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Abstract

Recent advances on large-scale pre-training have shown great potentials of lever-1

aging a large set of Pre-Trained Models (PTMs) for improving Out-of-Distribution2

(OoD) generalization, for which the goal is to perform well on possible unseen3

domains after fine-tuning on multiple training domains. However, maximally4

exploiting a zoo of PTMs is challenging since fine-tuning all possible combinations5

of PTMs is computationally prohibitive while accurate selection of PTMs requires6

tackling the possible data distribution shift for OoD tasks. In this work, we7

propose ZooD, a paradigm for PTMs ranking and ensemble with feature selection.8

Our proposed metric ranks PTMs by quantifying inter-class discriminability9

and inter-domain stability of the task data features extracted by the PTMs in a10

leave-one-domain-out cross-validation manner. The top-K ranked models are then11

aggregated for the target OoD task. To avoid accumulating noise induced by model12

ensemble, we propose an efficient variational EM algorithm to select informative13

features. We evaluate our paradigm on a diverse model zoo consisting of 35 models14

for various OoD tasks and demonstrate: (i) model ranking is better correlated with15

fine-tuning ranking than previous methods and up to 9859x faster than brute-force16

fine-tuning; (ii) OoD generalization outperforms the state-of-the-art methods and17

accuracy on most challenging task DomainNet is improved from 46.5% to 50.6%.18

1 Introduction19

Training and test data being Independent and Identically Distributed (IID) is a primary assumption20

behind most machine learning systems. However, this assumption does not hold in many real-world21

scenarios as real-world is marred with continuous distribution shifts [39]. Machine learning models22

encounter serious performance degradation [10, 32, 34] in such Out-of-Distribution (OoD) scenarios.23

To alleviate the accuracy degradation caused by distribution shifts, numerous algorithms have been24

proposed [4, 1, 40, 44, 6, 41, 71, 31, 21, 47, 7]. Recently, Gulrajani and Lopez-Paz [29] have argued25

for the systematic comparisons of OoD algorithms and introduced a standard and rigorous test bed26

called DomainBed. Their experimental comparison has raised some doubts about the effectiveness27

of OoD algorithms since they often fail to outperform the simple empirical risk minimization.28

On the other hand, recent works [33, 2, 89, 65] have shown the advantages of pre-training for improving29

OoD generalization, i.e., learning from multiple training domains and being well applied to an unseen do-30

main. The availability of a large set of Pre-Trained Models (PTMs) provides a possibility for solving var-31

ious OoD tasks. However, it is challenging to sufficiently exploit the power of a model zoo (a large set of32

PTMs). One naive approach could be fine-tuning all possible combinations of PTMs on the target dataset33

and choosing the best performing one. However, naive fine-tuning is a costly and inflexible method with34

the risk of over-fitting [91]. Fine-tuning may also require exhaustive hyper-parameters search. Besides,35

fine-tuning becomes computationally prohibitive for a model zoo consisting of several hundred models36

and a dataset containing a large number of examples, making it impossible to use at any practical scale.37
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Figure 1: An overview of ZooD. Given a task with multiple training domains, the model ranking
component evaluates and selects the top-K models that generalize well on this task. The features from
selected models are then aggregated and denoised based on the feature selection component.

Recently, many ranking metrics have been proposed to estimate the transferability of models under38

IID assumption [9, 77, 59, 91, 90]. However, ranking a zoo of models for generalization on unseen dis-39

tribution shifts is more challenging compared with IID setting. Moreover, even if a metric can correctly40

evaluate the transferability of each PTM, simply using the best model will not fully utilize rich knowl-41

edge present in a zoo of models. But the problem is even more serious that the most transferable model42

will include some noise, because noise and invariant features are undistinguishable in the sense that they43

are all stable across domains. Previous study [88] also pointed this out and emphasized the necessity of44

feature denoising. Therefore, if we leverage the model zoo by assembling relatively transferable models,45

the accumulation of noise features may increase memory use and hurt the predictive performance.46

To solve the aforementioned problems, we propose ZooD, a paradigm to rank and aggregate a Zoo of47

PTMs for OoD generalization. An overview of our method is shown in Figure 1. Given a classification48

task with multiple training domains, to evaluate the generalization capability of each model, we49

quantify both the inter-class discriminability and inter-domain stability of the features extracted50

from each PTM in a leave-one-domain-out cross-validation manner, i.e., choosing one domain as the51

validation domain and each domain rotating as the validation domain, which is critical for identifying52

models that can extract domain-invariant features. Each PTM in the zoo is ranked by this quantification.53

ZooD then continues with model aggregation consisting of model ensemble and feature selection.54

By introducing latent masks over candidate features, an efficient EM algorithm is proposed to select55

informative features. To tackle the intractability of the posterior, variational approximation to the56

true posterior using a factorizable distribution is derived. We further extent it to large-scale datasets57

by building a local estimator under the stochastic approximation [66].58

To demonstrate the efficacy of our method, we have performed extensive experiments with 35 diverse59

PTMs and 7 OoD datasets. First, we show that our ranking metric is strongly correlated with the60

fine-tuning performance of PTMs compared with existing IID metrics. Second, we illustrate the61

outstanding performance of ZooD on OoD datasets. For instance, on Office-Home, we get 85.1%62

average accuracy compared with previous SOTA of 70.6%. Lastly, we show the speedup of our method63

compared with brute-force fine-tuning. ZooD gives a maximum speedup of ≈ 10000× (0.27 GPU64

hours vs 2662.27 GPU hours), making it practical and scalable.65

Finally, to speed-up research and make our work more reproducible, we have devised a test bench66

consisting of extracted features, fine-tuning accuracy results, and ranking scores for all 35 PTMs in67

our model zoo. This testbed can help future research as the process of getting fine-tuning accuracy68

results based on DomainBed [29] for a zoo of models is computationally expensive. For instance,69

fine-tuning 35 models on all 7 OoD datasets costed approximately 35140 GPU hours (equivalent to70

1464 GPU days or 4 GPU years). Concisely, our contributions are as follows:71

(i) We propose an efficient and scalable ranking metric to gauge the generalization-ability of PTMs72

for unseen domains.73

(ii) Using EM, we propose a method for selecting informative features and discarding invariant but74

noisy features in an ensemble of models.75

(iii) We have established a test bed for PTMs on 7 OoD datasets, including features extracted by 3576

PTMs in our model zoo, fine-tuning accuracy results and model ranking scores by different methods.77
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2 Related Work78

Pre-training for OoD generalization. To tackle the problem of distribution shifts between training and79

test data, various OoD methods [4, 1, 40, 44, 23, 14, 6, 41, 71, 21, 47, 7] have been proposed with the aim80

to learn invariant representations across different environments. However, a standard evaluation [29] of81

many OoD algorithms shows that they do not significantly outperform simple ERM. On the other hands,82

recent works have shown effectiveness of pre-trained models for OoD generalization. Yi et al. [89]83

theoretically showed that adversarially pre-trained models also perform better for OoD generalization.84

Anonymous [3] performed a large-scale empirical analysis and show that the right choice of pre-trained85

models can achieve SOTA results. They also showed IID performance is not a good indicator of OoD86

performance and emphasized on the importance of model selection. Albuquerque et al. [2] showed87

the importance of feature extractor by proposing a new OoD-based pretext task for SSL pre-training88

that can outperform supervised training. CLIP [65] demonstrated that large-scale pre-training on a89

dataset of image-text pairs results in much more robust models for downstream tasks with various90

distribution shifts. Our work is based on these observations and we aim to facilitate utilization of PTMs91

by proposing an efficient metric as well as efficient feature ensemble and selection method.92

Ranking pre-trained models by metric design. Large-scale, ever-increasing and evolving nature93

of PTMs requires a low-cost and flexible selection metric. Recently, a number of metrics have94

been introduced to estimate transferability of source-task-learned representations for target task95

under IID conditions. H-score [9] estimates the transferability by finding the relationship between96

extracted features and target class labels. NCE [77] proposes to estimate transferability via measuring97

conditional entropy between source and target labels. LEEP [59] simplifies NCE by using the joint98

distribution of source and target labels to estimate log expected empirical prediction. LogME [91, 90]99

estimates maximum value of label evidence given features from pre-trained models. The use of features100

instead of labels makes LogME more generalizable as it can be employed beyond classification.101

However, these transferability metrics focus on determining the compatibility of source-task-learned102

representations for the target task. We, on the other hand, aim to compute stability of these features103

across domains in addition to source-target transferability.104

Ensemble and feature selection. Early works have shown that model ensemble can significantly105

improve predictive performance [22]. In the age of deep learning, Lakshminarayanan et al. [42]106

propose deep ensemble to measure predictive uncertainty. Similar works [61, 63] on uncertainty107

estimation focus on the context of outlier detection and reinforcement learning. When facing a zoo108

of PTMs, it’s natural to leverage the rich knowledge by assembling multiple PTMs. In prior works,109

Liu et al. [49] propose using PTMs as teacher models that distill knowledge to a target model for110

downstream tasks. Shu et al. [72] propose Zoo-Tuning that learns to aggregate the parameters of111

multiple PTMs to a target model. However, these methods require the target model must have the112

identical architecture as the PTMs, thus sacrificing flexibility.113

Our proposed paradigm involves selecting informative features from assembled feature extractors. In114

the related works of Bayesian variable selection, a prior is introduced over potential predictor subsets115

and subsequent method estimates posterior to identify promising subset models. Here we mainly116

focus on Stochastic search variable selection (SSVS) [60]. Meuwissen and Goddard [54] introduce117

a random effects variant of SSVS for gene mapping. Li and Zhang [45] consider regression modeling118

in high-dimensional spaces incorporating structural information. Ročková and George [67] propose119

EMVS for high-dimentional SSVS promising sparse high posterior probability submodels. Note that120

all aforementioned feature selection methods are only effective under the IID assumption, while in our121

paradigm, invariant and informative features can be selected from aggregated PTMs, which improves122

predictive performance for OoD tasks.123

3 ZooD for OoD Generalization124

3.1 Model Transferability Ranking125

Assume that we have a domain distribution D from which we observem domains:
{
D1,D2,···,Dm

}
.126

Each domain Di is a set of (label, data) pairs, i.e. Di=
{
(yij ,xij),1≤ j≤ni

}
.Meanwhile, we have127

a zoo of pre-trained feature extractors: M={ϕ1,ϕ2,···,ϕk,···}. Our objective is to train a predictor128

f , along with one of the selected feature extractors from M (e.g., ϕk), such that the composed model129

f ◦ϕk performs well on both them observed domains and unseen domains from D.130
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In this work, we propose an algorithm that facilitates model selection without carrying out the131

fine-tuning step. For every model in M, the algorithm produces an associated score, by which we132

can rank the models, such that the higher-ranked ones have a better chance to deliver stronger results133

after fine-tuning.134

The proposed algorithm is a combination of 1) a model transferability metric and 2) a leave-one-135

domain-out cross-validation scheme. More specifically, we evaluate each feature extractorm times,136

and each time we treat the data from the held-out domain as validation data {(y′j ,x′j)}n
′

j=1, while137

aggregating all remaining (m−1) domains’ data as the training data {(yi,xi)}ni=1. In the end, we138

average the m values of the model transferability metric. Finally, we rank all feature extractors in139

descending order of the average.140

The transferability of each ϕ can be quantified in terms of inter-class discriminability and inter-domain141

stability. First, we denote the aggregated domain’s label and feature as y= (y1,...,yn)
⊤ ∈Rn and142

Φ =
(
ϕ(x1),...,ϕ(xn)

)⊤ ∈ Rn×d, respectively. We use y′ ∈ Rn′
and Φ′ ∈ Rn′×d for the held-out143

domain. Inter-domain stability is referring to correlation shift and covariate shift. Therefore, we144

formulate the objective as the following density function:145

p(y′,Φ′∣∣y,Φ)=p(y′|Φ′,y,Φ)p(Φ′|Φ),
where p(y′|Φ′,y,Φ) measures discriminability and correlation shift between features Φ′ and labels146

y′, given the aggregated training data. Meanwhile, p(Φ′|Φ) measures covariate shift between features147

Φ and Φ′. Given a hypothetical space F of classifiers, we can write p(y|Φ)=
∫
f∈Fp(y|Φ,f)p(f)df .148

According to the Laplace approximation [51], if p(y|Φ, f) is unimodal at µ, we can take Taylor149

expansion of the log-likelihood at the mode logp(y|Φ,f)≈ logp(µ|Φ,f)− 1
2 (y−µ)⊤Λ(y−µ), where150

Λ=−∇y⊤∇ylogp(y|Φ,f)
∣∣
y=µ

. The quadratic term implies that p(y|Φ,f) can be approximated with151

a Gaussian distribution. Similar to You et al. [90], we consider a linear classifier, i.e. f ◦ϕ(x)=w⊤ϕ(x)152

with a Gaussian prior of w:153

w∼N (0,α−1Id), y
∣∣Φ,w∼N (Φw,β−1In),

where α and β are two positive parameters. We estimate α̂ and β̂ by maximizing the model evidence154

p(y|Φ;α,β)=
∫
w∈Rd

p(y|Φ,w;β)p(w;α)dw

according to Algorithm 3 in You et al. [90] and compute the likelihood of y′ as follows:155

p(y′|Φ′,y,Φ;α̂,β̂)=
p(y′,y|Φ′,Φ;α̂,β̂)

p(y|Φ;α̂,β̂)
.

