
Supplementary to:
Riemannian Score-Based Generative Modelling

A Organization of the supplementary580

In this supplementary we gather the proof of Theorem 1 as well as additional derivations on score-581

based generative models and Riemannian manifolds. In Appendix B, we recall basics on stochastic582

Riemannian geometry following Hsu (2002). In Appendix C, we introduce an extension to the583

Riemannian setting of the likelihood computation techniques in diffusion models. Details about584

parametric vector fields are given in Appendix D. In Appendix E, we recall some basic facts about585

eigenvalues and eigenfunctions of the Laplace–Beltrami operator on the d-dimensional sphere and586

torus. We present an extension of Algorithm 2 using predictor-corrector schemes in Appendix F. In587

Appendix G, we prove the extension of the time-reversal formula to manifold in Theorem 1. We588

prove the convergence of RSGM, i.e. Theorem 4, in Appendix H. The proof of Proposition 3 drawing589

links between the denoising score matching loss and the implicit score matching loss is presented590

Appendix I. We provide a thorough comparison between our approach and the one of Rozen et al.591

(2021) in Appendix J. We show how our method can be adapted to perform density estimation in592

Appendix K. Experimental details are given in Appendix M.593

B Preliminaries on stochastic Riemannian geometry594

In this section, we recall some basic facts on Riemannian geometry and stochastic Riemannian595

geometry. We follow Hsu (2002); Lee (2018, 2006) and refer to Lee (2010, 2013) for a general596

introduction to topological and smooth manifolds. Throughout this sectionM is a d-dimensional597

smooth manifold, TM its tangent bundle and T?M it cotangent bundle. We denote C∞(M) the set598

of real-valued smooth functions onM and X (M) the set of vector fields onM.599

B.1 Tensor field, metric, connection and transport600

Tensor field and Riemannian metric For a vector space V let Tk,`(V ) = V ⊗k ⊗ (V ?)⊗` with601

k, ` ∈ N. For any k, ` ∈ N we define the space of (k, `)-tensors as Tk,`M = tp∈MTk,`(TpM).602

Note that Γ(M,T0,0M) = C∞(M), X (M) = Γ(M,T1,0M) and that the space of 1-form on603

M is given by Γ(M,T0,1M), where Γ(M, V (M)) is a section of a vector bundle V (M) (see604

Lee, 2013, Chapter 10). For any k ∈ N, we denote T|k|M = tkj=0Tj,k−jM. M is said to605

be a Riemannian manifold if there exists g ∈ Γ(M,T0,2M) such that for any x ∈ M, g(x)606

is positive definite. g is called the Riemannian metric of M. Every smooth manifold can be607

equipped with a Riemannian metric (see Lee, 2018, Proposition 2.4). In local coordinates we define608

G = {gi,j}1≤i,j≤d = {g(Xi, Xj)}1≤i,j≤d, where {Xi}di=1 is a basis of the tangent space. In what609

follows we consider that M is equipped with a metric g and for any X,Y ∈ X (M) we denote610

〈X,Y 〉M = g(X,Y ).611

Connection A connection ∇ is a mapping which allows one to differentiate vector fields w.r.t612

other vector fields. ∇ is a linear map ∇ : X (M) × X (M) → X (M). In addition, we assume613

that i) for any f ∈ C∞(M), X,Y ∈ X (M), ∇fX(Y ) = f∇XY , ii) for any f ∈ C∞(M),614

X,Y ∈ X (M),∇X(fY ) = f∇XY +X(f)Y . Given a system of local coordinates, the Christoffel615

symbols {Γki,j}1≤i,j,k≤d are given for any i, j ∈ {1, . . . , d} by ∇XiXj =
∑d
k=1 Γki,jXk. We616

also define the Levi–Civita connection ∇ by considering the additional two conditions: i) ∇ is617

torsion-free, i.e. for any X,Y ∈ X (M) we have ∇XY −∇YX = [X,Y ], where [X,Y ] is the Lie618

bracket between X and Y , ii) ∇ is compatible with the metric g, i.e. for any X,Y, Z ∈ X (M),619

X(〈Y,Z〉M) = 〈∇XY,Z〉M + 〈Y,∇XZ〉M. We recall that the Levi–Civita connection is uniquely620

defined since for any X,Y, Z ∈ X (M) we have621

2〈∇XY, Z〉M = X(〈Y,Z〉M) + Y (〈Z,X〉M)− Z(〈X,Y 〉M)

+ 〈[X,Y ], Z〉M − 〈[Z,X], Y 〉M − 〈[Y,Z], X〉M.
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In this case, the Christoffel symbols are given for any i, j, k ∈ {1, . . . , d} by622

Γki,j = 1
2

∑d
m=1 g

km(∂jgm,i + ∂igm,j − ∂mgi,j),

where {gi,j}1≤i,j≤d = G−1. Note that ifM is Euclidean then for any i, j, k ∈ {1, . . . , d}, Γki,j = 0.623

We also extend the connection so that for any X ∈ X (M) and f ∈ C∞(M) we have∇Xf = X(f).624

In particular, we have that ∇Xf ∈ C∞(M). In addition, we extend the connection such that for625

any α ∈ Γ(M,T0,1M), X,Y ∈ X (M) we have∇Xα(Y ) = α(∇XY )−X(α(Y )). In particular,626

we have that ∇Xα ∈ Γ(M,T1,0M). Note that for any X ∈ X (M) and α, β ∈ T|1|M we627

have ∇X(α ⊗ β) = ∇Xα ⊗ β + α ⊗ ∇Xβ. Similarly, we can define recursively ∇Xα for any628

α ∈ Γ(M,Tk,`M) with k, ` ∈ N. Such an extension is called a covariant derivative.629

Parallel transport, geodesics and exponential mapping Given a connection, we can define the630

notion of parallel transport, which transports vector fields along a curve. Let γ : [0, 1] → M be631

a smooth curve. We define the covariant derivative along the curve γ by Dγ̇ : X (γ) → X (γ)632

similarly to the connection, where X (γ) = Γ(γ([0, 1]),TM). In particular if γ̇ and X ∈ X (γ)633

can be extended to X (M) then we define Dγ̇(X) = ∇γ̇X ∈ X (M). In what follows, we denote634

D = ∇ for simplicity. We say that X ∈ X (γ) is parallel to γ if for any t ∈ [0, 1], ∇γ̇X(t) = 0. In635

local coordinates, let X ∈ X (γ) be given for any t ∈ [0, 1] by X =
∑d
i=1 ai(t)Ei(t) (assuming that636

γ([0, 1]) is entirely contained in a local chart), then we have that for any t ∈ [0, 1] and k ∈ {1, . . . , d}637

638

ȧk(t) +
∑d
i,j=1 Γki,j(x(t))ẋi(t)aj(t) = 0. (S1)

A curve γ onM is said to be a geodesics if γ̇ is parallel to γ. Using Equation (S1) we get that639

ẍk(t) +
∑d
i,j=1 Γki,j(x(t))ẋi(t)ẋj(t) = 0.

