
A Appendix431

A.1 Module, Net and Pin432

Module. A chip is a combination of numerous modules, and there are two types of them: macros433

and standard cells. Macros are relatively large, including DRAMs, caches, and IO interfaces. Standard434

cells are mainly logical gates, much smaller than macros, and the size can be ignored. As in Fig.8435

(a), there are four macros and several standard cells. Placement methods usually place macros first436

and then the standard cells to ensure there is enough space for macros [36]. Due to the considerable437

number of standard cells, we currently use our MaskPlace method on macro placement.438

Pin. Pins are input/output interfaces for modules and are connected by wires directly, which have439

fixed relative positions on modules. We define the relative position of the pin P (i,j) from the left-440

bottom corner of the module it belongs to as ∆(i,j) = (∆
(i,j)
x ,∆

(i,j)
y ). For example, there are five441

pins and three macros in Fig.9 (a), and the pin offset information is also shown at the bottom. In442

the placement task, we should not ignore the positions of pins because it determines the wirelength.443

However, graph neural network-based models [3, 22] ignored them when converting circuits into a444

graph, which may lead to sub-optimal results.445

Net. A net contains a set of pins connected by the same wires. Thus the pins have the same446

information (0/1 in digital circuits). For example, four pins belong to Net 1, and the other three pins447

belong to Net 2 in Fig.8 (a). Usually, one pin belongs to only one net, and one net has more than two448

pins (one input and several outputs). Pins from the same net can form a net bounding box as Fig.8449

(a)(b).450
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Figure 8: Metrics for placement. HPWL is an optimization item, while congestion and density are
constraint items in the actual placement scenario. HPWL is smaller the better, while congestion and
density need to be less than the given thresholds. Placement (b) is better than (a) because HPWL and
congestion of (a) are smaller. Placement (c) is invalid because there are overlaps in cell g7,5 and g7,8.

A.2 Metric451

HPWL. HPWL (Half Perimeter Wire Length) is widely used to estimate wirelength by small452

computation cost [24]. It is the sum of half perimeter of net bounding boxes as Fig.8 (a)(b), where453

the bounding box is the minimal rectangle including all pins belonging to this net.454

Congestion. The congestion metric is used to avoid routing congestion, resulting in an increase in455

the actual wirelength because the resources for wires are limited in a real chip. There are many ways456

to estimate congestion, one is to compute a rough routing result [3], but it is very computationally457
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intensive. We use RUDY [25] as the estimation of congestion, which is a common way to evaluate.458

In RUDY, each grid cell needs to accumulate the inverse of the height and width (1/h+ 1/w) of all459

the net bounding boxes covering itself and take out the maximum value (or the average of the first k460

maximums) of all grid cells as Fig.8 (a)(b).461

Density. Density is a metric to reduce overlaps and avoid time-consuming computation for O(V 2)462

constraints [1]. So, it is an approximate calculation essentially. It is defined as the maximum stackable463

coverage area ratio for each grid cell on a chip canvas. For example, as Fig.8 (c), the maximum464

stackable coverage area ratio is 2.0 in grid cell g7,5 because two modules fully occupy it. However,465

density less than a small value is not a sufficient condition for the absence of overlap. Because our466

method can ensure no overlaps, we only consider it in evaluation. In the practical application scenario467

of chip design, HPWL is an optimization item. Conversely, congestion and density are constraint468

items.469

Examples. We give a set of placement results to explain the metrics in Fig.8. We can see that HPWL470

is the sum of width and height of net bounding boxes. Congestion (RUDY) is the max congestion471

value of grid cell gi,j , and the value in each grid cell is cumulative from the reciprocal of the width472

and height of the net bounding box containing that grid cell. (a) and (b) are from the same circuit, but473

(b) is a better placement because (b) has lower HPWL and congestion. Density is the max density474

value of grid cell gi,j , and the value in each grid cell is stackable coverage area ratio of the grid cell.475

The density of Fig.8 (c) is 2.0 because g7,5 completely covered by two modules.476