For measuring covariate shift, we approximate the distribution of ϕ(x) with a Gaussian distribution156

N (µ̂ϕ,Σ̂ϕ), where µ̂ϕ and Σ̂ϕ are estimated from the training data Φ. Then we compute the density157

p(Φ′|Φ)=p(Φ′|µ̂ϕ,Σ̂ϕ) to quantify the covariate shift.158

Finally, we compute the density at the logarithmic scale and this defines the proposed metric159

Metric=logp(y′|Φ′,y,Φ)+logp(Φ′|Φ). (1)

Please refer to Appendix B.3 and B.4 for more details.160

One distinctive aspect of our selection process is the cross-domain validation, embodied in the first term161

of (1). Across different domains, there are domain-invariant and domain-specific features, where over-162

fitting to the latter can severely harm the OoD generalization. By evaluating on held-out domains, we are163

able to filter out models that fixate on domain-specific features. To provide theoretical justification, an164

explicit analysis in the linear regression setting is conducted, where we show that the model with the opti-165

mal Metric is the one that select all domain-invariant features. Despite the over-simplification, it does re-166

flect the essence of our approach. Due to page limit, the technical details are presented in Appendix B.5.167

3.2 Model Ensemble with Feature Selection168

The top-ranked PTMs in Section 3.1 are preferred for solving the OoD generalization task. To further169

aggregate different PTMs, we consider assembling the top-ranked feature extractors and rewrite170

Φ=
[
Φ(1),...,Φ(k)

]
,where Φ(i) is the feature matrix from the i-th ranked feature extractor.171
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As we show in experiments, in most cases, aggregating features from multiple models can significantly172

outperform any single model. However, simply concatenating features inevitably introduces more173

noise. As found in [88], non-informative but invariant features from training domains may only174

bring some noise, that is irrelevant to the classification problem, and the accumulation of noise hurts175

the learnability of the OoD generalization task while increasing the memory and computation cost.176

Therefore, we modify previous top linear model and present a feature selection tool under the Bayesian177

linear model framework in Section 3.1.178

First, we impose a binary mask z = (z1,z2, ... ,zd)⊤ for the weight vector w = (w1,w2, ... ,wd)
⊤,179

where zi = 1 indicates that wi is an active weight in the top linear model, i.e. wi ̸= 0, meaning the180

corresponding feature is informative, while wi ≈ 0 if zi = 0, indicating a noisy feature that should181

be screened. Therefore the Bayesian feature selection is formulated by estimating the probability πi182

of zi with πi :=p(zi=1) and π={π1,π2,...,πd}.183

To facilitate the utility of the mask, we assume that the weights {wi} are independent of each other184

and each weight wi is drawn from either a slab prior or a spike prior [37] with the mean of zero:185

p(wi|zi,αi,1,αi,2)=

{
N (0,α−1

i,1 ) if zi=1;

N (0,α−1
i,2 ) if zi=0.

We make the Bayesian treatment to linear model in Section 3.1 by introducing gamma priors for all186

inverse variance terms:187

αi,1∼Gamma(νi,1,νi,2), αi,2∼Gamma(νi,3,νi,4), β∼Gamma(ν0,1,ν0,2),

and denote all hyper-parameters as ν = {νi,j}. In addition, we denote all latent variables as188

ξ=
{
β,{wi,zi,αi,1,αi,2}di=1

}
. Under certain conditions, maximizing marginal likelihood provably189

leads to consistent selection and obeys Occam’s razor phenomenon [27, 86], and thus screens non-190

informative features. To estimate πi, the maximum marginal likelihood estimator of (π,ν) is given by191

π̂,ν̂=argmax
π,ν

logp(y|Φ;π,ν)=argmax
π,ν

log

∫
ξ

p(y,ξ|Φ;π,ν)dξ.

However, direct maximization of (2) is intractable due to the integration over ξ. EM algorithm might192

be a solution here [67]. In the E-step, we compute the conditional expectation:193

Eξ

[
logp(y,ξ|Φ;π,ν)

∣∣y,Φ;πold,νold
]
.

Notice that evaluating the expectation involving the posterior distribution of ξ.However in our case,194

it is not straightforward to obtain an analytical form of the true posterior distribution. We instead195

approximate it using Variational Inference [13] by introducing a tractable distributionQ. Considering196

the following objective function:197

L(Q)=

∫
ξ

Q(ξ;π,ν)log
p(y,ξ|Φ;π,ν)
Q(ξ;π,ν)

dξ,

which is a lower bound of logp(y|Φ;π,ν). It has been shown the maximizer of L(Q) is the optimal198

approximator of p(ξ|y,Φ;π,ν) under the KL divergence. To obtain an explicit solution, we factorize199

Q into200

Q(ξ)=Q(β)

d∏
i=1

[
Q(zi)Q(wi)Q(αi,1)Q(αi,2)

]
, (2)

which holds for the classical mean-field family. After all variational parameters in (2) are updated201

by running one-step coordinate gradient descent [13], in the M-step, we update πnew and νnew by202

maximizing:203

Eξ∼Q(ξ;πold,νold)

[
logp(y,ξ|Φ;π,ν)

]
.

By repeating the E and M step, the estimator (πnew,νnew) converges to an optimal solution. We then204

screen those variables with converged prior πi smaller than the predefined threshold τ . Our derivations205

for variational approximations and prior hyper-parameters optimization are listed in Appendix C.3.206

However, the proposed algorithm still suffers from heavy computational cost: each iteration costs207

O(nd2). To address this problem, we propose an efficient version based on Stochastic Variational208

Inference [35]. A local estimatorQs(ξ) is established under stochastic approximation that enjoys less209

computational complexity and guarantees convergence to global optimum [66]. We successfully reduce210

the computation cost to O(nsd2) with ns≪n. The complete algorithm is presented in Appendix C.4.211
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Figure 2: Comparison of ZooD ranking scores with three features-based ranking methods. The
plots illustrate ground-truth out-of-domain accuracies (x-axis), ranking scores (y-axis) and Kendall’s
coefficient τ for 35 PTMs on seven datasets.

4 Experiments212

In this section, we demonstrate the effectiveness of ZooD. First, we evaluate the ability of our ranking213

metric to estimate OoD performance and compare it with ground-truth performance and several214

existing IID ranking methods. Second, we show that our aggregation methods achieves significant215

improvements and SOTA results on several OoD datasets. Finally, we demonstrate that ZooD requires216

significantly less computation, and, therefore, is practically scalable compared with naive fine-tuning.217

Setup Details. We use 35 PTMs with diverse architectures, pre-training methods and pre-training218

datasets. We divide the PTMs into three groups. Group 1 consists of models with different architectures,219

Group 2 consists of models pre-trained with different training methods, and Group 3 consists of220

models pre-trained on large-scale datasets. We conduct experiments on six OoD datasets: PACS [43],221

VLCS [25], Office-Home [78], TerraIncognita [11], DomainNet [64], and NICO (NICO-Animals222

& NICO-Vehicles) [31]. Each of the datasets has multiple domains. The standard way to conduct223

experiment is to choose one domain as test (unseen) domain and use the remaining domains as training224

domains, which is named leave-one-domain-out protocol. The top linear classifier is trained on225

the training domains only and tested on the test domain. Each domain rotates as the test domain226

and the average accuracy is reported for each dataset. To get ground-truth performance, we follow227

DomainBed [29] to fine-tune top linear classifiers for the PTMs on these OoD datasets. We adopt the228

leave-one-domain-out cross-validation setup in DomainBed with 10 experiments for hyper-parameter229

selection and run 3 trials. We triple the number of iterations for DomainNet (5000 to 15000) as it230

is a large-scale dataset requiring more iterations [18] and decrease the number of experiments for231

hyper-parameter selection from 10 to 5. More details on the experimental setup are in Appendix A.1.232

4.1 Comparison with IID Ranking Metrics233

IID ranking methods. We divide existing ranking methods into two groups. One group consists of234

methods that employ PTM’s classification layer for ranking. These methods include NCE [77] and235

LEEP [59]. The other group consists of approaches that only use PTM’s extracted features. These meth-236

ods include H-Score [9] and LogME [91]. Additionally, we also use kNN with k=200 [82] as a baseline.237

Evaluation metrics. To evaluate PTMs on OoD datasets with ranking methods, we follow leave-one-238

domain-out validation protocol [43]. For ZooD and kNN, we further adopt leave-one-domain-out239

validation for training domains and take average results as the performance prediction for the held-out240

test domain. To compute the correlation between ranking scores and ground-truth performance, we241

use two metrics. First, to compare the ranking of a transferability metric with accuracy, we employ242

Kendall’s coefficient τ [38]. Unlike Pearson’s correlation, τ measures correlation based on the order of243
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Figure 3: Comparison of ZooD ranking scores with two classification-layer based ranking methods. The
plots illustrate ground-truth out-of-domain accuracies (x-axis), ranking scores (y-axis) and Kendall’s
coefficient τ for 25 PTMs that have classification layers on seven datasets.

Table 1: Comparisons: (a) τw between ZooD and feature-based transferability estimation methods
using all of our PTMs. (b) τw between ZooD and classification-based transferability estimation
methods. For this comparison, we consider 25 models that have classification heads. (c) Our method
v.s. brute-force fine-tuning in terms of computing cost. For this comparison, we consider all 35 models.

(a) τw for feature based

kNN H-Score LogME ZooD

PACS 0.76 0.57 0.88 0.91
VLCS 0.49 0.45 0.79 0.80
Office-Home 0.78 0.68 0.86 0.86
TerraIncognita 0.40 -0.20 0.02 0.46
DomainNet 0.89 0.62 0.65 0.76
NICO-Animals 0.73 0.72 0.89 0.90
NICO-Vehicles 0.82 0.75 0.90 0.92

(b) τw for Classification based

LEEP NCE ZooD

PACS 0.76 0.81 0.89
VLCS 0.57 0.32 0.88
Office-Home 0.76 0.94 0.86
TerraIncognita 0.02 -0.44 0.59
DomainNet 0.77 0.87 0.72
NICO-Animals 0.58 0.92 0.94
NICO-Vehicles 0.69 0.92 0.95

(c) Speed-up over brute-force

GPU Hours ZooD Fine-tuning Speed Up

PACS 0.27 2662.27 9859×
VLCS 0.29 2706.67 9332×
Office-Home 0.39 3089.87 7922×
TerraIncognita 0.49 3920.27 8000×
DomainNet 11.24 17055.33 1516×
NICO-Animals 0.32 2914.40 9107×
NICO-Vehicles 0.30 2794.13 9313×

two measures. Consequently, it is a better criterion for ranking. Second, to measure the performance of244

transferability metric for top-model selection, we utilize weighted Kendall’s coefficient τw [79]. The245

τw gives more weight to the ranking of top-performing models compared with the rest of the models.246

Therefore, it is a better comparative criterion for top model selection.247

Results. First, we compare our method with feature-based scoring methods: kNN, H-Score, and248

LogME. These methods, similar to our method, rank models based on the penultimate layer. We249

compare ZooD with these methods for the full set of 35 PTMs. We plot ranking scores and ground-truth250

accuracies in Figure 2. For quantitative comparison, we also provide τ values. It can be seen that ZooD251

is better correlated with fine-tuning accuracy than other ranking methods on most of the datasets. For252

example, our method has a τ of 0.85 compared with LogME’s τ of 0.77 on Office-Home and a τ of253

0.40 compared with LogME’s τ of 0.04 on TerraIncognita.254

Furthermore, our metric is more stable and consistent. Precisely, τ of ZooD varies between 0.40255

∼ 0.85 compared with 0.04 ∼ 0.80 for LogME, -0.08 ∼ 0.67 for H-Score, and 0.16 ∼ 0.86 for kNN.256

The consistency of transferability metric across different datasets is critical since the purpose of a257

transferability metric is to estimate performance on a new dataset without having access to ground-truth258

accuracy. Whenever an estimation metric is inherently unstable, it is hard to determine its reliability259

for a new dataset.260

Note that our method uses a linear model with Gaussian error to approximate the top classifier. This261

helps us achieve efficient model assessment, especially on small and medium-sized datasets in which262

the bias caused by model approximation is negligible compared with the estimation error due to263

insufficient data. However, on DomainNet, things may be different. The bias caused by model264

approximation dominants the evaluation performance on large datasets. Therefore, our method does265

not outperform kNN on DomainNet.266

Second, we compare our method with classification-layer based methods: NCE and LEEP. For this267

comparison, we select a subset of our PTMs that have classification layers. The results are illustrated268
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Table 2: Comparison of out-of-domain accuracies between ZooD and SOTA OoD methods. The results
of MixStyle [92] and SWAD [18] are from SWAD, and other results are from Gulrajani and Lopez-Paz
[29] (denoted with †). Our results are average of three trials.