For more details on geodesics and parallel transport, we refer to Lee (2018, Chapter 4). In addition,640

we have that parallel transport provides a linear isomorphism between tangent spaces. Indeed, let641

v ∈ TxM and γ : [0, 1] →M with γ(0) = x a smooth curve. Then, there exists a unique vector642

field Xv ∈ X (γ) such that Xv(x) = v and Xv is parallel to γ. For any t ∈ [0, 1], we denote643

Γt0 : TxM→ Tγ(t)M the linear isomorphism such that Γt0(v) = Xv(γ(t)).644

For any x ∈ M and v ∈ TxM we denote γx,v : [0, εx,v] the geodesics (defined on the maximal645

interval [0, εx,v]) onM such that γ(0) = x and γ̇(0) = v. We denote Ux = {v ∈ TxM : εx,v ≥ 1}.646

Note that 0 ∈ Ux. For any x ∈ M, we define the exponential mapping expx : Ux → M such647

that for any v ∈ Ux, expx(v) = γx,v(1). If for any x ∈ M, Ux = TxM, the manifold is called648

geodesically complete. As any connected compact manifold is geodesically complete, there exists a649

geodesic between any two points x, y ∈ M (see Lee, 2018, Lemma 6.18). For any x, y ∈ M, we650

denote Geox,y the sets of geodesics γ such that γ(0) = x and γ(y) = 1. For any x, y ∈M we denote651

Γyx(γ) : TxM→ TyM the linear isomorphism such that for any v ∈ TxM, Γyx(v) = Xv(γ(1)),652

where γ ∈ Geox,y. Note that for any x ∈ M there exists Vx ⊂ M such that x ∈ Vx and for any653

y ∈ Vx we have that |Geox,y| = 1. In this case, we denote Γyx = Γyx(γ) with γ ∈ Geox,y .654

Orthogonal projection We will make repeated use of orthonormal projections on manifolds.655

Recall that since M is a closed Riemannian manifold we can use the Nash embedding theorem656

(Gunther, 1991). In the rest of this paragraph, we assume thatM is a Riemannian submanifold of657

Rp for some p ∈ N such that its metric is induced by the Euclidean metric. In order to define the658

projection we introduce659

unpp(M) = {x ∈ Rd : there exists a unique ξx such that ‖x− ξx‖ = d(x,M)}.
Let E(M) = int(unpp(M)). By Leobacher and Steinicke (2021, Theorem 1), we haveM⊂ E(M).660

We define p̃ : E(M)→M such that for any x ∈ E(M), p̃(x) = ξx. Using Leobacher and Steinicke661

(2021, Theorem 2), we have p̃ ∈ C∞(Rp,M) and for any x ∈M, P̃ (x) = dp̃(x) is the orthogonal662

projection on TxM. Since Rp is normal andM and E(M)c are closed, there exists F open such663

that M ⊂ F ⊂ E(M). Let p ∈ C∞(Rp,Rp) such that for any x ∈ F, p(x) = p̃(x) (given by664

Whitney extension theorem for instance). Finally, we define P : Rp → Rp such that for any665

x ∈ Rp, P (x) = dp(x). Note that for any x ∈M, P (x) is the orthogonal projection TxM and that666

P ∈ C∞(Rp,Rp).667
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B.2 Stochastic Differential Equations on manifolds668

Stratanovitch integral For reasons that will become clear in the next paragraph, it is easier to669

define Stochastic Differential Equations (SDEs) on manifolds w.r.t the Stratanovitch integral (Kloeden670

and Platen, 2011, Part II, Chapter 3). We consider a filtered probability space (Ω, (Ft)t≥0,P). Let671

(Xt)t≥0 and (Yt)t≥0 be two real continuous semimartingales. We define the quadratic covariation672

([X,Y]t)t≥0 such that for any t ≥ 0673

[X,Y]t = XtYt −X0Y0 −
∫ t

0
XsdYs −

∫ t
0

YsdXs.

We refer to Revuz and Yor (1999, Chapter IV) for more details on semimartingales and quadratic674

variations. We denote [X] = [X,X]. In particular, we have that ([X,Y]t)t≥0 is an adapted675

continuous process with finite-variation and therefore [[X,Y]] = 0. Let (Xt)t≥0 and (Yt)t≥0 be676

two real continuous semimartingales, then we define the Stratanovitch integral as follows for any677

t ≥ 0678 ∫ t
0

Xs ◦ dYs =
∫ t

0
XsdYs + 1

2 [X,Y]t.

In particular, denoting (Z1
t )t≥0 and (Z2

t )t≥0 the processes such that for any t ≥ 0, Z1
t =

∫ t
0

Xs◦dYs679

and Z2
t =

∫ t
0

XsdYs, we have that [Z1] = [Z2]. We refer to Kurtz et al. (1995) for more details680

on Stratanovitch integrals. Note that if for any t ≥ 0, Xt =
∫ t

0
f(Xs) ◦ dYs with C1(R,R), then681

[X,Y]t =
∫ t

0
f(Xs)f

′(Xs)dYs. Assuming that f ∈ C3(R,R) we have that (Revuz and Yor, 1999,682

Chapter IV, Exercise 3.15)683

f(Xt) = f(X0) +
∫ t

0
f ′(Xs) ◦ dXs.