Relationship between pin offset and HPWL. The pin offset can affect the HPWL. In the graph-477

based method, the input features for module include size (Mw,Mh), position (Mx,My) and type.478

So, the network can hardly infer the real position of pins and tend to use the center positions of479

modules to predict the positions of pins. In this way, the agent will align the centers of the two480

modules horizontally, and the result of placement is like Fig.9 (b) to get the wirelength 6. However,481

when considering the pins are near the bottom of the modules, it is better to align the bottom of the482

two modules as Fig.9 (c), and thus wirelength can be reduced to 2 if we consider the pin offset.483
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1 , 𝑀𝑦

1, 𝑀𝑤
1 , 𝑀ℎ
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Figure 9: Explanation for module, pin and net. (a) gives an example for pin offset information.
When we remove the pin offset information, the model tends to align the centers of the two modules
horizontally like (b) because it uses the center position of modules to estimate pin location. However,
we have a better design as (c) when considering pins are located on the bottom of the modules.

A.3 Algorithms484

Reward Computation. The dense reward generation algorithm is shown in Algorithm 1. It can485

generate dense rewards without an efficiency decrease. For simplicity, we omit the calculation of the486

y dimension, which is the same as the x dimension.487
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Algorithm 1: Dense HPWL Reward Computation (omit y-dimension)
Data: Placed position of module M t (M t

x,M
t
y), max/min x/y coordinates of nets

MaxMinCoord, pin offsets (∆(t,j)
x ,∆

(t,j)
y ), pin to net connection P

(t,j)
n ;

Result: Incremental HPWL Reward reward;
reward← 0;
foreach ∆

(t,j)
x , P

(t,j)
n of all pins P (t,j) from M t do

x←M t
x +∆

(t,j)
x ; // calculate pin coordinates

if P
(t,j)
n not in MaxMinCoord then
// The net for the first time has a definite location of the pin
MaxMinCoord[P

(t,j)
n ].x.max← x;

MaxMinCoord[P
(t,j)
n ].x.min← x;

else
// Update the bounding box range
if MaxMinCoord[P

(t,j)
n ].x.max < x then

reward← reward+ (x−MaxMinCoord[P
(t,j)
n ].x.max);

MaxMinCoord[P
(t,j)
n ].x.max = x;

else if MaxMinCoord[P
(t,j)
n ].x.min > x then

reward← reward+ (MaxMinCoord[P
(t,j)
n ].x.min− x) ;

MaxMinCoord[P
(t,j)
n ].x.min = x;

end
end

end

Position Mask Generation. The efficient position mask generation algorithm is in Algorithm 2.

Algorithm 2: Position Mask Generation
Data: Width, Height and Position of t-1 placed module M1:t−1

(M1:t−1
w ,M1:t−1

h ,M1:t−1
x ,M1:t−1

y )

Result: Position Mask f t
p for Module M t

f t
p ← ones(N,N); // ones(N,N) is all-ones N ×N matrix
for i← 1 to t− 1 do

tmp← ones(N,N);
// find positions that will cause M t and M i to overlap
tmp[M i

x −M t
w + 1 : M i

x +M i
w − 1,M i

y −M t
h + 1 : M i

y +M i
h − 1]← 0;

// exclude infeasible positions
f t
p ← tmp⊙ f t

p ; // ⊙ is element-wise product

end

488

Wire Mask Generation. The efficient wire mask generation algorithm is shown in Algorithm 3.489

For simplicity, we omit the calculation of the y dimension, which is the same as the x dimension.490

Congestion Satisfaction. The algorithm implemented in the congestion satisfaction block can be491

seen in Algorithm 4.492
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Algorithm 3: Wire Mask Generation (omit y-dimension)
Data: Hash Map of Max/Min X/Y coordinates of nets MaxMinCoord, pin’s offsets

(∆
(t,j)
x ,∆

(t,j)
y ), pin to net connection P

(t,j)
n

Result: Wire Mask f t
w for module M t

f t
w ← zeros(N,N);