Method PACS VLCS Office-Home TerraInc. Domain Avg
ERM† 85.5 77.5 66.5 46.1 40.9 63.3
IRM† 83.5 78.6 64.3 47.6 33.9 61.6
GroupDRO† 84.4 76.7 66.0 43.2 33.3 60.7
I-Mixup† 84.6 77.4 68.1 47.9 39.2 63.4
MLDG† 84.9 77.2 66.8 47.8 41.2 63.6
MMD† 84.7 77.5 66.4 42.2 23.4 58.8
DANN† 83.7 78.6 65.9 46.7 38.3 62.6
CDANN† 82.6 77.5 65.7 45.8 38.3 62.0
MTL† 84.6 77.2 66.4 45.6 40.6 62.9
SagNet† 86.3 77.8 68.1 48.6 40.3 64.2
ARM† 85.1 77.6 64.8 45.5 35.5 61.7
VREx† 84.9 78.3 66.4 46.4 33.6 61.9
RSC† 85.2 77.1 65.5 46.6 38.9 62.7
MixStyle 85.2 77.9 60.4 44.0 34.0 60.3
SWAD 88.1 79.1 70.6 50.0 46.5 66.9

ZooD
Single 96.0 79.5 84.6 37.3 48.2 69.1
Ensemble 95.5 80.1 85.0 38.2 50.5 69.9
F. Selection 96.3 80.6 85.1 42.3 50.6 71.0
F. Ratio (% ) 24.3 24.5 62.5 76.8 99.8

in Figure 3. It can be seen that ZooD is also more stable and consistent than NCE and LEEP. Moreover,269

Our method achieves superior performance on the difficult real-world TerraIncognita dataset. This270

dataset consists of obscure and blurry images captured by WildCams installed in different territories.271

NCE has a negative correlation for this dataset. On the other hand, our method, although not perfect,272

captures the relation in a better way. For this challenging dataset, our method has a τ of 0.45 compared273

with 0.12 and -0.32 for LEEP and NCE, respectively.274

Third, we compare weighted Kendall’s coefficient of our method with other ranking methods. The275

weighted Kendall’s coefficient is a better metric to gauge the performance of a metric for top model276

selection. We also divide these results into two groups: comparison with feature-based scoring methods277

in Table 1a and comparison with classification-based scoring methods in Table 1b. Our method278

outperforms feature-based scoring methods on 6 out of 7 datasets. Similarly, it also outperforms both279

LEEP and NCE on 5 out of 7 datasets. Moreover, our ranking method is more stable as it performs280

better on challenging datasets. For example, it has τw of 0.46 ∼ 0.92 compared with LogME’s τw281

of 0.02 ∼ 0.90 and H-Score’s τw of -0.20 ∼ 0.75.282

In summary, transferability estimation of ZooD correlates better with ground-truth accuracy on most283

of the OoD datasets compared with previous ranking methods. It also outperforms most feature-based284

metrics for model selection in terms of τw. Additionally, it is more stable and consistent across datasets,285

making it a better choice for pre-trained model selection.286

4.2 SOTA Results with Our Selection Method287

We also compare ZooD (model ranking and feature selection) with several recent SOTA OoD methods288

and demonstrate that it achieves substantial performance improvements. We compare previous OoD289

methods with three versions of our method: 1) Single: fine-tune the top-1 model by transferability290

metric; 2) Ensemble: fine-tune an ensemble of the top-K models; 3) F. Selection: fine-tune an291

ensemble of the top-K models with feature selection, which is the expected result using ZooD. By292

fine-tuning, we mean using ERM with DomainBed settings to fine-tune a top linear classifier for the293

PTMs. Their predictive performance and F. Ratio (the percentage of features used in F. Selection)294

are listed in the last four lines of Table 2.295

In all experiment results, except TerraIncognita (discussed in the next paragraph), our method achieves296

remarkable improvement against ERM and recent SOTA. For Single, we list the improvements over297
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the previous SOTA as follows: +14% on Office-Home, +7.9% on PACS, +1.7% on DomainNet, and298

+0.4% on VLCS. This result also shows that even without aggregation, using proper pre-trained model299

can improve OoD generalization by a large margin.300

The performance of Single does not outperform the previous SOTA on TerraIncognita. This is because301

previous methods fine-tune the whole network. In contrast, we only train a classifier on top of a302

fixed feature extractor. TerraIncognita is a much more challenging dataset compared with other OoD303

datasets, as the majority of its images are obscured by the background. Therefore it requires fully304

fine-tuning. To show the effectiveness of ZooD with fully fine-tuning, we select top-1 ranked model305

and fine-tune the whole model. Our resulted model achieves a +2.6% improvement compared with306

the previous SOTA. One limitation of ZooD when aggregating multiple models is that fine-tuning the307

whole models is difficult due to the limitation of GPU memory. However, for OoD tasks, fine-tuning308

the whole model may not perform better than fine-tuning the top classifier. For example, the results309

of fine-tuning the full top-ranked models on PACS, VLCS and Office-Home are 90.6, 79.1 and 83.4,310

respectively. Empirically, we find if a PTM is suitable for a given OoD task, fine-tuning the top311

classifier has better OoD generalization than fine-tuning the full model.312

To efficiently utilize multiple models, we propose to select informative features in Section 3.2.313

Here, we compare the performance improvement by F. Selection with Single and Ensemble. ZooD314

significantly outperforms both candidates while only using a small portion of aggregated features from315

top-K models. Even on the most sophisticated DomainNet, ZooD can improve predictive performance316

by +2.4% compared with Single and +0.1% compared with Ensemble.317

Figure 4: Comparison of selected-feature ensem-
ble vs. all-feature ensemble for varying number
of top models in the ensemble.

To find the appropriate number K for the model318

ensemble, we performed an ablation study. We319

varied the number of K, e.g. K ∈ {3,5,7}. The320

performance changes are plotted in Figure 4. We321

found the performance by aggregating top-3 mod-322

els strikes the right balance between performance323

and computational complexity. Hence, K=3 is set324

to the default value.325

In summary, our ranking metric in ZooD is good326

enough to select a model that can outperform the327

previous SOTA methods without adding any bells328

and whistles. Furthermore, feature selection in329

ZooD can efficiently utilize informative features from top-K models to further improve the OoD330

generalization. Based on extensive experimental results on various OoD datasets, we conclude ZooD331

makes it easy and efficient to exploit a large set of PTMs for OoD generalization.332

4.3 Computational Efficiency of ZooD333

In the previous sections, we show its performance on several small and large-scale OoD datasets. Here,334

we illustrate the precision and computational efficiency of ZooD by comparing it with brute-force335

fine-tuning in terms of GPU hours. The results are shown in Table 1c. ZooD provides a minimum of336

1516× speed-up for DomainNet and a maximum of 9859× speed-up for PACS. Cumulatively, our337

method took a total of 13 GPU hours to evaluate all the PTMs on all the datasets compared with 35140338

GPU hours (equivalent to 4 GPU years) for brute-force fine-tuning. Therefore, ZooD is a scalable and339

practical method for OoD generalization.340

5 Conclusion341

Machine learning models rely on IID assumption, which is often violated due to constant distribution342

shifts in the real-world applications. In this work, we argue for leveraging a large set of PTMs to improve343

OoD generalization and propose ZooD, a paradigm for efficient PTMs ranking and aggregation. Our344

paradigm avoids the computationally-prohibitive fine-tuning by ranking PTMs based on quantifying345

their inter-class discriminability and inter-domain stability, and selecting the most informative features346

from top-ranked PTMs ensemble. Extensive experiments show ZooD is superior in ranking correlation347

with the ground-truth performance and achieves SOTA results on various OoD benchmarks.348
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[67] Veronika Ročková and Edward I George. Emvs: The em approach to bayesian variable selection. Journal of504

the American Statistical Association, 109(506):828–846, 2014.505

[68] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej506

Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C. Berg, and Li Fei-Fei. Imagenet large scale507

visual recognition challenge. International Journal of Computer Vision, 115:211–252, 2015.508

[69] Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish Kapoor, and Aleksander Madry. Do adversarially509

robust imagenet models transfer better? ArXiv, abs/2007.08489, 2020.510

[70] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:511

Inverted residuals and linear bottlenecks. 2018 IEEE/CVF Conference on Computer Vision and Pattern512

Recognition, pages 4510–4520, 2018.513

[71] Zheyan Shen, Peng Cui, Tong Zhang, and Kun Kunag. Stable learning via sample reweighting. In Proceedings514

of the AAAI Conference on Artificial Intelligence, pages 5692–5699, 2020.515

[72] Yang Shu, Zhi Kou, Zhangjie Cao, Jianmin Wang, and Mingsheng Long. Zoo-tuning: Adaptive transfer516

from a zoo of models. In International Conference on Machine Learning, pages 9626–9637. PMLR, 2021.517

[73] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov, D. Erhan,518

Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. 2015 IEEE Conference on519

Computer Vision and Pattern Recognition (CVPR), pages 1–9, 2015.520

[74] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Rethinking521

the inception architecture for computer vision. 2016 IEEE Conference on Computer Vision and Pattern522

Recognition (CVPR), pages 2818–2826, 2016.523

[75] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In524

International Conference on Machine Learning, pages 6105–6114. PMLR, 2019.525

[76] Bart Thomee, David A. Shamma, Gerald Friedland, Benjamin Elizalde, Karl S. Ni, Douglas N. Poland,526

Damian Borth, and Li-Jia Li. Yfcc100m: the new data in multimedia research. Commun. ACM, 59:64–73,527

2016.528

[77] A. Tran, Cuong V Nguyen, and Tal Hassner. Transferability and hardness of supervised classification tasks.529

2019 IEEE/CVF International Conference on Computer Vision (ICCV), pages 1395–1405, 2019.530

[78] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep hashing531

network for unsupervised domain adaptation. 2017 IEEE Conference on Computer Vision and Pattern532

Recognition (CVPR), pages 5385–5394, 2017.533

[79] Sebastiano Vigna. A weighted correlation index for rankings with ties. In Proceedings of the 24th534

international conference on World Wide Web, pages 1166–1176, 2015.535

[80] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric536

Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma,537

Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,538

and Alexander M. Rush. Transformers: State-of-the-art natural language processing. In Proceedings of the539

2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages540

38–45, Online, October 2020. Association for Computational Linguistics. URL https://www.aclweb.541

org/anthology/2020.emnlp-demos.6.542

[81] Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Zhicheng Yan, Masayoshi Tomizuka,543

Joseph Gonzalez, Kurt Keutzer, and Peter Vajda. Visual transformers: Token-based image representation544

and processing for computer vision, 2020.545

13

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6


[82] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via non-parametric546

instance discrimination. In Proceedings of the IEEE conference on computer vision and pattern recognition,547

pages 3733–3742, 2018.548

[83] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual transfor-549

mations for deep neural networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition550

(CVPR), pages 5987–5995, 2017.551

[84] Xiaofan Xu and Malay Ghosh. Bayesian variable selection and estimation for group lasso. Bayesian Analysis,552

10(4):909–936, 2015.553

[85] Ismet Zeki Yalniz, Hervé Jégou, Kan Chen, Manohar Paluri, and Dhruv Kumar Mahajan. Billion-scale554

semi-supervised learning for image classification. ArXiv, abs/1905.00546, 2019.555

[86] Yun Yang and Debdeep Pati. Bayesian model selection consistency and oracle inequality with intractable556

marginal likelihood. arXiv preprint arXiv:1701.00311, 2017.557

[87] Yun Yang, Martin J Wainwright, and Michael I Jordan. On the computational complexity of high-dimensional558

bayesian variable selection. The Annals of Statistics, 44(6):2497–2532, 2016.559

[88] Haotian Ye, Chuanlong Xie, Tianle Cai, Ruichen Li, Zhenguo Li, and Liwei Wang. Towards a theoretical560

framework of out-of-distribution generalization. arXiv preprint arXiv:2106.04496, 2021.561

[89] Mingyang Yi, Lu Hou, Jiacheng Sun, Lifeng Shang, Xin Jiang, Qun Liu, and Zhi-Ming Ma. Improved ood562

generalization via adversarial training and pre-training. In ICML, 2021.563

[90] Kaichao You, Yong Liu, Jianmin Wang, Michael I Jordan, and Mingsheng Long. Ranking and tuning564

pre-trained models: A new paradigm of exploiting model hubs. arXiv preprint arXiv:2110.10545, 2021.565

[91] Kaichao You, Yong Liu, Jianmin Wang, and Mingsheng Long. Logme: Practical assessment of pre-trained566

models for transfer learning. In International Conference on Machine Learning, pages 12133–12143. PMLR,567

2021.568

[92] Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. Domain generalization with mixstyle. ArXiv,569

abs/2104.02008, 2021.570

14



A Experiments571

A.1 Complete Details of Experiment Setup572

In this section, we provide a detailed experiment setup we have used. For completeness purposes, this573

section also includes details already mentioned in the main paper.574

Pre-trained models. We use 35 PTMs having diverse architectures, pre-training methods and pre-575

training datasets. Group 1 consists of models with different architectures. This group consists of 12576

different architectures (CNNs and ViTs) trained on ImageNet-1k. The architectures are as follows:577

ResNet-50, ResNet-152 [30], ResNeXt-50 [83], DenseNet-169, DenseNet-201 [36], Inception v1 [73],578

Inception v3 [74], MobileNet v2 [70], EfficientNet-B2, EfficientNet-B4 [75], Swin-T, Swin-B [50].579