The proof relies on the fact that for any t ≥ 0, d[X, f ′(X)]t = f ′′(Xt)d[X]t. This result should684

be compared with Itô’s lemma. In particular, Stratanovitch calculus satisfies the ordinary chain685

rule making it a useful tool in differential geometry which makes a heavy use of diffeomorphism.686

Finally, we have the following correspondence between Stratanovitch and Itô SDEs. Assume that687

(Xt)t∈[0,T ] is a strong solution to dXt = b(t,Xt)dt + σ(t,Xt) ◦ dBt, with b ∈ C∞(Rd,Rd) and688

σ ∈ C∞(Rd,Rd×d). Then, we have that689

dXt = {b(t,Xt) + b̄(Xt)}dt+ σ(t,Xt)dBt, b̄ = div(σσ>)− σdiv(σ>). (S2)

where for any A ∈ C∞(Rd,Rd×d) we have that div(A) ∈ C∞(Rd,Rd) and for any i ∈ {1, . . . , d}690

and x ∈ Rd, div(A)i(x) =
∑d
j=1 ∂jAi,j(x). In particular, note that if for x0 ∈ Rd, σ(x0) is an691

orthogonal projection, then σ(x0)b̄(x0) = 0.692

SDEs on manifolds We define semimartingales and SDEs on manifold through the lens of their693

actions on functions. A continuous M-valued stochastic process (Xt)t≥0 is called a M-valued694

semimartingale if for any f ∈ C∞(M) we have that (f(Xt))t≥0 is a real valued semimartingale. Let695

` ∈ N, V 1:` = {Vi}`i=1 ∈ X (M)` and Z1:` = {Zi}`i=1 a collection of ` real-valued semimartingales.696

A M-valued semimartingale (Xt)t≥0 is said to be the solution of SDE(V 1:`, Z1:`,X0) up to a697

stopping τ with X0 aM-valued random variable if for all f ∈ C∞(M) and t ∈ [0, τ ] we have698

f(Xt) = f(X0) +
∑`
i=1

∫ t
0
Vi(f)(Xs) ◦ dZis.

Since the previous SDE is defined w.r.t the Stratanovitch integral we have that if (Xt)t≥0 is a699

solution of SDE(V 1:`, Z1:`,X0) and Φ : M → N is a diffeomorphism then (Φ(Xt))t≥0 is a700

solution of SDE(Φ?V
1:`, Z1:`,Φ(X0)), where Φ? is the pushforward operation (see Hsu, 2002,701

Proposition 1.2.4). Because the vector fields {Vi}`i=1 are smooth we have that for any ` ∈ N,702

V 1:` = {Vi}`i=1 ∈ X (M)` and Z1:` = {Zi}`i=1 a collection of ` real-valued semimartingales, there703

exists a unique solution to SDE(V 1:`, Z1:`,X0) (see Hsu, 2002, Theorem 1.2.9).704

B.3 Brownian motion on manifolds705

In this section, we introduce the notion of Brownian motion on manifolds. We derive some of its706

basic convergence properties and provide alternative definitions (stochastic development, isometric707

embedding, random walk limit). These alternative definitions are the basis for our alternative708

3



methodologies to sample from the time-reversal. To simplify our discussion, we assume thatM709

is a connected compact Riemannian manifold equipped with the Levi–Civita connection ∇. We710

denote pmref the Haussdorff measure of the manifold (which coincides with the measure associated711

with the Riemannian volume form (see Federer, 2014, Theorem 2.10.10) and pref = pmref/pref(M) the712

associated probability measure.713

Gradient, divergence and Laplace operators Let f ∈ C∞(M). We define ∇f ∈ X (M) such714

that for any X ∈ X (M) we have 〈X,∇f〉M = X(f). Let {Xi}di=1 ∈ X (M)d such that for any715

x ∈ M, {Xi(x)}di=1 is an orthonormal basis of TxM. Then, we define div : X (M)→ C∞(M)716

(linear) such that for any X ∈ X (M), div(X) =
∑d
i=1〈∇XiX,Xi〉M. The following Stokes717

formula (also called divergence theorem, see Lee (2018, p.51)) holds for any f ∈ C∞(M) and718

X ∈ X (M),
∫
M

div(X)(x)f(x)dpref(x) = −
∫
M
X(f)(x)dpref(x). Let X =

∑d
i=1 aiXi in719

local coordinates. Using the Stokes formula and the definition of the gradient we get that in local720

coordinates721

∇f =
∑d
i,j=1 g

i,j∂ifXj , div(X) = det(G)−1/2
∑d
i=1 ∂i(det(G)1/2ai).

The Laplace–Beltrami operator is given by ∆M : C∞(M) → C∞(M) and for any722

f ∈ C∞(M) by ∆M(f) = div(grad(f)). In local coordinates we obtain ∆M(f) =723

det(G)−1/2
∑d
i=1 ∂i(det(G)1/2

∑d
j=1 g

i,j∂jf). Using the Nash isometric embedding theorem724

(Gunther, 1991) we will see that ∆M can always be written as a sum of squared operators. However,725

this result requires an extrinsic point of view as it relies on the existence of projection operators. In726

contrast, if we consider the orthonormal bundle OM, see (Hsu, 2002, Chapter 2), we can define727

the Laplace–Bochner operator ∆OM : C∞(OM)→ C∞(OM) as ∆OM =
∑d
i=1H

2
i , where we728

recall that for any i ∈ {1, . . . , d}, Hi is the horizontal lift of ei. In this case, ∆OM is a sum of729

squared operators and we have that for any f ∈ C∞(M), ∆OM(f ◦ π) = ∆M(f) (see Hsu, 2002,730

Proposition 3.1.2). Being able to express the various Laplace operators as a sum of squared operators731

is key to express the associated diffusion process as the solution of an SDE.732

Alternatives definitions of Brownian motion We are now ready to define a Brownian motion733

on the manifoldM. Using the Laplace–Beltrami operator, we can introduce the Brownian motion734

through the lens of diffusion processes.735

Definition S5 (Brownian motion). Let (BMt )t≥0 be aM-valued semimartingale. (BMt )t≥0 is a736

Brownian motion onM if for any f ∈ C∞(M), (Mf
t )t≥0 is a local martingale where for any t ≥ 0737

Mf
t = f(BMt )− f(BM0 )− 1

2

∫ t
0

∆Mf(BMs )ds.