// Accumulate the wirelength increase for each net
foreach ∆

(t,j)
x , P

(t,j)
n of all pins P (t,j) from M t do

// If the pin is to the left of the net bounding box
for i← 0 to MaxMinCoord[P

(t,j)
n ].x.min+∆

(t,j)
x − 1 do

f t
w[i, :]← f t

w[i, :] +MaxMinCoord[P
(t,j)
n ].x.min+∆

(t,j)
x − i;

end
// If the pin is to the right of the net bounding box
for i←MaxMinCoord[P

(t,j)
n ].x.max+∆

(t,j)
x + 1 to N − 1 do

f t
w[i, :]← f t

w[i, :] + i− (MaxMinCoord[P
(t,j)
n ].x.max+∆

(t,j)
x );

end
end

Algorithm 4: Placement with Congestion Constraint
Data: Trained place agent agent, expected congestion threshold Cth

Result: A placement plan [a1, a2, ..., aV ] that meet the congestion requirement
for i← 1 to V do

Choose ai from the probability matrix generated by policy network agent;
Cong ← congestion matrix from the state after taking ai;
Compute congestion value c from Cong;
if c > Cth then

Randomly sample N different actions a1:Ni from action space;
Compute N congestion values c1:Ni from congestion metrics;
Get N wirelength values w1:N

i from wire masks;
Sort the N actions according to w1:N

i (as the 1st key) and c1:Ni (as the 2nd key);
flag ← False ;
for j ← 1 to N do

if cji ≤ Cth then
flag ← True;
ai ← aji ;
break;

end
end
// If all sampled actions cannot satisfy congestion threshold, we

choose the one with minimal congestion increase.
if flag is False then ai ← the action aji with minimum cji ;

end
Take action ai as the final action;

end
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A.4 Details of Model Architecture493

The parameters of layers in model architecture are in Table 8. Also, the features used by pixel-level494

mask generation are in Table 9. The comparison of features for the placement order in different495

methods can be seen in Table 10.496

Table 8: Model Architecture
Block Layer Kernel Size Output shape

Local Mask Fusion
Conv 1× 1 (224, 224, 8)
Conv 1× 1 (224, 224, 8)
Conv 1× 1 (224, 224, 1)

Global Mask Encoder ResNet-18 - 1000
FC - 768

Global Mask Decoder

Deconv 3× 3 (14, 14, 8)
Deconv 3× 3 (28, 28, 4)
Deconv 3× 3 (56, 56, 2)
Deconv 3× 3 (112, 112, 1)
Deconv 3× 3 (224, 224, 1)

Merge Conv 1× 1 (224, 224, 1)

Position Embedding - - 64

FC for Value
FC - 512
FC - 64
FC - 1

Table 9: State Features
Module status Index Feature Notation Dimension per module

Placed M1:t−1

Width Mw 1
Height Mh 1

Position Mx,My 2
Pin Offset ∆x,∆y 2× num of pins

Pin to Net Connection Pn num of pins

Unplaced M t,M t+1

Width Mw 1
Height Mh 1

Pin Offset ∆x,∆y 2× num of pins
Pin to Net Connection Pn num of pins

Table 10: Features used for placement order

Method Features for place order

Graph Placement [3] Topological order, Area
DeepPR [22] None
MaskPlace Number of nets, Area, Number of its connected modules have been placed

A.5 Training Configuration497

The detailed configuration and hyperparameter settings of our model is in Table 11.498
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Table 11: Model Configuration
Configuration Value Configuration Value

Optimizer Adam Learning rate 2.5× 10−3

Total epoch 150 Epoch for update 10
Batch size 64 Buffer capacity 10× num of modules

Clip ϵ 0.2 Clip gradient norm 0.5
Reward discount γ 0.95 Num GPUs 1

CPU AMD Ryzen 9 5950X GPU GeForce RTX 3090

Also, we implement DREAMPlace5 [9], Graph Placement6 [3] ,and DeepPR7 [22] by their open499

source codes with their default settings.500

A.6 Details of Benchmark501

The detailed statistics of benchmarks are in Table 12. Hard macros are macros placed by the RL502

method in Graph Placement [3], and the remaining macros, also named soft macros, are placed by503

the classic optimization-based method. However, this distinction does not apply to the process of504

our method, which means we place all macros by RL. The statistical range of nets, pins, and area505

utilization are macros. Ports are terminals connecting to an external circuit, seen as fixed and no-size506

modules. Our method is also applicable to circuits with ports without additional modifications.507