Group 2 consists of models pre-trained with different training methods. We use 10 ResNet-50s trained580

via following pre-training methods: Adversarial Training [53], BYOL [28], MoCo-v2 [19], InsDis [82],581

PIRL [55], DeepCluster-v2 [15], PCL-v2 [46], SeLa-v2 [5, 16], SwAV [16]. Group 3 consists of582

models pre-trained on large-scale datasets. We used 13 different models trained on ImageNet-22k [68],583

YFCC-100M [76], IG-1B-Targeted [85], WebImageText [65]. A summary of the PTMs can be found584

in Table 3.585

Datasets. We use six OoD datasets for our experiments. The details of these datasets are listed586

here. PACS [43] consists of 9,991 images from four domains (art, cartoons, photos, sketches) and587

seven classes. VLCS [25] consists of 10,729 images from four domains (Caltech101, LabelMe,588

SUN09, VOC2007) and five classes. Office-Home [78] has four domains (art, clipart, product, real)589

of common objects in office and home settings. The dataset has a total of 15,588 images belonging590

to 65 classes. TerraIncognita [11] contains photos of wild animals taken by camera traps installed at591

four different locations. It has a total of 24,788 images from 10 classes. DomainNet [64] is one of the592

most challenging OoD datasets. It has 586,575 images from six diverse domains (clipart, infographics,593

painting, quickdraw, real, sketch) belonging to 345 classes. NICO [31] consists of nearly 25,000594

images from two superclasses: NICO-Animals (10 classes) and NICO-Vehicles (9 classes). We split595

the images of NICO-Animals and NICO-Vehicles into multiple domains according to [6] and combine596

validation and test sets as one domain to form four domains, separately.597

Ground-truth performance. To get ground-truth performance, we train linear classifiers on top of598

PTMs following DomainBed [29]. The authors of DomainBed [29] argue for the hyper-parameter599

selection to be a part of the method selection criteria. Based on this argument, they propose a rigorous600

test bench. We follow their training and evaluation protocol, including dataset splits, hyper-parameter601

settings, optimizer, etc. We adopt the leave-one-domain-out cross-validation setup in DomainBed with602

10 experiments for hyper-parameter selection and run 3 trials. We triple the number of iterations for603

DomainNet (5000 to 15000) as it is a larger dataset and requires more training [18] and decrease the604

number of experiments for hyper-parameter selection from 10 to 5.605

IID ranking methods. We divide existing ranking methods into two groups. The first group consists606

of methods that employ PTM’s classification layer for ranking. These methods include NCE [77] and607

LEEP [59]. The second group consists of approaches that only use PTM’s extracted features. These608

methods include H-Score [9] and LogME [91]. Additionally, we also use kNN with k=200 [82] as a609

baseline.610

Evaluation metrics. To evaluate PTMs on OoD datasets with ranking methods, we follow leave-one-611

domain-out validation protocol [43]. For ZooD and kNN, we further adopt leave-one-domain-out612

validation for training domains and take average results as the performance prediction for the held-out613

test domain. To compute the correlation between ranking scores and ground-truth performance, we614

use two metrics. First, to compare the ranking of a transferability metric with accuracy, we employ615

Kendall’s coefficient τ [38]. Unlike Pearson’s correlation, τ measures correlation based on the order of616

two measures. Consequently, it is a better criterion for ranking. Second, to measure the performance of617

transferability metric for top-model selection, we utilize weighted Kendall’s coefficient τw [79]. The618

τw gives more weight to the ranking of top-performing models compared with the rest of the models.619

Therefore, it is a better comparative criterion for top model selection.620

A.2 Extended Ranking Results621

In this section, we provide detailed and raw results for all 35 models on all six OoD datasets. Specifically,622

we provide raw scores assigned by all the ranking methods to all PTMs. We also provide accuracy of623
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each model after fine-tuning. A more interpretable and visual analysis of these scores are provided in624

section 4.1 of the main paper.625

We provide these raw scores here to help aid reproducability and to help other researchers for easier626

benchmarking. It is important to note that getting these results, especially accuracy results, is computa-627

tionally expensive, which may hinder future progress. For instance, on large DomainNet dataset, it628

takes 711 GPU days of training to get all ground-truth performance. Therefore, providing these raw629

scores can significantly help future researchers.630

The results are provided in the following tables. Table 4 shows results on PACS and VLCS, Table 5631

shows results on Office-Home and TerraIncognita, Table 6 contains results on NICO-Animals and632

NICO-Vehicles, and Table 7 contains results on DomainNet.633

Table 3: Details of our model zoo. The first column corresponds to the numbers we have used for
subsequent tables. The rest of the table describes architectures, pre-training datasets, and pre-training
algorithms as well as the group and source of each model.

Number Architecture Dataset Algorithm Group Source
1 ResNet-50 ImageNet-1K ERM Group 1 Paszke et al. [62]
2 ResNet-152 ImageNet-1K ERM Group 1 Paszke et al. [62]
3 ResNeXt-50 ImageNet-1K ERM Group 1 Paszke et al. [62]
4 DenseNet-169 ImageNet-1K ERM Group 1 Paszke et al. [62]
5 DenseNet-201 ImageNet-1K ERM Group 1 Paszke et al. [62]
6 Inception v1 ImageNet-1K ERM Group 1 Paszke et al. [62]
7 Inception v3 ImageNet-1K ERM Group 1 Paszke et al. [62]
8 MobileNet v2 ImageNet-1K ERM Group 1 Paszke et al. [62]
9 EfficientNet-B2 ImageNet-1K ERM Group 1 Paszke et al. [62]

10 EfficientNet-B4 ImageNet-1K ERM Group 1 Paszke et al. [62]
11 Swin-T ImageNet-1K Swin Group 1 Liu et al. [50]
12 Swin-B ImageNet-1K Swin Group 1 Liu et al. [50]
13 ResNet-50 ImageNet-1K Adv. ℓ2 (ϵ=0.5) Group 2 Salman et al. [69]
14 ResNet-50 ImageNet-1K Adv. ℓ∞ (ϵ=4) Group 2 Salman et al. [69]
15 ResNet-50 ImageNet-1K BYOL Group 2 Ericsson et al. [24]
16 ResNet-50 ImageNet-1K MoCo-v2 Group 2 Ericsson et al. [24]
17 ResNet-50 ImageNet-1K InsDis Group 2 Ericsson et al. [24]
18 ResNet-50 ImageNet-1K PIRL Group 2 Ericsson et al. [24]
19 ResNet-50 ImageNet-1K DeepCluster-v2 Group 2 Ericsson et al. [24]
20 ResNet-50 ImageNet-1K PCL-v2 Group 2 Ericsson et al. [24]
21 ResNet-50 ImageNet-1K SeLa-v2 Group 2 Ericsson et al. [24]
22 ResNet-50 ImageNet-1K SwAV Group 2 Ericsson et al. [24]
23 ResNet-18 ImageNet-1K + YFCC-100M Semi-supervised Group 3 Yalniz et al. [85]
24 ResNet-50 ImageNet-1K + YFCC-100M Semi-supervised Group 3 Yalniz et al. [85]
25 ResNeXt-50 ImageNet-1K + YFCC-100M Semi-supervised Group 3 Yalniz et al. [85]
26 ResNeXt-101 ImageNet-1K + YFCC-100M Semi-supervised Group 3 Yalniz et al. [85]
27 ResNet-18 ImageNet-1K + IG-1B-Targeted Semi-weakly Supervised Group 3 Yalniz et al. [85]
28 ResNet-50 ImageNet-1K + IG-1B-Targeted Semi-weakly Supervised Group 3 Yalniz et al. [85]
29 ResNeXt-50 ImageNet-1K + IG-1B-Targeted Semi-weakly Supervised Group 3 Yalniz et al. [85]
30 ResNeXt-101 ImageNet-1K + IG-1B-Targeted Semi-weakly Supervised Group 3 Yalniz et al. [85]
31 Swin-B ImageNet-1K + ImageNet-22K Swin Group 3 Liu et al. [50]
32 BEiT-B ImageNet-1K + ImageNet-22K BEiT Group 3 Wolf et al. [80], Bao et al. [8]
33 ViT-B/16 ImageNet-1K + ImageNet-22K ViT Group 3 Wolf et al. [80], Wu et al. [81]
34 ResNet-50 WebImageText CLIP Group 3 Radford et al. [65]
35 ViT-B/16 WebImageText CLIP Group 3 Radford et al. [65]
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Table 4: The ranking scores and fine-tuning accuracy on PACS and VLCS datasets. The numbering in
the first column corresponds to a pre-trained model from Table 3. The numbers in each subsequent
column represent the scores assigned by a ranking metric to the PTMs. The last column displays
the accuracy of each model after fine-tuning. Empty cells represent models for which ranking is not
feasible.

Model PACS VLCS
Number LEEP NCE H-Score kNN LogME ZooD Acc. LEEP NCE H-Score kNN LogME ZooD Acc.

1 -1.226 -1.077 5.016 49.608 0.226 0.053 66.9 -0.566 -0.498 3.241 58.156 0.223 0.119 76.7
2 -1.140 -1.007 5.072 54.767 0.274 0.100 74.4 -0.538 -0.494 3.253 61.215 0.229 0.127 77.0
3 -1.185 -1.022 5.010 50.737 0.231 0.064 65.6 -0.552 -0.499 3.216 58.540 0.200 0.083 76.9
4 -1.156 -0.998 4.636 43.284 0.186 -0.012 67.1 -0.569 -0.514 3.013 56.056 0.181 0.063 76.8
5 -1.172 -1.039 4.854 48.861 0.235 0.058 72.4 -0.581 -0.517 3.076 57.387 0.193 0.076 78.0
6 -1.392 -1.093 4.356 48.446 0.145 -0.025 65.3 -0.745 -0.549 2.811 58.260 0.136 0.004 74.6
7 -1.082 -0.947 4.795 37.655 0.164 -0.022 65.3 -0.565 -0.543 3.130 44.151 0.144 0.018 73.9
8 -1.209 -1.059 4.614 39.574 0.180 -0.002 65.0 -0.579 -0.512 2.922 59.465 0.152 0.030 75.9
9 -1.239 -0.949 4.857 46.069 0.270 0.067 74.2 -0.682 -0.505 3.002 58.049 0.131 -0.027 74.7

10 -0.993 -0.840 5.174 35.581 0.353 0.117 75.3 -0.556 -0.511 3.142 54.788 0.175 0.041 74.4
11 -1.231 -1.004 4.624 30.913 0.272 0.076 68.2 -0.637 -0.493 2.935 34.481 0.181 0.035 76.4
12 -1.154 -0.929 4.850 30.591 0.303 0.064 69.3 -0.601 -0.500 3.081 38.755 0.184 0.057 75.6
13 -1.230 -1.054 5.124 52.974 0.284 0.076 70.2 -0.584 -0.498 3.200 60.767 0.199 0.073 76.6
14 -1.226 -0.978 5.186 53.150 0.301 0.092 72.2 -0.667 -0.530 3.083 63.175 0.145 0.005 74.9
15 5.076 46.615 0.298 0.110 74.2 3.208 55.076 0.200 0.081 75.6
16 4.847 47.360 0.198 -0.075 58.9 3.260 60.138 0.247 0.141 69.8
17 4.578 31.131 0.066 -0.319 40.9 3.109 56.697 0.138 0.012 65.6
18 4.576 28.835 0.071 -0.309 38.4 3.150 55.033 0.162 0.043 64.2
19 5.024 36.493 0.256 -0.680 65.6 3.242 49.445 0.223 0.108 76.3
20 4.760 36.451 0.151 -0.093 58.4 3.205 54.922 0.209 0.102 71.3
21 4.829 35.495 0.187 -0.691 64.0 3.258 47.359 0.230 -0.435 75.4
22 4.946 34.103 0.231 0.034 62.9 3.253 52.114 0.231 0.119 77.1
23 -1.169 -0.974 4.225 48.668 0.190 0.034 69.4 -0.561 -0.503 2.832 57.624 0.214 0.107 77.1
24 -1.014 -0.908 5.181 57.411 0.362 0.164 75.7 -0.536 -0.503 3.340 58.396 0.313 0.208 78.6
25 -1.024 -0.881 5.151 55.490 0.312 0.099 74.4 -0.540 -0.500 3.312 62.857 0.268 0.173 77.8
26 -0.950 -0.841 5.287 61.007 0.369 0.156 78.4 -0.533 -0.505 3.340 63.100 0.285 0.190 77.9
27 -1.034 -0.834 4.609 63.988 0.302 0.159 83.4 -0.558 -0.484 2.828 58.549 0.211 0.105 77.0
28 -0.767 -0.630 5.499 75.592 0.578 0.400 91.7 -0.534 -0.495 3.363 61.016 0.341 0.238 79.1
29 -0.784 -0.612 5.493 78.550 0.531 0.358 89.0 -0.539 -0.493 3.347 62.604 0.302 0.203 78.1
30 -0.671 -0.518 5.625 74.917 0.646 0.447 91.5 -0.536 -0.499 3.371 66.276 0.312 0.211 78.7
31 -1.057 -0.740 5.587 41.936 0.527 0.263 85.4 -0.675 -0.499 3.163 39.618 0.275 0.176 78.6
32 -1.819 -1.415 3.424 26.731 -0.106 -0.214 47.1 -1.142 -0.794 2.048 52.277 -0.028 -0.213 68.4
33 -1.271 -0.995 4.621 58.167 0.198 -0.060 66.1 -0.601 -0.503 3.120 68.578 0.253 0.150 78.3
34 6.188 47.724 0.075 -0.106 66.0 3.198 64.808 0.275 0.184 74.9
35 5.546 84.858 0.869 0.653 96.0 3.143 67.367 0.377 0.312 79.5

B Model Ranking in ZooD634

In this section, we present more details about the proposed ranking metric and algorithm.635

B.1 Preliminaries: setup, problem and strategy636

Suppose that:637

• Model zoo. We have a collection of PTMs as learned feature extractors:638

M={ϕ1(x),ϕ2(x),...,ϕk(x),...},

where ϕk(x) is a d-dimensional feature extractor that maps X to Rd.639

• Dataset. A multi-domain dateset is collected for solving a domain generalization problem:640

D={D1,D2,...,Dm},with Di=
{
(xij ,yij),1≤j≤ni

}
,

wherem is the number of observed domains and Di is the set of data points under the i-th641

domain. The total sample size is n=
∑

ini.642

• Problem. The objective is to select a PTM ϕ from M such that the optimal top classifier643

f based on the selected feature extractor ϕ, i.e. the whole predictor is f ◦ϕ(x), has good644

prediction performance on the domain generalization task.645

To proceed further, we need more notations as folllows:646

• For any domain i, we rewrite Di={yi,xi} where647

yi=(yi1,yi2,...,yini
)⊤∈Rni , xi=(xi1,xi2,...,xini

)⊤∈Rni×p.
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Table 5: The ranking scores and fine-tuning accuracy for Office-Home and TeraIncognita datasets. The
numbering in the first column corresponds to a pre-trained model from Table 3. The numbers in each
subsequent column represent the scores assigned by a ranking metric to the PTMs. The last column
displays the accuracy of each model after fine-tuning. Empty cells represent models for which ranking
is not feasible.