Note that this definition is in accordance with the definition of the Brownian motion as a diffusion738

process in the Euclidean space Rd, since in this case ∆M = ∆. A key property of frame bundles739

and orthonormal bundles is that any semimartingale onM can be associated to a process on FM (or740

OM) and a process on Rd. The proof of the following result can be found in Hsu (2002, Propositions741

3.2.1 and 3.2.2).742

Proposition S6 (Intrinsic view of Brownian motion). Let (BMt )t≥0 be aM-valued semimartingales.743

Then (BMt )t≥0 is a Brownian motion onM if and only on the following conditions hold:744

a) The horizontal lift (Ut)t≥0 is a ∆OM/2 diffusion process, i.e. for any f ∈ C∞(OM), we745

have that (Mf
t )t≥0 is a local martingale where for any t ≥ 0746

Mf
t = f(Ut)− f(U0)− 1

2

∫ t
0

∆OMf(Us)ds.

b) The stochastic antidevelopment of (BMt )t≥0 is a Rd-valued Brownian motion (Bt)t≥0.747

In particular the previous proposition provides us with an intrisic way to sample the Brownian motion748

on M with initial condition BM0 . First sample (Ut)t≥0 solution of SDE(H1:d,B1:d,U0) with749

H1:d = {Hi}di=1 and π(U0) = BM0 and B1:d the Euclidean d-dimensional Brownian motion. Then,750

we recover theM-valued Brownian motion (BMt )t≥0 upon letting (BMt )t≥0 = (π(Ut))t≥0.751

We now consider an extrinsic approach to the sampling of Brownian motions on M. Using the752

Nash embedding theorem (Gunther, 1991), there exists p ∈ N such that without loss of generality753
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we can assume that M ⊂ Rp. For any x ∈ M, we denote P(x) : Rp → TxM the projection754

operator. In addition for any x ∈ M, we denote {Pi(x)}pi=1 = {P(x)ei}pi=1, where {ei}pi=1 is the755

canonical basis of Rp. For any i ∈ {1, . . . , p}, we smoothly extend Pi to Rp. In this case, we have756

the following proposition (Hsu, 2002, Theorem 3.1.4):757

Proposition S7 (Extrinsic view of Brownian motion). For any f ∈ C∞(M) we have that ∆M(f) =758 ∑p
i=1 Pi(Pi(f)). Hence, we have that (BMt )t≥0 solution of SDE({Pi}pi=1,B

1:p,BM0 ) with BM0 a759

M-valued random variable and B1:p a Rp-valued Brownian motion.760

The second part of this proposition, stems from the fact that any solution of SDE({Vi}`i=1,B
1:`,X0),761

where X0 is aM-valued random variable and B1:` a R`-valued Brownian motion is a diffusion762

process with generator A such that for any f ∈ C∞(M), A(f) =
∑`
i=1 Vi(Vi(f)). The extrinsic763

approach is particularly convenient since the SDE appearing in Proposition S7 can be seen as an SDE764

on the Euclidean space Rp.765

We finish this paragraph, by investigating the behaviour of the Brownian motion in local coordinates.766

For simplicity, we assume here that we have access to a system of global coordinates. In the case where767

the coordinates are strictly local then we refer to Ikeda and Watanabe (1989, Chapter 5, Theorem 1)768

for a construction of a global solution by patching local solutions. We denote {Xk, Xi,j}1≤i,j,k≤d769

such that for any u ∈ FM, {Xk(u), Xi,j(u)}1≤i,j,k≤d is a basis of TuFM, Using properties of the770

horizontal lift, see (Hsu, 2002, Chapter 2), we get that (Ut)t≥0 = ({Xk
t ,E

i,j
t }1≤i,j,k≤d) obtained in771

Proposition S6 is given in the global coordinates for any i, j, k ∈ {1, . . . , d} by772

dXk
t =

∑d
j=1 Ek,j

t ◦ dBk
t , dEi,j

t = −∑d
n=1{

∑d
`,m=1 E`,n

t Em,j
t Γi`,m(Xt)} ◦ dBn

t .

By definition of the Stratanovitch integral we have that for any k ∈ {1, . . . , d}773

dXk
t =

∑d
j=1{E

k,j
t dBk

t + 1
2d[Ek,j

t ,Bj
t ]t}.

Let (Mt)t≥0 = ({Mk
t }dk=1)t≥0 such that for any t ≥ 0 and k ∈ {1, . . . , d} Mk

t =774 ∑d
j=1

∫ t
0

Ek,j
t dBk

t . We obtain that dMt = G(Xt)
−1/2dBt for some d-dimensional Brownian775

motion (Bt)t≥0, using Lévy’s characterization of Brownian motion. In addition, we have that for any776

k, j ∈ {1, . . . , d}777

[Ek,j ,Bj ]t = −∑d
`,m=1

∫ t
0

E`,j
t Em,j

t Γk`,m(Xt)dt

Hence, using this result and the fact that
∑d
j=1 E`,j

t Em,j
t = g`,m(Xt), we get that for any k ∈778

{1, . . . , d}779

dXk
t = − 1

2

∑d
`,m=1 g

`,m(Xt)Γ
k
`,m(Xt)dt+ (G(Xt)

−1/2dBt)
k.

