network density.334

5 Conclusions335

In this paper we have demonstrated that node embedding approaches, regardless of their underlying336

representation mechanisms, are sensitive to random and adversarial poison attacks. We have shown337

that results on downstream node classification are significantly less robust compared to those on338

network reconstruction. Our experiments also revealed that for low attacks budgets (below 20% of339

edges in the graph) edge addition attacks are generally stronger than edge deletions. Outside of this340

range, the opposite is true. Surprisingly, our empirical evaluation showed no significant differences341

between different heuristic-based adversarial attacks. Even leveraging full knowledge of the node342

labels when attacking node classification does not yield significantly stronger attacks. Finally, we343

have also shown that the number of labeled nodes plays a fundamental role in node classification344

robustness, that rewiring attacks are generally stronger than addition or deletion independently, and345

that attacks under heterophily assumption can unexpectedly result in better model performance. With346

this work and our the extension to robustness evaluation for the EvalNE software we hope to lay the347

foundations for further research in this area.348

9



A Systematic Evaluation of Node Embedding Robustness

References349

[1] Kush Bhatia, Prateek Jain, Parameswaran Kamalaruban, and Purushottam Kar. Consistent robust350

regression. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,351

and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran352

Associates, Inc., 2017. 1353

[2] Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight examples354

for robust deep learning. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th355

International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning356

Research, pages 4334–4343. PMLR, 10–15 Jul 2018.357

[3] Dimitris Bertsimas, Jack Dunn, Colin Pawlowski, and Ying Daisy Zhuo. Robust classification.358

INFORMS Journal on Optimization, 1(1):2–34, 2019. doi: 10.1287/ijoo.2018.0001.359

[4] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph360

structure learning for robust graph neural networks. In Proceedings of the 26th ACM SIGKDD361

International Conference on Knowledge Discovery & Data Mining, KDD ’20, page 66–74, New362

York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450379984. doi:363

10.1145/3394486.3403049. 1364

[5] Stephan Günnemann. Graph Neural Networks: Adversarial Robustness, pages 149–176.365

Springer Nature Singapore, Singapore, 2022. ISBN 978-981-16-6054-2. doi: 10.1007/366

978-981-16-6054-2_8. 1, 2367

[6] Cho-Jui Hsieh Pin-Yu Chen. Adversarial Robustness for Machine Learning. Elsevier, 2022.368

ISBN 9780128242575. 1369

[7] Aleksandar Bojchevski and Stephan Günnemann. Adversarial attacks on node embeddings via370

graph poisoning. In Proc. of ICML, pages 695–704, 2019. 1, 4371

[8] Bo Kang, Jefrey Lijffijt, and Tijl De Bie. Conditional network embeddings. In Proc. of ICLR,372

2019. 1373

[9] J. Qiu, Yuxiao Dong, Hao Ma, Jun Yu Li, Chi Wang, Kuansan Wang, and Jie Tang. Netsmf:374

Large-scale network embedding as sparse matrix factorization. Proc. of WWW, 2019.375

[10] Alexandru Mara, Yoosof Mashayekhi, Jefrey Lijffijt, and Tijl de Bie. Csne: Conditional signed376

network embedding. In Proceedings of the 29th ACM International Conference on Information377

& Knowledge Management, CIKM ’20, page 1105–1114. Association for Computing Machinery,378

2020. ISBN 9781450368599. doi: 10.1145/3340531.3411959. 1379

[11] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel Muller. Verse: Versatile380

graph embeddings from similarity measures. In Proc. of WWW, page 539–548, 2018. ISBN381

9781450356398. doi: 10.1145/3178876.3186120. 1, 3382

[12] Yi-An Lai, Chin-Chi Hsu, Wen Hao Chen, Mi-Yen Yeh, and Shou-De Lin. Prune: Preserving383

proximity and global ranking for network embedding. In Proc. of NIPS, pages 5257–5266,384

2017. 1, 3385

[13] Laila Rasmy, Yang Xiang, Ziqian Xie, Cui Tao, and Degui Zhi. Med-BERT: pretrained386

contextualized embeddings on large-scale structured electronic health records for disease387

prediction. In npj Digital Medicine, 2021. doi: 10.1038/s41746-021-00455-y. 1388

[14] Lei Guo, Yufei Wen, and Xinhua Wang. Exploiting pre-trained network embeddings for389

recommendations in social networks. Journal of Computer Science and Technology, 33:682–390

696, 2018. 1391

[15] Federico Monti, Fabrizio Frasca, Davide Eynard, Damon Mannion, and Michael M. Bronstein.392

Fake news detection on social media using geometric deep learning. ArXiv, abs/1902.06673,393