Model Office-Home TerraIncognita
Number LEEP NCE H-Score kNN LogME ZooD Acc. LEEP NCE H-Score kNN LogME ZooD Acc.

1 -1.540 -1.311 41.908 50.614 0.985 0.075 67.7 -1.531 -1.286 5.559 23.477 0.301 -0.722 31.0
2 -1.355 -1.198 43.973 53.499 1.029 0.120 70.6 -1.501 -1.338 5.592 29.018 0.305 -0.721 35.2
3 -1.465 -1.263 41.439 51.501 0.979 0.076 69.1 -1.519 -1.290 5.491 23.227 0.292 -0.735 25.5
4 -1.457 -1.280 35.695 47.413 0.941 0.025 68.7 -1.473 -1.266 4.850 22.977 0.244 -0.815 23.9
5 -1.460 -1.271 37.727 48.186 0.952 0.036 69.1 -1.573 -1.321 5.119 22.116 0.251 -0.831 23.0
6 -2.243 -1.701 30.175 44.089 0.887 -0.015 59.0 -1.636 -1.327 4.432 24.368 0.238 -0.881 17.7
7 -1.396 -1.327 40.696 53.520 0.977 0.083 66.2 -1.440 -1.286 5.097 24.285 0.250 -0.819 23.8
8 -1.713 -1.439 32.911 45.934 0.902 -0.005 62.8 -1.614 -1.373 4.782 22.793 0.264 -0.811 29.7
9 -1.628 -1.143 40.378 51.252 1.022 0.106 72.2 -1.610 -1.388 5.124 25.737 0.299 -0.740 32.8

10 -1.229 -1.082 45.309 45.939 1.094 0.176 73.6 -1.523 -1.383 5.517 25.909 0.319 -0.720 24.8
11 -1.528 -1.174 36.781 47.708 1.018 0.100 72.5 -1.563 -1.393 4.474 26.624 0.272 -0.746 30.3
12 -1.320 -1.099 42.086 48.265 1.070 0.139 75.9 -1.545 -1.466 4.984 25.561 0.289 -0.720 30.9
13 -1.594 -1.311 41.423 48.194 0.972 0.061 66.3 -1.625 -1.315 6.101 25.319 0.348 -0.803 31.9
14 -1.825 -1.377 39.631 43.415 0.937 0.027 62.4 -1.704 -1.309 6.106 24.481 0.344 -0.910 26.7
15 40.498 37.124 0.971 -0.022 60.6 5.542 24.565 0.307 -0.721 23.7
16 38.633 32.130 0.941 -0.102 41.6 5.601 26.435 0.308 -0.742 19.1
17 31.841 18.154 0.825 -0.399 22.7 5.675 27.931 0.308 -1.067 16.0
18 32.493 19.447 0.838 -0.366 24.4 5.711 30.123 0.313 -0.777 18.4
19 39.876 30.521 0.956 -0.010 61.0 5.649 26.656 0.322 -0.710 28.7
20 36.612 27.949 0.912 -0.100 44.1 5.486 23.898 0.296 -0.775 16.1
21 38.936 29.547 0.950 -0.424 52.7 5.537 23.617 0.303 -0.745 23.6
22 39.705 28.988 0.954 -0.041 58.8 5.680 26.854 0.323 -0.994 23.2
23 -1.680 -1.400 26.787 45.371 0.895 -0.028 62.3 -1.560 -1.311 3.817 23.495 0.228 -0.846 26.5
24 -1.339 -1.194 44.073 49.205 1.049 0.097 71.2 -1.487 -1.322 5.527 25.801 0.309 -0.698 32.5
25 -1.294 -1.156 44.683 56.220 1.055 0.151 72.7 -1.505 -1.335 5.439 24.983 0.291 -0.718 27.7
26 -1.168 -1.081 46.671 60.344 1.106 0.199 74.8 -1.487 -1.360 5.510 26.461 0.302 -0.685 28.8
27 -1.502 -1.266 28.820 49.142 0.924 0.004 66.7 -1.549 -1.291 3.761 23.208 0.223 -0.856 29.3
28 -1.152 -1.024 46.552 56.192 1.119 0.167 76.1 -1.495 -1.354 5.428 25.008 0.298 -0.739 36.0
29 -1.111 -0.979 47.382 61.253 1.133 0.230 78.0 -1.515 -1.360 5.342 26.525 0.277 -0.730 34.4
30 -0.971 -0.875 50.223 67.685 1.226 0.312 81.0 -1.449 -1.343 5.478 28.274 0.298 -0.681 35.4
31 -1.252 -0.859 47.500 60.458 1.240 0.306 84.6 -1.579 -1.392 4.934 29.336 0.303 -0.669 37.3
32 -3.896 -2.913 15.908 9.459 0.755 -0.178 31.9 -1.828 -1.400 19.076 24.408 0.230 -0.939 26.2
33 -1.675 -1.295 37.045 58.928 1.027 0.107 71.8 -1.548 -1.268 -0.153 26.017 0.247 -0.827 21.3
34 26.080 22.301 0.828 -0.091 42.4 3.695 28.290 0.220 -0.868 18.8
35 36.712 65.789 1.056 0.148 82.2 4.147 31.467 0.259 -0.749 40.0

• Given a feature extractor ϕ, the learned feature matrix is denoted by648

Φi=
(
ϕ(xi1),ϕ(xi2),...,ϕ(xini

)
)⊤∈Rni×d.

• For any i∈ [m], we denote Φ−i and y−i as649

y−i =
(
y⊤
1 ,···,y⊤

i−1,y
⊤
i+1,···,y⊤

m

)⊤∈R(n−ni),

Φ−i =
(
Φ⊤

1 ,···,Φ⊤
i−1,Φ

⊤
i+1,···,Φ⊤

m

)⊤∈R(n−ni)×d.

We can break the model selection problem down into two questions. 1). When generalizing to unknown650

domains, are the learned features stable enough to avoid extrapolating predictions? 2). Are the learned651

features informative enough to ensure that the correlation between features and labels is stable across652

different domains? To answer these two questions, we compute the following two quantities:653

• p(Φi|Φ−i), which measures covariate shift between Φi and Φ−i, indicating whether the654

validation input is a rare sample compared with the training input;655

• p(yi|Φi,y−i,Φ−i), which measures the discriminability and correlation shift between Φi and656

yi given the training data Φ−i and y−i.657

We thus propose a metric by assembling above quantities for PTMs ranking:658

Metric=logp(yi|Φi,y−i,Φ−i)+λlogp(Φi|Φ−i), (3)

where λ is a tuning parameter that unifies the scale of the correlation shift and the covariate shift. In our659

implementation, the tuning parameter is taken to be the ratio of two standard deviations:660

λ=
Std(logp(yij |Φi,y−i,Φ−i))

Std(logp(ϕ(xij)|Φ−i))
,

which is also used in Ye et al. [88].661
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Table 6: The ranking scores and fine-tuning accuracy for NICO dataset. The numbering in the first
column corresponds to a pre-trained model from Table 3. The numbers in each subsequent column
represent the scores assigned by a ranking metric to the PTMs. The last column displays the accuracy
of each model after fine-tuning. Empty cells represent models for which ranking is not feasible.

Model NICO-Animal NICO-Vehicle
Number LEEP NCE H-Score kNN LogME ZooD Acc. LEEP NCE H-Score kNN LogME ZooD Acc.

1 -0.501 -0.397 7.767 86.348 0.512 0.510 91.0 -0.699 -0.651 6.758 81.043 0.398 0.363 86.1
2 -0.419 -0.340 7.975 88.823 0.599 0.602 92.8 -0.624 -0.598 6.928 84.266 0.467 0.433 88.1
3 -0.455 -0.379 7.789 87.400 0.527 0.525 92.0 -0.670 -0.637 6.773 82.466 0.405 0.376 86.7
4 -0.450 -0.376 7.358 86.748 0.466 0.455 91.8 -0.692 -0.661 6.387 80.092 0.370 0.329 86.4
5 -0.479 -0.375 7.472 85.773 0.483 0.471 92.0 -0.720 -0.679 6.469 79.118 0.381 0.340 86.6
6 -0.983 -0.629 6.721 78.237 0.343 0.326 83.7 -1.109 -0.834 5.718 72.119 0.242 0.206 79.2
7 -0.460 -0.450 7.748 84.286 0.519 0.502 88.7 -0.647 -0.660 6.659 77.803 0.371 0.336 83.6
8 -0.616 -0.508 6.810 81.108 0.326 0.318 86.6 -0.792 -0.743 5.959 76.653 0.268 0.233 82.5
9 -0.646 -0.345 7.814 79.292 0.600 0.583 92.1 -0.823 -0.600 6.739 80.821 0.474 0.427 88.0

10 -0.393 -0.318 8.089 82.033 0.693 0.664 92.4 -0.578 -0.560 7.016 77.957 0.547 0.493 88.0
11 -0.598 -0.309 7.797 80.542 0.681 0.656 93.5 -0.742 -0.569 6.655 80.318 0.526 0.477 89.1
12 -0.460 -0.277 8.201 80.414 0.811 0.798 95.1 -0.644 -0.545 6.963 78.615 0.593 0.545 90.3
13 -0.602 -0.468 7.551 82.090 0.433 0.428 88.0 -0.743 -0.651 6.685 78.180 0.374 0.340 84.9
14 -0.921 -0.634 7.030 69.756 0.288 0.275 81.2 -0.941 -0.731 6.407 71.239 0.283 0.247 80.7
15 7.546 71.552 0.438 0.427 86.9 6.644 71.200 0.362 0.326 82.9
16 7.679 73.400 0.491 0.485 80.0 6.701 67.634 0.376 0.331 74.0
17 6.562 46.842 0.188 0.166 53.2 6.050 49.714 0.184 0.143 53.6
18 6.756 48.977 0.225 0.207 55.4 6.184 52.048 0.221 0.176 56.0
19 7.652 68.655 0.470 0.462 89.3 6.743 69.965 0.395 0.354 83.8
20 7.491 68.446 0.429 0.419 81.1 6.532 65.629 0.323 0.276 75.6
21 7.649 60.005 0.458 -0.970 84.2 6.681 62.967 0.370 -0.704 78.3
22 7.580 65.025 0.445 0.436 87.7 6.710 66.776 0.385 0.343 82.4
23 -0.482 -0.391 6.713 84.406 0.404 0.391 90.6 -0.688 -0.633 5.748 77.967 0.324 0.284 85.9
24 -0.346 -0.278 8.081 89.122 0.666 0.656 94.3 -0.593 -0.573 7.001 83.783 0.524 0.479 89.9
25 -0.333 -0.255 8.266 88.655 0.754 0.757 95.1 -0.563 -0.538 7.122 86.015 0.559 0.519 90.1
26 -0.305 -0.245 8.383 89.750 0.832 0.831 95.9 -0.524 -0.514 7.250 87.605 0.627 0.582 91.1
27 -0.444 -0.347 6.793 81.971 0.425 0.410 91.3 -0.649 -0.602 5.873 78.824 0.350 0.312 86.4
28 -0.283 -0.211 8.253 89.394 0.772 0.762 95.8 -0.527 -0.520 7.131 85.509 0.594 0.549 91.1
29 -0.287 -0.192 8.424 93.119 0.872 0.871 96.7 -0.515 -0.490 7.250 88.538 0.632 0.590 91.6
30 -0.255 -0.164 8.594 90.335 1.038 1.037 97.4 -0.478 -0.450 7.430 89.605 0.752 0.710 92.8
31 -0.521 -0.167 8.407 84.414 1.086 1.063 97.5 -0.641 -0.439 7.254 90.010 0.824 0.774 94.5
32 -1.864 -1.317 4.772 35.264 0.057 0.031 62.2 -1.801 -1.282 4.525 41.243 0.044 0.007 64.4
33 -0.393 -0.224 8.673 93.392 0.819 0.798 94.6 -0.616 -0.511 6.808 89.564 0.589 0.534 90.4
34 7.429 84.647 0.472 0.465 89.4 6.929 83.589 0.567 0.539 92.3
35 8.240 95.664 0.936 0.932 97.5 7.206 89.449 0.832 0.805 97.3