Note that this result could also have been obtained using the expression of the Laplace–Beltrami in780

local coordinates.781

Brownian motion and random walks In the previous paragraph we consider three SDEs to obtain782

a Brownian motion onM (stochastic development, isometric embedding and local coordinates).783

In this section, we summarize results from Jørgensen (1975) establishing the limiting behaviour of784

Geodesic Random Walks (GRWs) when the stepsize of the random walk goes to 0. This will be of785

particular interest when considering the time-reversal process. We start by defining the geodesic786

random walk onM, following Jørgensen (1975, Section 2).787

Let {νx}x∈M such that for any x ∈ M, νx : B(TxM) → [0, 1] with νx(TxM) = 1, i.e. for any788

x ∈M, νx is a probability measure on TxM. Assume that for any x ∈M,
∫
M ‖v‖3dνx(v) < +∞.789

In addition assume that there exists µ(1) ∈ X (M) and µ(2) ∈ X 2(M), where X 2(M) is the section790

Γ(M,tx∈ML(TxM)), such that for any x ∈M,
∫
M vdνx(v) = µ(1)(x) and

∫
M v ⊗ vdνx(v) =791

µ(2)(x). In addition, we assume that for any x ∈M, Σ(x) = µ(2)(x)− µ(1)(x)⊗ µ(1)(x) is strictly792

positive definite and that there exists L ≥ such that for any x, y ∈ M, ‖νx − νy‖TV ≤ LdM(x, y).793

Where we have that for any ν1 ∈ P(TxM) and ν2 ∈ P(TyM),794

‖νx − νy‖TV = sup{ν1[f ]− Γyx(γ)#ν2[f ] : γ ∈ Geox,y, f ∈ C(TxM)}.
Note that if dM(x, y) ≤ ε then for some ε > 0 we have that |Geox,y| = 1.795
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Definition S8 (Geodesic random walk). Let X0 be aM-valued random variable. For any γ > 0, we796

define (Xγ
t )t≥0 such that Xγ

0 = X0 and for any n ∈ N and t ∈ [0, γ], Xnγ+t = expXnγ
[tγ{µn +797

(1/
√
γ)(Vn − µn)}], where (Vn)n∈N is a sequence of random variables in such that for any n ∈ N,798

Vn has distribution νXnγ
conditionally to Xnγ .799

For any γ > 0, the process (Xγ
n)n∈N = (Xγ

nγ)n∈N is called a geodesic random walk. In particular,800

for any γ > 0 we denote (Rγ
n)n∈N the sequence of Markov kernels such that for any n ∈ N, x ∈M801

and A ∈ B(M) we have that δxR(A) = P(Xγ
n ∈ A), with Xγ

0 = x. The following theorem802

establishes that the limiting dynamics of a geodesic random walk is associated with a diffusion803

process onM whose coefficients only depends on the properties of ν (see Jørgensen, 1975, Theorem804

2.1).805

Theorem S9 (Convergence of geodesic random walks). For any t ≥ 0, f ∈ C(M) and x ∈ M806

we have that limγ→0 ‖Rdt/γeγ [f ]− Pt[f ]‖∞ = 0, where (Pt)t≥0 is the semi-group associated with807

the infinitesimal generator A : C∞(M) → C∞(M) given for any f ∈ C∞(M) by A(f) =808

〈µ(1),∇f〉M + 1
2 〈Σ,∇2f〉M.809

In particular if µ(1) = 0 and µ(2) = Id then the random walk converges towards a Brownian motion810

onM in the sense of the convergence of semi-groups. For any x ∈ M in local coordinates we811

have that Φ#νx has zero mean and covariance matrix G(x), where Φ is a local chart around x and812

G(x) = (gi,j(x))1≤i,j≤d the coordinates of the metric in that chart.813

Convergence of Brownian motion We finish this section with a few considerations regarding the814

convergence of the Brownian motion onM. Since we have assumed thatM is compact we have that815

there exist (Φk)k∈N an orthonormal basis of −∆M in L2(pref), (λk)k∈N such that for any i, j ∈ N,816

i ≤ j, λi ≤ λj and λ0 = 0, Φ0 = 1 and for any k ∈ N, ∆MΦk = −λkΦk. For any t ≥ 0 and817

x, y ∈M, pt|0(y|x) =
∑
k∈N e−λktΦk(x)Φk(y) where for any f ∈ C∞ we have818

E[f(BM,x
t )] =

∫
M pt|0(x, y)f(y)dpref(y),

where (BM,x
t )t≥0 is the Brownian motion onM with BM,x

0 = x and pref is the probability measure819

associated with the Haussdorff measure onM. We also have the following result (see Urakawa, 2006,820

Proposition 2.6).821

Proposition S10 (Convergence of Brownian motion). For any t > 0, Pt admits a density pt|0 w.r.t822

pref and prefPt = pref, i.e. pref is an invariant measure for (Pt)t≥0. In addition, if there existsC,α ≥ 0823

such that for any t ∈ (0, 1], pt|0(x|x) ≤ Ct−α/2 then for any p0 ∈ P(M) and for any t ≥ 1/2 we824

have825

‖p0Pt − pref‖TV ≤ C1/2eλ1/2e−λ1t,

where λ1 is the first non-negative eigenvalue of −∆M in L2(pref) and we recall that (Pt)t≥0 is the826

semi-group of the Brownian motion.827

A review on lower bounds on the first positive eigenvalue of the Laplace–Beltrami operator can be828

found in (He, 2013). These lower bounds usually depend on the Ricci curvature of the manifold or829

its diameter. We conclude this section by noting that in the non-compact case (Li, 1986) establishes830

similar estimates in the case of a manifold with non-negative Ricci curvature and maximal volume831

growth.832

C Likelihood computation833

C.1 ODE likelihood computation834

Similarly to Song et al. (2021b), once the score is learned we can use it in conjunction with an835

Ordinary Differential Equation (ODE) solver to compute the likelihood of the model. Let (Φt)t∈[0,T ]836

be a family of vector fields. We define (Xt)t∈[0,T ] such that X0 has distribution p0 (the data837

distribution) and satisfying dXt = Φt(Xt)dt. Assuming that p0 admits a density w.r.t. pref then838

for any t ∈ [0, T ], the distribution of Xt admits a density w.r.t. pref and we denote pt this density.839

We recall that d log pt(Xt) = −div(Φt)(Xt)dt, see Mathieu and Nickel (2020, Proposition 2) for840

instance.841
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Recall that we consider a Brownian motion on the manifold as a forward process (BMt )t∈[0,T ] with842

{pt}t∈[0,T ] the associated family of densities. Thus we have that for any t ∈ [0, T ] and x ∈M843

∂tpt(x) = 1
2∆Mpt(x) = div

(
1
2pt∇ log pt

)
(x).