2019. 1394

[16] Daniel Zügner, Oliver Borchert, Amir Akbarnejad, and Stephan Günnemann. Adversarial395

attacks on graph neural networks: Perturbations and their patterns. ACM Trans. Knowl. Discov.396

Data, 14(5), jun 2020. ISSN 1556-4681. doi: 10.1145/3394520. 1, 2397

[17] Xi Chen, Bo Kang, Jefrey Lijffijt, and Tijl De Bie. Adversarial robustness of probabilistic398

network embedding for link prediction. In PKDD/ECML Workshops, 2021. 1, 2399

[18] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proc.400

of KDD, pages 855–864, 2016. 2, 3401

10



A Systematic Evaluation of Node Embedding Robustness

[19] Shaosheng Cao, Wei Lu, and Qiongkai Xu. GraRep: Learning graph representations with global402

structural information. In Proc. of CIKM, pages 891–900, 2015. 2, 3403

[20] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding. In Proc. of404

KDD, pages 1225–1234, 2016. 2, 3405

[21] Yiyue Qian, Yiming Zhang, Qianlong Wen, Yanfang Ye, and Chuxu Zhang. Rep2vec: Reposi-406

tory embedding via heterogeneous graph adversarial contrastive learning. In Proceedings of407

the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’22,408

page 1390–1400, New York, NY, USA, 2022. Association for Computing Machinery. ISBN409

9781450393850. doi: 10.1145/3534678.3539324. 2410

[22] Jinxin Cao, Weizhong Xu, Di Jin, Xiaofeng Zhang, Anthony Miller, Lu Liu, and Weiping Ding.411

A network embedding-enhanced nmf method for finding communities in attributed networks.412

IEEE Access, pages 1–1, 2022. doi: 10.1109/ACCESS.2022.3198979.413

[23] Asan Agibetov. Neural graph embeddings as explicit low-rank matrix factorization for link414

prediction. Pattern Recognition, 133:108977, 2023. ISSN 0031-3203. doi: https://doi.org/10.415

1016/j.patcog.2022.108977. 2416

[24] Scott Freitas, Diyi Yang, Srijan Kumar, Hanghang Tong, and Duen Horng Chau. Evaluating417

graph vulnerability and robustness using tiger. ACM International Conference on Information418

and Knowledge Management, 2021. 2419

[25] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J.420

Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In Yoshua Bengio and421

Yann LeCun, editors, 2nd International Conference on Learning Representations, ICLR 2014,422

Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014. 2423

[26] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adver-424

sarial examples. CoRR, abs/1412.6572, 2015. 2425

[27] Ivan Evtimov, Kevin Eykholt, Earlence Fernandes, Tadayoshi Kohno, Bo Li, Atul Prakash,426

Amir Rahmati, and Dawn Song. Robust physical-world attacks on machine learning models.427

CoRR, abs/1707.08945, 2017. 2428

[28] Yevgeniy Vorobeychik and Murat Kantarcioglu. Adversarial machine learning. Synthesis429

Lectures on Artificial Intelligence and Machine Learning, 12(3):1–169, 2018. 2430

[29] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial431

attack on graph structured data. In Jennifer Dy and Andreas Krause, editors, Proceedings of the432

35th International Conference on Machine Learning, volume 80 of Proceedings of Machine433

Learning Research, pages 1115–1124. PMLR, 10–15 Jul 2018. 2434

[30] Alexandru Mara, Jefrey Lijffijt, and Tijl De Bie. An empirical evaluation of network representa-435

tion learning methods. Big Data, 00, 2022. doi: 10.1089/big.2021.0107. 2, 4436

[31] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word437

representations in vector space. In Yoshua Bengio and Yann LeCun, editors, Proc. of ICLR,438

2013. 3439

[32] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social440

representations. In Proc. of KDD, pages 701–710, 2014. 3441

[33] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. LINE: Large-442

scale information network embedding. In Proc. of WWW, pages 1067–1077, 2015. 3443

[34] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asymmetric transitivity444

preserving graph embedding. In Proc. of KDD, pages 1105–1114, 2016. 3445

[35] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. Network embedding446

as matrix factorization: Unifying deepwalk, line, pte, and node2vec. In Proc. of WSDM, page447

459–467, 2018. ISBN 9781450355810. doi: 10.1145/3159652.3159706. 3448

[36] Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang. Community449

preserving network embedding. In Proc. of AAAI, pages 203–209, 2017. 3450

[37] M. E. J. Newman. Mixing patterns in networks. Physical Review E, 67 026126:1024–1034,451