B.2 Model Assumption662

Since the correlation betweenϕ(x) and response variables ymay be non-linear, we need to make further663

assumptions and approximation. Let each y be independently generated from a unknown distribution:664

p(y|Φ,f). Assume this distribution is unimodal and the mode is denoted by µ, we can take Taylor665

expansion of log likelihood at the mode666

logp
(
y|ϕ(x),f

)
≈ logp

(
µ
∣∣ϕ(x),f)− 1

2
(y−µ)⊤Λ(y−µ)

where Λ=−∇y∇ylogp(y|ϕ(x),f)
∣∣
y=µ

. The above transformation is the Laplace approximation [51]667

and the quadratic term implies the rationality of the Gaussian approximation. Similar to You et al. [91],668

the top model over a learned feature extractor ϕ is approximated with a linear model:669

y=w⊤ϕ(x)+ϵ, y∈R,w∈Rd,ϵ∈R,
where ϵ is a Gaussian noise with variance β−1. We assume the prior distribution of the weights w is a670

zero-mean isotropic Gaussian distribution governed by a hyperparameter α:671

w∼N (0,α−1Id) or p(w;α)=
( α
2π

) d
2

exp
(
−α

2
w⊤w

)
and the conditional distribution of the target variable y given ϕ(x) is a Gaussian distribution:672

y
∣∣ϕ(x),w∼N (w⊤ϕ(x),β−1) or p

(
y
∣∣ϕ(x),w;β

)
=
( β
2π

) 1
2

exp

(
−β
2

(
y−w⊤ϕ(x)

)2)
.

Recall the notations yi, Φi, y−i and Φ−i in Appendix B.1. Then we have673

yi|Φi,w∼N (Φiw,β
−1Ini

) and y−i|Φ−i,w∼N (Φ−iw,β
−1In−ni

).

In the next section, we present the details of estimating the two hyperparamters α and β.Appendix B.4674

shows how to compute the conditional density p(yi|Φi,y−i,Φ−i) and p(Φi|Φ−i) in the proposed675

metric (3).676
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Table 7: The ranking scores and fine-tuning accuracy for DomainNet dataset. The numbering in the
first column corresponds to a pre-trained model from Table 3. The numbers in each subsequent column
represent the scores assigned by a ranking metric to the PTMs. The last column displays the accuracy
of each model after fine-tuning. Empty cells represent models for which ranking is not feasible.

Model DomainNet
Number LEEP NCE H-Score kNN LogME ZooD Acc.

1 -4.083 -3.972 51.822 24.387 1.590 1.229 31.1
2 -3.946 -3.898 58.350 26.811 1.601 1.237 32.6
3 -4.033 -3.963 50.728 24.933 1.588 1.228 31.3
4 -3.984 -3.943 45.158 23.998 1.566 1.204 32.2
5 -3.989 -3.931 48.664 25.178 1.569 1.207 33.5
6 -4.646 -4.287 31.525 19.208 1.560 1.211 24.2
7 -3.999 -3.981 49.943 23.852 1.588 1.238 30.3
8 -4.172 -4.059 32.807 21.075 1.561 1.208 27.9
9 -4.177 -3.833 47.122 25.990 1.584 1.225 34.2

10 -3.768 -3.694 58.857 25.956 1.603 1.250 34.7
11 -4.063 -3.829 46.212 24.848 1.586 1.231 35.3
12 -3.914 -3.769 56.918 26.283 1.602 1.240 37.4
13 -4.127 -3.965 50.865 24.040 1.588 1.225 31.8
14 -4.252 -4.037 48.624 21.554 1.584 1.224 30.8
15 52.079 20.940 1.591 1.211 27.1
16 54.303 17.481 1.597 1.179 12.7
17 30.438 8.729 1.556 1.113 4.1
18 33.129 9.266 1.560 1.117 4.5
19 47.827 17.507 1.584 1.200 25.4
20 48.762 16.188 1.587 1.174 15.1
21 51.271 15.744 1.591 1.191 18.5
22 47.734 16.392 1.583 1.203 23.1
23 -4.078 -3.992 28.905 22.296 1.558 1.198 29.7
24 -3.787 -3.793 64.463 27.011 1.613 1.233 38.3
25 -3.788 -3.743 64.207 28.979 1.614 1.250 35.7
26 -3.661 -3.685 70.961 30.872 1.626 1.260 38.1
27 -3.841 -3.748 35.255 27.955 1.569 1.215 35.9
28 -3.426 -3.430 82.151 35.589 1.648 1.282 46.3
29 -3.413 -3.380 83.818 38.643 1.654 1.300 44.7
30 -3.229 -3.224 98.610 42.285 1.687 1.328 48.2
31 -3.646 -3.376 73.872 35.363 1.635 1.277 48.8
32 -5.639 -5.096 14.577 5.968 1.536 1.178 10.6
33 -4.226 -3.908 50.099 27.670 1.593 1.232 34.1
34 43.703 16.713 1.565 1.201 15.9
35 54.259 49.147 1.601 1.259 56.2

B.3 Parameter Estimation677

If we introduce a uniform prior distribution over α and β, the posterior distribution for α and β is678

p(α,β|y−i,Φ−i)=
p(α,β,y−i,Φ−i)

p(y−i,Φ−i)
∝p(α,β,y−i,Φ−i)=p(y−i,Φ−i|α,β)p(α,β),

where the prior distribution p(α,β) is assumed to be a uniform distribution over α and β. Then the679

values of α̂ and β̂ are obtained by maximizing the density function p(y−i,Φ−i|α,β), which is also680

the model evidence over {y−i,Φ−i}. The density function p(y−i,Φ−i|α,β) is obtained by integrating681

over w:682

p
(
y−i,Φ−i

∣∣α,β) =

∫
w

p
(
y−i,Φ−i

∣∣w,β)p(w∣∣α)dw
=

∫
w

p
(
y−i

∣∣Φ−i,w,β
)
p
(
Φ−i

∣∣w,β)p(w∣∣α)dw
=

∫
w

p
(
y−i

∣∣Φ−i,w,β
)
p
(
w
∣∣α)dw×p(Φ−i)

∝
∫
w

p
(
y−i

∣∣Φ−i,w,β
)
p
(
w
∣∣α)dw.

According to the model assumptions in Appendix B.2:683

y−i|Φ−i,w∼N (Φ−iw,β
−1In−ni

) and w∼N (0,α−1Id),
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then the likelihood function of α and β is684

L(α,β) =

∫
w

p(y−i|Φ−i,w,β)p(w|α)dw

=
( β
2π

)n−ni
2
( α
2π

) d
2

∫
w

exp

(
−β
2
(y−i−Φ−iw)⊤(y−i−Φ−iw)−α

2
w⊤w

)
dw

=
( β
2π

)n−ni
2
( α
2π

) d
2

∫
w

exp(−E(w))dw,

whereE(w) is the energy function of w, i.e.685

E(w)=
β

2
(y−i−Φ−iw)⊤(y−i−Φ−iw)+

α

2
w⊤w.

Given y−i and Φ−i, then the posterior distribution of w is686

p(w|y−i,Φ−i,α,β)∼N
(
w|m−i,A

−1
−i

)
,

where687

m−i=βA
−1
−iΦ

⊤
−iy−i, A−i=αId+βΦ⊤

−iΦ−i.

Notice that688

E(w) =
β

2
w⊤Φ⊤

−iΦ−iw+
α

2
w⊤w−βy⊤

−iΦ−iw+
β

2
y⊤
−iy−i

=
1

2
w⊤(βΦ⊤

−iΦ−i+αId)w−βy⊤
−iΦ−iw+

β

2
y⊤
−iy−i

=
1

2
w⊤A−iw−βy⊤

−iΦ−iA
−1
−iA−iw+

β

2
y⊤
−iy−i

=
1

2
w⊤A−iw−m⊤

−iA−iw+
β

2
y⊤
−iy−i.

Then we haveE(m−i)=− 1
2m

⊤
−iA−im−i+

β
2y

⊤
−iy−i.We rewrite w=w−m−i+m−i and obtain689

that690

1

2
w⊤A−iw =

1

2
(w−m−i)

⊤A−i(w−m−i)−
1

2
m⊤

−iA−im−i+m⊤
−iA−iw.

Therefore,691

E(w) =
1

2
(w−m−i)

⊤A−i(w−m−i)−
1

2
m⊤

−iA−im−i+
β

2
y⊤
−iy−i

= E(m−i)+
1

2
(w−m−i)

⊤A−i(w−m−i).

Then we have692

logL(α,β) =
n−ni
2

logβ+
d

2
logα−n−ni

2
log(2π)−E(m−i)−

1

2
log|A−i| (4)

=
n−ni
2

logβ+
d

2
logα−n−ni

2
log(2π)− β

2

∥∥y−i−Φ−im−i

∥∥2−α

2
∥m−i∥2−

1

2
log|A−i|.

and obtain α̂ and β̂ by maximizing logL(α,β), i.e.,693

α̂,β̂=argmax
α,β

logL(α,β).

We can find that the objective function here is the same to Eq.(2) in You et al. [91]. Then we use the694

fix-point iteration algorithm [91, 90]. The detailed inference procedure are presented as follows.695

Let λi and vi be the i-th eigenvalue and eigenvector of the matrix βΦ⊤
−iΦ−i. That is (βΦ⊤

−iΦ−i)vi=696

λivi. Then we have697

|A−i|= |αId+βΦ⊤
−iΦ−i|=

d∏
i=1

(α+λi).
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The stationary points of logL(α,β) with respect to α satisfy698

d

2α
− 1

2
∥w∥2− 1

2

d

dα
log

(
d∏

i=1

(α+λi)

)
=0

⇔ d−
d∑

i=1

α

α+λi
=α∥w∥2

⇔ α=
γ

∥w∥2
with γ=

d∑
i=1

λi
α+λi

.

Notice that the eigenvalues λi are proportional to β. Hence dλi/dβ=λi/β. Then the stationary points699

of logL(α,β) with respect to β satisfy700

n−ni
2β

− 1

2

∥∥y−i−Φ−im−i

∥∥2− 1

2β

d∑
i=1

λi
α+λi

=0

⇔ 1

β
=

1

n−ni−γ
∥∥y−i−Φ−im−i

∥∥2.
B.4 Computing Metric701

In this section, we present the details of computing the covariate shift p(Φi|Φ−i) and the correlation702

shift p(yi|Φi,y−i,Φ−i).Then we can plug these two quantities into (3) to compute the proposed metric.703

Covariate shift. Leaving the i-th domain out, we compute the density p
(
Φi

∣∣Φ−i

)
to check whether the704

learned feature ϕ(x) is stable such that the distribution shift between Φi and Φ−i is not significant. We705

approximate the distribution of ϕ(x) with a Gaussian distribution N (µϕ,Σϕ) and empirically estimate706

the parameters µϕ and Σϕ from the training inputs Φ−i∈R(n−ni)×d. That is,707

µ̂ϕ=
1

n−ni
Φ⊤

−i1n−ni
Σ̂ϕ=

1

n−ni
(Φ−i−1n−ni

µ̂⊤
ϕ )

⊤(Φ−i−1n−ni
µ̂⊤
ϕ ),

where 1n−ni
is a (n − ni)-length one vector. Then we compute the density of Φi according to708

N (µ̂ϕ,Σ̂ϕ):709

p(Φi|Φ−i) = p(Φi|µ̂ϕ,Σ̂ϕ)=

ni∏
j=1

√
1

(2π)d|Σ̂ϕ|
exp

(
−1

2
(ϕ(xij)−µ̂ϕ)

⊤Σ̂−1
ϕ (ϕ(xij)−µ̂ϕ)

)
.

= (2π)−
(n−ni)d

2 |Σ̂ϕ|−
n−ni

2 exp

(
−1

2
trace

{
(Φ−i−1n−ni

µ̂⊤
ϕ )Σ̂

−1
ϕ (Φ−i−1n−ni

µ̂⊤
ϕ )

⊤}).
Correlation shift. Given α̂ and β̂, we have710

p(yi|Φi,y−i,Φ−i;α̂,β̂)=
p(yi,y−i|Φi,Φ−i;α̂,β̂)

p(y−i|Φi,Φ−i;α̂,β̂)
=
p(yi,y−i|Φi,Φ−i;α̂,β̂)

p(y−i|Φ−i;α̂,β̂)
. (5)

We write m̂−i= β̂Â
−1
−iΦ

⊤
−iy−i and Â−i= α̂Id+β̂Φ⊤

−iΦ−i.According to (4),711

logp(y−i|Φ−i;α̂,β̂) =
n−ni
2

logβ̂+
d

2
logα̂−n−ni

2
log(2π) (6)

− β̂
2

∥∥y−i−Φ−im̂−i

∥∥2− α̂

2
∥m̂−i∥2−

1

2
log|Â−i|.