Hence, we can define (Xt)t∈[0,T ] satisfying dXt = − 1
2∇ log pt(Xt)dt such that X0 has distribution844

p0. Defining (X̂t)t∈[0,T ] = (XT−t)t∈[0,T ], it follows that X̂0 has distribution L(XT ) and satisfies845

dX̂t = 1
2∇ log pT−t(X̂t)dt. (S3)

Finally, we introduce (Yt)t∈[0,T ] satisfying (S3) but such that Y0 ∼ pref. Note that if T ≥ 0 is large846

then the two processes (Yt)t∈[0,T ] and (X̂t)t∈[0,T ] are close since L(XT ) is close to pref.847

Therefore, using the score network and a manifold ODE solver (as in Mathieu and Nickel, 2020), we848

are able to approximately solve the following ODE849

d log qt(X̂
θ
t ) = − 1

2div(sθ(T − t, ·))(X̂θ
t )dt,

with qt the density of Yθ
t w.r.t. pref and log q0(Y0) = 0 with dYθ

t = 1
2div(sθ(T − t,Yθ

t ))dt850

and Yθ
0 ∼ pref. The likelihood approximation of the model is then given by E[log qT (X̂θ

T )] =851 ∫
M log qT (x)dpdata(x), where (X̂θ

t )t∈[0,T ] = (Xθ
T−t)t∈[0,T ] with dXθ

t = − 1
2div(sθ(t,X

θ
t ))dt and852

X0 ∼ pdata. In Appendix C.2, we highlight that this is not the likelihood of the SDE model.853

C.2 Difference between ODE and SDE likelihood computations854

In this section, we show that the likelihood computation from Song et al. (2021b) does not coincide855

with the likelihood computation obtained with the SDE model. We present our findings in the856

Riemannian setting but our results can be adapted to the Euclidean setting with arbitrary forward857

dynamics. Recall that we consider a Brownian motion on the manifold as a forward process858

(BMt )t∈[0,T ] with (pt)t∈[0,T ] the associated family of densities. We have that for any t ∈ [0, T ] and859

x ∈M860

∂tpt(x) = 1
2∆Mpt|0(x) = div( 1

2pt∇ log pt)(x). (S4)

ODE model. In the case of the ODE model, we define (Xt)t∈[0,T ] such that X0 ∼ p0 and satisfies861

dXt = − 1
2∇ log pt(Xt)dt. The family of densities (qt)t∈[0,T ] associated with (Xt)t∈[0,T ] also862

satisfies (S4). Now consider (X̂t)t∈[0,T ] = (XT−t)t∈[0,T ], this satisfies X̂0 ∼ pT with863

dX̂t = 1
2∇ log pT−t(X̂t)dt. (S5)

Finally, we consider (YODE
t )t∈[0,T ] which also satisfies Equation (S5) and such that YODE

0 ∼ pref.864

Denoting (qODE
t )t∈[0,T ] the densities of (YODE

t )t∈[0,T ] w.r.t. pref we have for any t ∈ [0, T ] and865

x ∈M866

∂tq
ODE
t (x) = −div( 1

2q
ODE
t ∇ log pT−t)(x). (S6)

SDE model. When sampling we consider a process (YSDE
t )t∈[0,T ] such that YSDE

0 has distribution867

pref and whose family of densities (qSDE
t )t∈[0,T ] satisfies for any t ∈ [0, T ] and x ∈M868

∂tq
SDE
t (x) = −div(∇ log pT−tq

SDE
t (x))+ 1

2∆Mq
SDE
t (x) = −div(qSDE

t {∇ log pT−t− 1
2∇ log qSDE

t })(x).
(S7)

Hence, Equation (S6) and Equation (S7) do not agree, except if qSDE
t = qODE

t = pT−t which is the869

case if and only if YSDE
0 and YODE

0 have the same distribution as XT . Note that it is possible to870

evaluate the likelihood of the SDE model using that871

∂t log qSDE
t (YSDE

t ) =
{
∇ log pT−t(Y

SDE
t )− 1

2∇ log qSDE
t (YSDE

t )
}

dt.

We can use the score approximation sθ(t, x) to approximate ∇ log pt(x) for any t ∈ [0, T ] and872

x ∈ M. In order to approximate ∇ log qSDE
t , one can consider another neural network tθ(t, x)873

approximating ∇ log qSDE
t (x) for any t ∈ [0, T ] and x ∈ M. This approximation can be obtained874

using the implicit score loss presented in Section 3.3.875
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D Parametric family of vector fields876

We approximate (∇ log pt)t∈[0,T ] by a family of functions {sθ}θ∈Θ where Θ is a set of parameters877

and for any θ ∈ Θ, sθ : [0, T ] → X (M). In this work, we consider several parameterisations of878

vector fields:879

• Projected vector field. We define sθ(t, x) = projTxM(s̃θ(t, x)) = P (x)s̃θ(t, x) for any t ∈ [0, T ]880

and x ∈ M, with s̃θ : Rp × [0, T ] → Rp an ambient vector field and P (x) the orthogonal881

projection over TxM at x ∈M . According to Rozen et al. (2021, Lemma 2), then div(sθ)(x, t) =882

divE(sθ)(x, t) for any x ∈M, where divE denotes the standard Euclidean divergence.883

• Divergence-free vector fields: For any Lie group G, any basis of the Lie algebra g = TeG yields884

a global frame. Indeed, let v ∈ g and define the flow Φ : R ×M → M given for any t ∈ R885

and x ∈ M by Φvt (x) = x expe(tv). Then defining {Ei}di=1 = {∂tΦvi0 }di=1, where {vi}di=1 is886

a basis of g, we get that {Ei}di=1 is a left-invariant global frame. As a result, we have that for887

any i ∈ {1, . . . , d}, div(Ei) = 0 (for the classical left invariant metric). This result simplifies the888

computation of div(sθ) where sθ(t, x) =
∑d
i=1 s

i
θ(t, x)Ei(x) for any t ∈ [0, T ] and x ∈ M since889

we have that div(sθ)(t, x) =
∑d
i=1Ei(s

i
θ)(t, x) +

∑d
i=1 s

i
θ(t, x)div(Ei)(x) =

∑d
i=1 ds

i
θ(Ei)(t, x)890

(see Falorsi and Forré, 2020). Note that this approach can be extended to any homogeneous space891

(G,H).892

• Coordinates vector fields. We define sθ(t, x) =
∑d
i=1 siθ(t, x)Ei(x) for any t ∈ [0, T ] and x ∈893