2003. 4452

[38] Alexandru Mara, Jefrey Lijffijt, and Tijl De Bie. Evalne: A framework for network embedding453

evaluation. SoftwareX, 17, 2022. ISSN 100997. doi: 10.1016/j.softx.2022.100997. 4454

11



A Systematic Evaluation of Node Embedding Robustness

[39] C. Lee Giles, Kurt D. Bollacker, and Steve Lawrence. Citeseer: an automatic citation indexing455

system. In INTERNATIONAL CONFERENCE ON DIGITAL LIBRARIES, pages 89–98. ACM456

Press, 1998. 5457

[40] Andrew Kachites Mccallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating458

the construction of internet portals with machine learning. Information Retrieval, 3:127–163,459

2000. 5460

[41] Lada A. Adamic and Natalie Glance. The political blogosphere and the 2004 u.s. election:461

Divided they blog. In Proceedings of the 3rd International Workshop on Link Discovery,462

LinkKDD ’05, page 36–43, New York, NY, USA, 2005. Association for Computing Machinery.463

ISBN 1595932151. doi: 10.1145/1134271.1134277. 5464

[42] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection,465

2015. 5466

[43] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph467

analytics and visualization. In AAAI, 2015. URL https://networkrepository.com. 6468

[44] Bart Goethals, Wim Le Page, and Michael Mampaey. Mining interesting sets and rules in469

relational databases. In Proc. of SAC, pages 997–1001, 2010. ISBN 978-1-60558-639-7. doi:470

10.1145/1774088.1774299. 6471

A Appendix472

A.1 Further dataset details473

The IIP network represents a set of companies competing in the internet industry between 1998474

and 2001. Nodes in the graph denote companies and edges represent business relations such as475

joint venture, strategic alliance or other type of partnership. The associated node labels denote the476

company’s main business area i.e., content, infrastructure of commerce.477

The StudentDB network represents a snapshot of Antwerp University’s relational student database.478

Nodes in the network represent entities, more specifically: students, professors, tracks, programs,479

courses and rooms. Edges constitute binary relations between them, that is, student-in-track, student-480

in-program, student-takes-course, professor-teaches-course, and course-in-room. Numerical node481

labels are assigned according to each node’s type.482

A.2 Randomized attacks: additional results483

In this section we present our additional experiments regarding randomized attacks on node embed-484

dings. We start in Figures 6 and 7 by presenting the node classification f1_micro results for the Cora485

dataset and the network reconstruction AUC scores for PolBlogs.486
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Figure 6: Node classification performance
for the Cora network. Y axis indicates
f1_micro scores. Negative attack budgets in-
dicate edge deletion.
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Figure 7: Network reconstruction perfor-
mance for the PolBlogs network. Y axis in-
dicates AUC scores. Negative attack budgets
indicate edge deletion.

In Figures 8 and 9 we summarize the f1_macro scores for both Citeseer and Cora and Figures 8 and 9487

present the average precision on Facebook and PolBlogs.488
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Figure 8: Node classification performance
for the Citeseer network. Y axis indicates
f1_macro scores. Negative attack budgets in-
dicate edge deletion.
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Figure 9: Node classification performance
for the Cora network. Y axis indicates
f1_macro scores. Negative attack budgets in-
dicate edge deletion.
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Figure 10: Network reconstruction perfor-
mance for the Facebook network. Y axis in-
dicates average precision scores. Negative
attack budgets indicate edge deletion.
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Figure 11: Network reconstruction perfor-
mance for the PolBlogs network. Y axis in-
dicates average precision scores. Negative
attack budgets indicate edge deletion.

A.3 Other attacks: additional results489

We also compare the performance of edge addition, rewiring and deletion on both downstream tasks490

in terms of f1_micro and average precision. These results support our conclusions in Section 4.3.3491

(see Figure 12).492
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Figure 12: Comparison of edge addition, rewiring and deletion attacks for both downstream tasks.
The leftmost and center figures present f1_macro scores for random and node label based attacks
on node classification. The rightmost figure shows average precision results for random attacks on
network reconstruction.

A.4 Homophily and Heterophily assumptions: additional results493

In this section we present two additional plots showing the decrease in misclassification rate after an494

adversarial attack on the StudentDB network. In Figure 13 we present the correctly and incorrectly495

classified nodes under random edge deletion (del_rand) for different budget values and in Figure 14496

we show the results for random edge addition (add_rand).497
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Figure 13: Correctly and incorrectly classi-
fied nodes for the heterophilic StudentDB net-
work with attack strategy del_rand and vary-
ing attack budgets.

Figure 14: Correctly and incorrectly classi-
fied nodes for the heterophilic StudentDB net-
work with attack strategy add_rand and vary-
ing attack budgets.
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