To proceed further, we denote712

y=(y⊤
i ,y

⊤
−i)

⊤∈Rn, Φ=(Φ⊤
i ,Φ

⊤
−i)

⊤∈Rn×d, m̂= β̂Â−1Φ⊤y, Â= α̂Id+β̂Φ⊤Φ.

Similar to (4), we have713

logp(y|Φ;α̂,β̂) = logp(yi,y−i|Φi,Φ−i;α̂,β̂)

=
n

2
logβ̂+

d

2
logα̂−n

2
log(2π)− β̂

2

∥∥y−Φm̂
∥∥2− α̂

2
∥m̂∥2− 1

2
log|Â|. (7)
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Plugging (6) and (7) into (3), we obtain the value of the proposed metric.714

Remark. Given y−i, Φ−i, α̂ and β̂, the posterior distribution of w is715

p(w|y−i,Φ−i,α̂,β̂)∼N
(
w|m̂−i,Â

−1
−i

)
.

Further,716

p(yi|Φi,y−i,Φ−i;α̂,β̂)=

∫
w

p(yi|Φi,w;β̂)p(w|y−i,Φ−i;α̂,β̂)dw.

By calculating the integral, we can deduce717

yi

∣∣Φi,y−i,Φ−i∼N
(
Φim̂−i,β̂

−1Ini+ΦiÂ
−1
−iΦ

⊤
i

)
.

Therefore we can also use this distribution to calculate p(yi|Φi,y−i,Φ−i) directly. Throughout this718

paper, we use the formula (5) to calculate the correlation shift.719

B.5 Cross-Domain Validation Selects Invariant Features720

To justify our proposed selection method, and provide more intuition, we conduct explicit analysis in a721

linear regression setting. Despite the over-simplification, it does reflect the essence of our approach.722

From this base case, adaptions to more complicated and realistic assumptions can be made.723

Data Assumption Suppose we have data in different domains with domain invariant and domain-724

specific features, with respect to the response variable y. Denote the set of invariant features to be iv,725

which are assumed to be unit-norm and orthogonal to each other. Without loss of generality, let data in726

domain D be x=(xiv,xD) where xiv∈Rd∗
denotes the domain invariant features and xD∈Rd−d∗

727

denotes domain specific ones. Let xiv be fixed. The domain specific features can have non-zero728

correlation with xiv such that729

xD=xiv ·AD+eD,

where AD ∈Rd∗×(d−d∗), and eD ∼N(0,s2Id−d∗). For different domains, assume the correlation730

to be independently random, i.e., AD’s are i.i.d. matrices with independent entries with mean 0 and731

variance 1. Given the features x, assume the response y only depends on xiv such that732

y=xiv ·βiv+ϵ=x·β+ϵ,

where β=(βiv,β
D) with βD=0 and ϵ followsN(0,σ2).733

Model Assumption Let the model candidates be linear models fitted to different subsets of the734

features and there are in total 2d different combinations. Denote the fitted parameters to be β̂∈Rd with735

only the selected dimensions being non-zero. Let the selection be ϕ, which is a subset of {1,...,d}. We736

want to show that our proposed statistics, in the cross-validated fashion, will prefer the optimal one737

with ϕ= iv. The optimality is in the sense that it achieves the best goodness-of-fit, measured by the738

square loss.739

More Notations Let (X,y),(X̃,ỹ) be independent datasets in two domains to be cross validated.740

For any vector (matrix), we use subscript to denote part of it with selected rows (columns). For instance,741

a model candidates with feature dimensions ϕ will only fit y∼Xϕ and the resulting β̂ will only be742

nonzero on β̂ϕ. For a set ϕ, denote |ϕ| be to its cardinality and ϕ̄ to be its complement.743

In our proposed test statistics, there are two terms to be assessed. The first term is essentially the744

goodness-of-fit of ỹ and X̃ϕ · β̂ϕ, which is of critical importance for selecting the invariance and745

consistent features cross different domains. The second term can be seen as some regularization. In746

this section, we will focus on the first term and to make things really simple, we consider expected l2747

loss as the measure for goodness-of-fit.748

The estimated β̂ can be explicitly written as749

β̂ϕ=(X⊤
ϕ Xϕ)

−1X⊤
ϕ y∈R|ϕ|.

23



Given y=Xβ+ϵ, we can write750

Xβ=Xϕβϕ+Xϕ̄βϕ̄.

Thus,751

β̂ϕ=βϕ+(X⊤
ϕ Xϕ)

−1X⊤
ϕ Xϕ̄βϕ̄+(X⊤

ϕ Xϕ)
−1X⊤

ϕ ϵ

=βϕ+(X⊤
ϕ Xϕ)

−1X⊤
ϕ ϵ. (8)

The expected l2 loss can be expressed as752

Eϵ,ϵ̃,e,A,ẽ,Ã

(
∥ỹ−X̃ϕ ·β̂ϕ∥2

)
=Eϵ,e,A,ẽ,Ã

(
∥X̃ ·β−X̃ϕ ·β̂ϕ∥2

)
+nσ2

=Eϵ,e,A,ẽ,Ã

(
∥X̃iv∩ϕβiv∩ϕ+X̃iv\ϕβiv\ϕ−X̃ϕ∩iv ·β̂ϕ∩iv−X̃ϕ\iv ·β̂ϕ\iv∥2

)
+nσ2

=Eϵ,e,A,ẽ,Ã

(
∥X̃iv∩ϕ(βiv∩ϕ−β̂iv∩ϕ)+X̃iv\ϕβiv\ϕ−X̃ϕ\iv ·β̂ϕ\iv∥2

)
+nσ2

=Eϵ,e,A,ẽ,Ã

(
∥X̃iv∩ϕ

(
(X⊤

ϕ Xϕ)
−1X⊤

ϕ ϵ
)
iv∩ϕ

+X̃iv\ϕβiv\ϕ−X̃ϕ\iv ·β̂ϕ\iv∥2
)
+nσ2

:=Eϵ,e,A,ẽ,Ã

(
∥I1+I2+I3∥2

)
+nσ2.

I1 accounts for the variance in estimating the selected invariance features. I2 is non-random and753

accounts for the error from unselected invariance features. I3 accounts the error from wrongly selected754

features. Easy to verify that E(I1) = E(I3) = 0 and E(I1I3) = 0, since β̂ is independent with Ã,ẽ,755

which are both mean zero.756

Eϵ,e,A,ẽ,Ã(∥I1∥
2)=σ2Ee,Atr

(
(X⊤

ϕ Xϕ)
−1
iv∩ϕ

)
For I3, we can further write757

Eϵ,e,A,ẽ,Ã(∥I3∥
2)=Eϵ,e,A,ẽ,Ã

(
β̂⊤
ϕ\ivX̃

⊤
ϕ\ivX̃ϕ\iv ·β̂ϕ\iv

)
=Eϵ,e,A

(
∥β̂ϕ\iv∥2

)
Eẽ,Ãtr

(
X̃⊤

ϕ\ivX̃ϕ\iv

)
=Eϵ,e,A

(
∥β̂ϕ\iv∥2

)(
EÃtr

(
Ã⊤

ϕ\ivÃϕ\iv

)
+n|ϕ\iv|s2

)
=n(1+s2)|ϕ\iv|·Eϵ,e,A

(
∥β̂ϕ\iv∥2

)
Therefore,758

Eϵ,ϵ̃,e,A,ẽ,Ã

(
∥ỹ−X̃ϕ ·β̂∥2

)
=σ2Ee,Atr

(
(X⊤

ϕ Xϕ)
−1
iv∩ϕ

)
+∥βiv\ϕ∥2+n(1+s2)|ϕ\iv|·Eϵ,e,A

(
∥β̂ϕ\iv∥2

)
+nσ2.

If ϕ= iv, the above quantity is minimized with Eϵ,ϵ̃,e,A,ẽ,Ã

(
∥ỹ−X̃ϕ ·β̂∥2

)
=(n+d∗)σ2.759

24



C Feature Selection in ZooD760

In this section, we present more details about the PTMs ensemble and feature selection in Section 3.2.761

The top-ranked PTMs in Section 3.1 are preferred for solving the OoD generalization task. To further762

aggregate different PTMs, we consider assembling the features by using PTMs as feature extractors763

Φ=
[
Φ(1),...,Φ(k)

]
,

where Φ(i) is the i-th ranked feature extractor and [·] denotes the row concatenation operation. As764

we show in experiments, in most cases, using aggregated models can significantly outperform any765

single model. However, the rough ensemble will inevitably introduce more noise. According to the766

definition of OoD learnability proposed by Ye et al. [88], non-informative but invariant features from767

training domains may only bring some noise, and the accumulation of noise hurts learnability of the768

OoD generalization task. Therefore, we propose a Bayesian feature selection method based on the769

Gaussian linear framework in Section 3.1.770

C.1 Bayesian Variable Selection771

In the Bayesian literature, the variable selection problem can be efficiently solved by introducing, for772

each variable wi, a binary mask zi∈{0,1} [48, 17, 84, 87], which are given by Bernoulli distributions773

governed by probability coefficient π. Let z={zi}di=1 and774

p(z;π)=
d∏

i=1

p(zi)=
d∏

i=1

πzi
i (1−πi)1−zi .

From a generative perspective, these masks determine whether the weight wi is generated from a slab775

or a spike prior [37]. If zi=1, then wi will follow a slab prior with diffusing probability density; if776

zi = 0, wi will have a spike prior with probability mass concentrated around 0, and thus should be777

discarded. Specifically, we assume778

p(wi|zi,αi,1,αi,2)=

{
N (0,α−1

i,1 ) if zi=1;

N (0,α−1
i,2 ) if zi=0.

Denote w= (w1,...,wd)
⊤ and αi,1 and αi,2 control the shape of the wi distribution and should be779

reasonably large for αi,2. Conditioned on wi, each data point yn is assumed to be independently drawn780

from a linear model with mean w⊤ϕ(x) and additional Gaussian noise with inverse variance β:781

p(yn
∣∣ϕ(xn),w;β)=

( β
2π

) 1
2

exp

(
−β
2

(
yn−w⊤ϕ(xn)

)2)
.

The model specification is completed by introducing conjugate Gamma priors over the inverse variance782

β and {αi,1,αi,2}di=1:783

αi,1∼Gamma(νi,1,νi,2), αi,2∼Gamma(νi,3,νi,4), β∼Gamma(ν0,1,ν0,2).

Denote the set of Gamma prior parameters as ν={νi,j} and all latent variables as784

ξ=
{
β,{wi,zi,αi,1,αi,2}di=1

}
.

Then the variable selection problem can be solved by estimatingπ={π1,π2,...,πd}withπi=p(zi=1).785

We can find the maximum likelihood estimator of the probability coefficient π of Bernoulli masks and786

then screen the variables if πi is smaller than the pre-defined threshold τ .787

C.2 Variational EM Algorithm788

Given the dataset {y,Φ}, the maximum marginal likelihood estimator of (π,ν) is given by789

π̂,ν̂ = argmax
π,ν

logp(y|Φ;π,ν)

= argmax
π,ν

log

∫
ξ

p(y,ξ|Φ;π,ν)dξ. (9)
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However, direct maximization of (9) is intractable due to the integration over ξ. EM algorithm [67]790

might be a solution here. In the E-step, we compute the conditional expectation791

L(π,ν;πold,νold)

= Eξ

[
logp(y,ξ|Φ;π,ν)

∣∣y,Φ;πold,νold
]

=

∫
logp(y,ξ|Φ;π,ν)p(ξ|y,Φ;πold,νold)dξ,

which involves inferring posterior p(ξ|y,Φ;π,ν). However this is not straightforward to obtain due to792

the complexity of our model setup. MCMC [58] is a common tool for this problem, but suffers from793

intensive computation, thus hard to extend to large scale data. We instead use approximate Bayesian794

inference in Section C.3.795

In the M-step, we update π and ν by maximizing the expectation796

πnew,νnew=argmax
π,ν

L(π,ν;πold,νold).