M, with {Ei}di=1 = {∂iϕ(ϕ−1(x))}di=1 the vector fields induced by a choice of local coordinates,894

where ϕ is a local parameterization ϕ : U→M and z ∈ U ⊂ Rd. Then the divergence can be com-895

puted in these local coordinates div(sθ)(t, ϕ(z)) = |detG|−1/2
∑d
i=1 ∂i{|detG|1/2siθ(t, ϕ(·))}(z).896

In the case of the sphere, one recovers the standard divergence in spherical coordinates using this897

formula. Note that {Ei}di=1 does not span the tangent bundle except if the manifold is parallelizable.898

The sphere is a well-known example of non-parallelizable manifold, as per the hairy ball theorem.899

E Eigensystems of the Laplace–Beltrami operator and heat kernels900

In this section, we recall the eigenfunctions and eigenvalues of the Laplace–Beltrami operator in901

two specific cases: the d-dimensional torus and the d-dimensional sphere. We also highlight that902

the heat kernel on compact manifold can be written as an infinite series using the Sturm–Liouville903

decomposition.904

The case of the torus Let {bi}di=1 be a basis of Rd. We consider the associated lattice on Rd, i.e.905

Γ = {∑d
i=1 αibi : {αi}di=1 ∈ Zd}. Finally, the associated d-dimensional torus is defined as TΓ =906

Rd/Γ. Denote B = (b1, . . . , bd) ∈ Rd×d. Let {b̄i}di=1 ∈ (Rd)d such that (B−1)> = (b̄1, . . . , b̄d).907

We define Γ? = {∑d
i=1 αib̄i : {αi}di=1 ∈ Zd}, the dual lattice. Note that for any x ∈ Γ and y ∈ Γ?908

we have that 〈x, y〉 ∈ Z and that if {bi}di=1 is an orthonormal basis then Γ = Γ?. The torus Rd/Γ is909

a (flat) compact Riemannian manifold. The set of eigenvalues of the Laplace–Beltrami operator is910

given by {−4π2‖y‖2 : y ∈ Γ?}. The eigenfunctions of the Laplace–Beltrami operator are given by911

{x 7→ sin(2π〈x, y〉) : y ∈ Γ?} and {x 7→ cos(2π〈x, y〉) : y ∈ Γ?}.912

The case of the sphere Next, we investigate the case of the d-dimensional sphere (see Saloff-Coste,913

1994). The set of eigenvalues of the Laplace–Beltrami operator is given by {−k(k+d−1) : k ∈ N}.914

Note that λk = k(k + d − 1) has multiplicity dk = (k + d − 2)!/{(d − 1)!k}(2k + d − 1).915

The eigenfunctions of the Laplace–Beltrami operator are known as the spherical harmonics and916

can be defined in terms of Legendre polynomials. When investigating the heat kernel on the d-917

dimensional sphere, we are interested in the product (x, y) 7→∑
φ∈Φn

φ(x)φ(y), where Φn is the set918

of eigenfunctions associated with the eigenvalue λn for n ∈ N. This function can be described using919

the Gegenbauer polynomials (see Atkinson and Han, 2012, Theorem 2.9). More precisely, we have920

that for any n ∈ N and x, y ∈ Sd921

Gn(x, y) =
∑
φ∈Φn

φ(x)φ(y)

= n!Γ((d− 1)/2)
∑bn/2c
k=0 (−1)k(1− 〈x, y〉2)〈x, y〉n−2k/(4kk!(n− 2k)!Γ(k + (d− 1)/2)),
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Figure S1: Slice of heat kernel pt|0(xt|x0) on S2 for different approximations.

where here Γ : R+ → R is given for any v > 0 by Γ(v) =
∫ +∞

0
tv−1e−tdt. In the special case922

where d = 1, then the heat kernel coincide with the wrapped Gaussian density and can be easily923

evaluated.924

Heat kernel on compact Riemannian manifolds. We recall that in the case of compact manifolds925

the heat kernel is given by the Sturm–Liouville decomposition Chavel (1984) given for any t > 0 and926

x, y ∈M by927

pt|0(y|x) =
∑
j∈N e−λjtφj(x)φj(y), (S8)

where the convergence occurs in L2(pref⊗pref), (λj)j∈N and (φj)j∈N are the eigenvalues, respectively928

the eigenvectors, of −∆M in L2(pref) (see Saloff-Coste, 1994, Section 2). When the eigenvalues929

and eigenvectors are known, we approximate the logarithmic gradient of pt|0 by truncating the sum930

in (S8) with J ∈ N terms. Another possibility to approximate ∇ log pt|0 is to rely on the so-called931

Varadhan approximation, see Section 3.3, which is valid for small t > 0 . Figure S1 illustrates these932

different approximations of the heat kernel and Table 1 compares the different loss functions.933

Table 1: Riemannian score matching losses.

Loss Approximation Loss function Unbiased Consistent Variance

`t|0 (DSM)
Truncation (6) 1

2
E
[
‖s(Xt)− SJ,t(X0,Xt)‖2

]
7 3(J →∞) 0

Varhadan (7) 1
2
E
[
‖s(Xt)− logXt

(X0)/t‖2
]

7 3(t→ 0) 0

`t|s (DSM) Varhadan (7) 1
2
E
[
‖s(Xt)− logXt

(Xs)/(t− s)‖2
]

7 3(t→ s) 0

`imt (ISM)
Deterministic E

[
1
2
‖s(Xt)‖2 + div(s)(Xt)

]
3 3 0

Stochastic E
[
1
2
‖s(Xt)‖2 + ε>∂s(Xt)ε

]
3 3 2‖∂s‖F

F Predictor-corrector schemes934

In this section, we present a predictor-corrector scheme, adapting the techniques of Allgower and935

Georg (2012); Song et al. (2021b) to the manifold setting. Changes between Algorithm 1, Algorithm 2936

and Algorithm 3, Algorithm 4 are highlighted in red. Let t ∈ [0, T ], γ > 0 and k = bt/γc. We937

remark that Algorithm 3 (Line 11) corresponds to the recursion associated with (Xt,γ
j )j∈N such that938

for any j ∈ N939

Xt,γ
j+1 = expXt,γj

[(γ/2)∇ log pT−kγ(Xt,γ
j ) +

√
γZj+1],

where {Z̄j}j∈N is a family of i.i.d Gaussian random variables with zero mean and identity covariances940

matrix in Rp and for any j ∈ N, Zj = P(Xt,γ
j )Z̄j . Note that here k ∈ {0, N − 1} is fixed. Letting941