Table 12: Statistics of different chip benchmarks.
Benchmark Macros Hard Macros Standard Cells Nets Pins Ports Area Util(%)

adaptec1 543 63 210,904 3,709 4,768 0 55.62
adaptec2 566 190 254,457 4,346 10,663 0 74.46
adaptec3 723 201 450,927 6,252 11,521 0 61.51
adaptec4 1,329 92 494,716 5,939 13,720 0 48.62
bigblue1 560 32 277,604 657 1,897 0 31.58
bigblue3 1,293 138 1,095,519 5,537 15,225 0 66.81

ariane 932 134 0 12,404 22,802 1,231 78.39
ibm01 246 246 12,506 908 1,928 246 61.94
ibm02 280 272 19,321 602 1,466 259 64.63
ibm03 290 290 22,846 614 1,237 283 57.97
ibm04 608 296 26,899 1,512 3,167 287 54.88
ibm06 178 178 32,320 83 175 166 54.77
ibm07 507 292 45,419 2,471 5,992 287 46.03
ibm08 309 302 51,000 1,725 3,721 286 47.13
ibm09 253 56 53,142 446 898 285 44.52
ibm10 786 56 68,643 2,160 4,720 744 61.40
ibm11 373 56 70,185 682 1,371 406 41.40
ibm12 651 205 70,425 1,589 3,468 637 53.85
ibm13 424 100 83,775 804 1,669 490 39.43
ibm14 614 91 146,991 1,620 3,960 517 22.49
ibm15 393 22 161,177 748 1,521 383 28.89
ibm16 458 37 183,026 1,755 3,981 504 39.46
ibm17 760 107 184,735 2,055 4,366 743 19.11
ibm18 285 285 210,328 727 1,600 272 11.09

5github.com/limbo018/DREAMPlace
6github.com/google-research/circuit_training
7github.com/Thinklab-SJTU/EDA-AI
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A.7 Supplementary Experiment508

Placement w/o real size Considering that DeepPR ignored the module size, we implement509

MaskPlace in the same setting, and the result can be found in Table 13. The result shows that510

our method has significant advantages.511

Table 13: Routing wirelength for macro placement w/o real size
Method adaptec1 adaptec2 adaptec3 adaptec4 bigblue1 bigblue3

DeepPR [22] 5298 22256 32839 63560 8602 94083
MaskPlace 2941 20593 16181 18553 2331 27403

More benchmarks We also conducted experiments in the IBM benchmark suite (ICCAD 2004)512

[31], which has been used to evaluate placement for more than a decade. This benchmark suite513

comprises 18 chip designs with 178~786 macros and 12k~210k standard cells. We remove the514

“ibm05” because it does not contain any macros. We use our MaskPlace to place macros and then use515

DREAMPlace [9] to place standard cells. We compared our method with graph placement [3] and516

simulated annealing used in paper [3]. The results are in Table 14.517

Table 14: Comparisons of HPWL (×105) for macro and standard cell placement in ibm benchmark.
Method ibm01 ibm02 ibm03 ibm04 ibm05 ibm06

Graph Placement [3] 31.71 55.12 80.00 86.86 - 63.48
Simulated Annealing [3] 25.85 54.87 80.68 83.32 - 69.09

MaskPlace+DREAMPlace [9] 24.18 47.45 71.37 78.76 - 55.70
Method ibm07 ibm08 ibm09 ibm10 ibm11 ibm12

Graph Placement [3] 117.71 134.77 148.74 440.78 218.73 438.57
Simulated Annealing [3] 117.71 144.89 141.67 463.04 228.79 435.77