By repeating the E and M steps, the estimator (πnew,νnew) converges to an optimal solution. We show797

this method has satisfying performance for the underlying variable selection problems in synthetic data798

and the prevailing OoD dataset.799

C.3 Variational Inference800

In the E-Step, computation of Eξ

[
logp(y,ξ|Φ;π,ν)

∣∣y,Φ;πold,νold
]

involves inferring posterior801

p(ξ|y,Φ;π,ν). However, due to the complexity of our model setup, no analytical form of the802

posterior distribution can be found. We instead approximate true posterior distribution by variational803

inference [13]. The main idea involves the introduction of a set of distributionsQ, which should ideally804

be easy to compute and provide a good approximation to the true posterior distribution. We consider805

the following transformation of the marginal likelihood806

lnp(y|Φ;π,ν)=ln

∫
p(y,ξ|Φ;π,ν)dξ

=ln

∫
Q(ξ)

p(y,ξ|Φ;π,ν)
Q(ξ)

dξ

≥
∫
Q(ξ)ln

p(y,ξ|Φ;π,ν)
Q(ξ)

dθ

=L(Q),

where L(Q) denotes the variational lower bound. The key point is that, through proper choice ofQ807

distribution, L(Q) can be readily evaluated, and thus by maximizing the lower bound, we generally808

find theQ distribution, which is the best approximation within the considered family. Here we factorize809

Q over each latent variable, such that810

Q(ξ;π,ν)=Q(β;ν̃0,1,ν̃0,2)

d∏
i=1

[
Q(zi;π̃i)Q(wi;mi,λ

−1
i )Q(αi,1;ν̃i,1,ν̃i,2)Q(αi,2;ν̃i,3,ν̃i,4)

]
,

which holds for classic mean-field family [12]. By denoting {m,λ,π̃}={mi,λi,πi}di=1 and ν̃={ν̃i,j},811

an optimization-free form over all possibleQ has been established, which can lead to minimization of812

KL divergence between variational distributionQ(ξ) and true posterior p(ξ|y,Φ;π,ν)813

Q∗
i (ξi)=

expEξk ̸=i∼Q∗(ξk ̸=i)lnp(y,ξ|Φ;π,ν)∫
expEξk ̸=i∼Q∗(ξk ̸=i)lnp(y,ξ|Φ;π,ν)dξi

.

For models in conjugate families, the optimalQ∗(ξi) has the same form as its prior distribution. We814

then establish the optimization step for arbitrary variational parameters set {m,λ,ν̃,π̃} to approach815

the true posterior:816

mi=fm(π̃i,m,ν̃)=

(
N∑

n=1

x2n,iE[β]+π̃iE[αi,1]+(1−π̃i)E[αi,2]

)−1

·

E[β]· N∑
n=1

xn,i

d−1∑
j ̸=i

mj ·xn,j−yn

,
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817

π̃i=fπi(m,λ,ν̃)=
exp
{
Eln|αi,1|− 1

2Tr
(
E[αi,1]·[E[w2

i ]]
)
+lnπi

}
exp
{
Eln|αi,1|+Eln|αi,2|− 1

2Tr[(E[αi,1]+E[αi,2])·[E[w2
i ]]]+lnπi+ln(1−πi)

} ,
818

(ν̃0,2)
−1=fν0,2(m,λ)=

N∑
n=1

y2n−2

N∑
n=1

(
d∑

i=1

mi ·xn,i

)
·yn+

N∑
n=1

d2∑
i,j

xn,i ·xnj
(
[E[w2

i ]
)
+ν−1

0,2 ,

819

(ν̃i,2)
−1=fνi,2

(m,λ,π̃)=
(
E[w2

i ]
−1
)
·π̃i+ν−1

i,2 , (ν̃i,4)
−1=fνi,4

(m,λ,π̃)=
(
E[w2

i ]
−1
)
·(1−π̃i)+ν−1

i,4 ,
820

λi=fλ(ν̃)=

N∑
n=1

x2n,iE[β]+π̃iE[αi,1]+(1−π̃i)E[αi,2],

821
ν̃0,1=fν0,1

(n)=ν0,1+n, ν̃i,1=fνi,1
(π̃)=νi,1+π̃i, ν̃i,3=fνi,3

(π̃)=νi,3+1−π̃i,
where the variational expectations are given by822

E[w2
i ]=m

2
i +λ

−1
i , E[β]= ν̃0,1 ·ν̃0,2, E[αi,1]= ν̃i,1 ·ν̃i,2, E[αi,2]= ν̃i,3 ·ν̃i,4, (10)

823

Eln|αi,1|=ψ
(
νi,1

2

)
+ln2+ln

∣∣νi,2∣∣, Eln|αi,2|=ψ
(
νi,3

2

)
+ln2+ln

∣∣νi,4∣∣. (11)

Since the optimization steps for each variational parameter are mutually dependent, we can use coordi-824

nate gradient descent [13] starting by currentQ(ξ)t−1 from the last iteration. After one-step optimiza-825

tion, variational parameters ofQ(ξ)t are used in computation ofEξ∼Q(ξ;πold,νold)t
[
logp(y|Φ,ξ;π,ν)

]
,826

thus finishing E-step. During this procedure, the lower bound L(Q) will continuously increase until827

reaching its maximum value. Therefore, the value of L(Q) can be used as a useful indicator for828

convergence of algorithm [20].829

C.4 Algorithm Details830

The proposed model contains a set of prior hyper-parameters π,ν, which is exactly what we want to831

estimate for feature screening. In Bayesian literature, hyper-parameter selection can be automated832

from data through a procedure named “ARD” [52]. The original “ARD” procedure proposes a selection833

based on the value of model evidence. However, in many cases including ours, this evidence is834

intractable. Fortunately, it’s also feasible to use variational lower bound L(Q) as a substitute. Learning835

prior hyper-parameters π,ν leads to minimization of KL divergence. This can be rationalized by836

decomposition of L(Q):837

L(Q)=Eξ∼Q(ξ)

[
logp(y|Φ,ξ;π,ν)

]
=Eξ∼Q(ξ)

[
logp(y|ξ,Φ)

]
−KL(Q(ξ)||p(ξ;π,ν)).

Thus by setting derivatives of each hyper-parameters with respect to L(Q) to 0, it’s easy to see L(Q) is838

maximized when all hyper-parameters are set to posterior parameters:839

πnew= π̃, νnew= ν̃.

However the proposed algorithm still suffers from heavy computational cost: Each iteration costs840

O(nd2). Thus to relieve computation burden and memory usage, we leverage our method with841

stochastic approximation leading to the EM algorithm with stochastic variational inference [35]. In842

each iteration, we sample a random subset of entire data with size ns. Fitting our algorithm over this843

subset for current iteration, we obtain a local optimal estimator denoted byQs(ξ). In M-step these844

intermediate variational distributions by factorizingQs(ξ) will be used to learn hyper-parameters π845

and ν and simultaneously as the starting point for subsequent estimator in the next iteration. In the end,846

we successfully reduce the computation cost to O(nsd2) with ns≪n, while maintaining the guarantee847

of convergence to the global optimum [66]. In our experiments, we collect variational probabilities of848

{π̃i}di=1 from the last three runs and early-stop the algorithm if its difference with current probability849

is smaller than the pre-defined threshold ϵ or reaches the maximum iteration times. Variational EM850

algorithm for Bayesian feature selection is summarized in Algorithm 1. Note that we initialize m by851

linear regression and the initialization of ν̃ is set to ν.852

In our experiments, we often deal with the multivariate case. If the underlying task involves multivariate853

regression or classification, i.e., Y ∈Rn×K , we can run the proposed EM algorithm on each dimension854

and take the union of all selected features. Therefore, our feature selection procedure can be used in855

almost all prevailing models and tasks.856
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Algorithm 1 Variational EM Algorithm for Bayesian Feature Selection

Input: The observed data Y ∈ Rn,X ∈ Rn×d; Prior parameters π0 = {π0
i }di=1 and ν0 = {ν0i,j};

Maximum iteration step T ; Batch size ns; Stopping threshold ϵ.
Output: Converged πt and νt.

1: Initialization of variational moment: {m,λ,E[αi,1],E[αi,2],Eln|αi,1|,Eln|αi,2|}di=1:
• Initialize m0 by linear regression between Y and X , and let λ0=(m0⊙m0)−1;
• Set ν̃0=ν0 and computeE[αi,1],E[αi,2],Eln|αi,1|,Eln|αi,2| by Equation (10) and (11);

2: for 1≤ t≤T do
3: Random Sampling a data subset with size ns;
4: Update ν̃t0,1 and ν̃t0,2 by fνt−1

0,1
(ns) and fνt−1

0,2
(mt−1,λt−1);

5: for 1≤ i≤d do
6: Update each π̃t

i by fπt−1
i

(mt−1,λt−1,ν̃t−1);
7: Update each ν̃ti,1, ν̃ti,2, ν̃ti,3, ν̃ti,4 by fνt−1

i,1
(π̃t), fνt−1

i,2
(mt−1, λt−1, π̃t−1), fνt−1

i,3
(π̃t),

fνt−1
i,4

(mt−1,λt−1,π̃t);

8: Updatemt
i and λti by fm(π̃t

i ,m
t−1,ν̃t) and fλ(ν̃t);

9: end for
10: Update πt= π̃t,νt= ν̃t;
11: if t≥3 then
12: πmean=(πt−2+πt−1+πt)/3;
13: Early Stop if |πt−πmean|<ϵ;
14: end if
15: end for

C.5 Theoretical Result857

It has been shown that our method, as well as others in Bayesian variable selection, has potentially858

strong selection consistency [48, 17, 84, 87]. Consider the following model with inverse Gamma prior:859

yn |
(
ϕ(xn),w,σ

2
)
∼N

(
wϕ(xn),σ

2I
)
,

wi |
(
σ2,zi=0

)
∼N

(
0,σ2τ20,N

)
,

wi |
(
σ2,zi=1

)
∼N

(
0,σ2τ21,N

)
,

p(zi=1)=1−p(zi=0)=qN ,

σ2∼ IG(α1,α2),

(12)

where i runs from 1 to d, qN ,τ0,N ,τ1,N are constants that depend on sample sizeN , and IG (α1,α2)860

is the Inverse Gamma distribution with shape parameter α1 and scale parameter α2. Under regular861

conditions (See conditions 4.1–4.5 in [57]), selection consistency is established:862

Theorem 1. Assume regular conditions hold, under the model with inverse Gamma prior, we have863

p
(
z= t |Y ,σ2

) p−→ 1 as n→∞, that is, the posterior probability of the true model goes to 1 as the864

sample size increases to ∞.865

More related works on Bayesian feature selection can be found in [26, 56].866

C.6 Simulation Study867

In this section, we will conduct a series of simulations to verify selection performance on an i.i.d.868

dataset with varying sizes and dimensions. Here, we consider cases in the standard multivariate869

regression. We first generate each input predictor from a standard normal distribution: xni∼N(0,1)870

for i=1,...,d, and thus we generate response variables by subsequently sampling βj∼Uniform(1,3)871

for j=1,...,k<d and yn∼N(
∑k

i=1βixni,1). We then vary the values of d and k to find the potential872

influence in terms of True Positive Rate (TPR) and False Positive Rate (FPR). The results are shown in873

Table 9.874

We repeat each case 50 times and present the mean and variance of TPR and FPR. The hyper-parameter875

setting is listed in Table 8. We vary ns to study the influence of batch size. Overall, our method876
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illustrates the experimental selection consistency. When n>d, our method almost always selects the877

correct k variables with TPR close to 100% and successfully screens all unnecessary variables with878

FPR equal to 0%. Even under the less informative circumstance when n has equal or less amount with879

d, our method can still achieve great selection results with TPR above 90%. As n goes up, there is a880

uniform improvement in all cases in terms of TPR and FPR.881

Table 8: Hyper-parameters setting in feature selection.
πi ν0,1 ν0,2 νi,1 νi,2 νi,3 νi,4 T ns ϵ

0.5 1 1 1 1 5 1 1000 256 0.5

Table 9: Feature selection in terms of TPR/FPR.
d=100 k n ns TPR FPR
Case 1 50 200 64 99.92%±0.39% 0.00%±0.00%
Case 2 50 200 128 99.92% ± 0.39% 0.00%±0.00%
Case 3 50 400 64 100.00% ± 0.00% 0.00%±0.00%
Case 4 50 400 128 100.00% ± 0.00% 0.00%±0.00%
Case 5 90 200 64 99.86%±0.42% 0.00%±0.00%
Case 6 90 200 128 99.93% ± 0.26% 0.00% ± 0.00%
Case 7 90 400 64 100.00% ± 0.00% 0.00% ± 0.00%
Case 8 90 400 128 100.00% ± 0.00% 0.00% ± 0.00%
d=300 k n ns TPR FPR
Case 1 100 300 64 95.21%±2.22% 2.16%±1.52%
Case 2 100 300 256 96.46% ± 2.12% 2.31% ± 2.10%
Case 3 100 500 64 99.92% ± 0.27% 0.00% ± 0.00%
Case 4 100 500 256 100.00% ± 0.00% 0.00% ± 0.00%
Case 5 250 300 64 91.34%±2.92% 11.92%±6.79%
Case 6 250 300 256 91.95% ± 2.40% 14.56% ± 8.35%
Case 7 250 500 64 99.92% ± 0.17% 0.00% ± 0.00%
Case 8 250 500 256 99.92% ± 0.05% 0.00% ± 0.00%
d=500 k n ns TPR FPR
Case 1 100 450 64 92.70%±2.56% 4.41%±1.67%
Case 2 100 450 256 92.89% ± 2.69% 4.90% ± 1.82%
Case 3 100 800 64 99.94% ± 0.23% 0.00% ± 0.00%
Case 4 100 800 512 100.00% ± 0.00% 0.00% ± 0.00%
Case 5 450 500 64 90.21%±2.56% 12.68%±6.38%
Case 6 450 500 256 92.06% ± 1.84% 16.04% ± 6.69%
Case 7 450 800 64 99.92% ± 0.13% 0.00% ± 0.00%
Case 8 450 800 512 100.00% ± 0.00% 0.00% ± 0.00%
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