MaskPlace+DREAMPlace [9] 95.27 120.64 122.91 367.55 202.23 397.25
Method ibm13 ibm14 ibm15 ibm16 ibm17 ibm18

Graph Placement [3] 278.93 455.31 520.06 642.08 814.37 450.67
Simulated Annealing [3] 259.89 405.80 510.06 614.54 720.40 442.00

MaskPlace+DREAMPlace [9] 246.49 302.67 457.86 584.67 643.75 398.83

B Related Work518

Classic optimization-based methods. Optimization has been the dominant method in placement519

for decades. They can be divide into three categories: partitioning-based methods [4, 5], simulated520

annealing methods [10, 11] and analytical methods [6–9, 12–21].521

Partitioning-based methods [4, 5] is to cluster the whole circuits into several parts to minimize the522

connections between parts. And then, place modules in one part first and then arrange these parts to523

suitable positions on the chip with the divide-and-conquer idea. However, optimizing the modules524

in one part is isolated, and sometimes it is hard to cut the circuits into relatively independent parts,525

which is highly related to the topology of the circuits.526

Simulated Annealing (SA) methods [10, 11] are also known as hill-climbing methods, which is a527

widely used iterative heuristic algorithm for solving combinatorial optimization problems. Simply,528

it initializes a random status and then searches for status with low cost by moving from the current529

status to a neighbor status. If the metrics of the neighbor status are better than that of the current530

status, it moves to the neighbor status. Otherwise, the move may still be taken with a decreasing531

probability over time. The advantage is that it can be used when metrics do not have the analysis532
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formula or cannot be differentiable. However, it is not efficient enough, and the placement results are533

highly dependent on the random initial state.534

Analytical methods are gradually replacing the above two methods because of the best performance.535

They are can be divide into quadratic methods [12–18], and nonlinear (nonquaratic) methods [6–536

9, 19–21]. Quadratic methods [12–18] transform the placement problem into a sequence of convex537

quadratic problems, and there are well-established solvers for such problems. However, it is a538

very rough approximation. Nonlinear methods [6–9, 19–21] design a single differentiable objective539

function and optimize it. The advantage is that it can handle large-scale modules. However, the540

objective function is still approximated, and they cannot avoid overlaps when combining multiple541

metrics in one objective function. Methods in this category achieved the highest placement quality in542

all traditional methods [9].543

Learning-based methods. With the development of deep learning, some learning-based approaches544

[11, 37–39] have been proposed to assist the traditional methods. Huang et al. [37] uses convolu-545

tional neural networks to estimate the congestion for SA placement. Vashisht et al. [11] uses the546

reinforcement learning models to generate the initial placement of SA. Kirby et al. [38], Agnesina547

et al. [39] help classic placement tools choose the most suitable hyperparameters with reinforcement548

learning methods. However, these methods do not implement end-to-end placement by deep learning,549

so the placement results depend heavily on the classic methods.550

Pure reinforcement learning methods [3, 22, 23, 40] view placement as a process of placing modules551

sequentially. Mirhoseini et al. [3] uses reinforcement learning to place hard macros, and the force-552

directed method [18] to place remaining soft macros. Jiang et al. [23] replaces force-directed method553

with DREAMPlace [9] to place soft macros based on Graph Placement [3]. Cheng and Yan [22]554

proposes a reinforcement learning method by using wirelength as the reward. Chang et al. [40] puts555

all metrics in the RL reward. What they have in common is that they convert the circuit as a graph556

structure and input them to the graph neural networks [41]. However, the pin information has been557

lost, leading to sub-optimal placement. Also, they cannot avoid overlaps because of the reduction in558

search space. These methods still have room for improvement in terms of realistic chip placement.559

For instance, DeepPR [22] ignores the realistic size of the module. However, the size of the modules560

varies widely in most circuits. Although it proposes to use routing wirelength instead of HPWL as561

the reward, it will affect the efficiency and lead to sparse reward, making models difficult to train. In562

contrast, HPWL is a high-quality wirelength estimation, and we do not need to discard this inherent563

dense reward.564
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