γ → 0, we obtain that under mild assumptions, see (Kuwada, 2012, Theorem 3.1), (Xt,γ
j )j∈N942

converges to (Xt
s)s≥0 such that943

dXt
s = (1/2)∇ log pT−t(X

t
s)ds+ dBMt .
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We have that pT−t is the invariant measure of (Xt
s)s≥0. Hence, the role of the corrector step is to944

project the distribution back onto pT−t for all times t ∈ [0, T ], see Figure S2.945

pdata

L(Xγ
0 ) = pT

L(Xγ
1/2)

L(Xγ
1 )

L(Xγ
3/2)

L(Xγ
2 )

Figure S2: Illustration of the effect of the corrector step on RSGM. The black line corresponds to the dynamics
of the noising process (pt)t∈[0,T ]. The green dashed lines correspond to the predictor step (going backward in
time) and the red dashed lines correspond to the corrector step (projecting back onto the initial dynamics). Note
that L(Xγ

1 ) ≈ pT−γ and L(Xγ
2 ) ≈ pT−2γ .

Algorithm 3 GRW-c (Geodesic Random Walk with corrector)
Require: T,N,Xγ

0 , b, σ,P
1: γ = T/N . Step-size
2: for k ∈ {0, . . . , N − 1} do
3: /// PREDICTOR STEP
4: Z̄k+1/2 ∼ N(0, Ip) . Standard Gaussian in ambient space Rp

5: Zk+1/2 = P(Xγ
k )Z̄k+1/2 . Projection in the tangent space TxM

6: Wk+1/2 = γb(kγ,Xγ
k ) +

√
γσ(kγ,Xγ

k )Zk+1/2 . Euler–Maruyama step on tangent space
7: Xγ

k+1/2 = expXγ
k

[Wk+1/2] . Geodesic projection ontoM
8: /// CORRECTOR STEP
9: Z̄k+1 ∼ N(0, Ip) . Standard Gaussian in ambient space Rp

10: Zk+1 = P(Xγ
k+1/2)Z̄k+1 . Projection in the tangent space TxM

11: Wk+1 = (γ/2)b(kγ,Xγ
k+1/2) +

√
γσ(kγ,Xγ

k+1/2)Zk+1 . Euler–Maruyama step on tangent space
12: Xγ

k+1 = expXγ
k+1/2

[Wk+1] . Geodesic projection ontoM
13: end for
14: return {Xγ

k }
N
k=0

G Time-reversal formula: extension to compact Riemannian manifolds946

In this section, we provide the proof of Theorem 1. The proof follows the arguments of Cattiaux947

et al. (2021, Theorem 4.9). We could have also applied the abstract results of Cattiaux et al. (2021,948

Theorem 5.7) to obtain our results. Note that the time-reversal on manifold could also be obtained by949

readily extending arguments from Haussmann and Pardoux (1986), however the entropic conditions950

found by Cattiaux et al. (2021) are more natural when it comes to the study of the Schrödinger Bridge951

problem. For the interested reader we provide an informal derivation of the time-reversal formula952

obtained by Haussmann and Pardoux (1986) in Appendix G.1. The proof of Theorem 1 is given953

in Appendix G.2. Finally, we emphasize that García-Zelada and Huguet (2021) have developed a954

Girsanov theory for stochastic processes defined on compact manifolds with boundary in order to955

study the Brenier-Schrödinger problem.956
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Algorithm 4 RSGM-c (Riemannian Score-Based Generative Model with corrector)

Require: ε, T,N, {Xm
0 }Mm=1, loss, s, θ0, Niter, pref,P

1: /// TRAINING ///
2: for n ∈ {0, . . . , Niter − 1} do
3: X0 ∼ (1/M)

∑M
m=1 δXm0 . Random mini-batch from dataset

4: t ∼ U([ε, T ]) . Uniform sampling between ε and T
5: Xt = GRW(t,N,X0, 0, Id,P) . Approximate forward diffusion with Algorithm 1
6: `(θn) = `t(T,N,X0,Xt, loss, sθn) . Compute score matching loss from Table 2
7: θn+1 = optimizer_update(θn, `(θn)) . ADAM optimizer step
8: end for
9: θ? = θNepoch

10: /// SAMPLING ///
11: Y0 ∼ pref . Sample from uniform distribution
12: b?θ(t, x) = sθ?(T − t, x) for any t ∈ [0, T ], x ∈M . Reverse process drift
13: {Yk}Nk=0 = GRW-c(T,N, Y0, bθ? , Id,P) . Approximate reverse diffusion with Algorithm 3
14: return θ?, {Yk}Nk=0

G.1 Informal derivation957

In this section, we provide a non-rigorous derivation of Theorem 1 following the approach of958

Haussmann and Pardoux (1986). Let (Xt)t∈[0,T ] be a continuous process such that for any f ∈959

C2(M) we have that (MX,f
t )t∈[0,T ] is a X-martingale where for any t ∈ [0, T ]960

MX,f
t = f(Xt)−

∫ t
0
{〈b(Xs),∇f(Xs)〉+ 1

2∆Mf(Xs)}ds. (S9)

Let (Yt)t∈[0,T ] = (XT−t)t∈[0,T ]. Our goal is to show that for any f ∈ C2(M), (MY,f
t )t∈[0,T ] is a961

Y-martingale where for any t ∈ [0, T ]962

MY,f
t = f(Yt)−

∫ t
0
{〈−b(Ys) +∇ log pT−s(Ys),∇f(Ys)〉+ 1

2∆Mf(Ys)}ds.
Note that here we implicitly assume that for any t ∈ [0, T ], Xt admits a smooth positive density963

w.r.t. pref denoted pt. In other words, we want to show that for any g ∈ C2(M) and s, t ∈ [0, T ] with964

t ≥ s we have965

E[g(Ys)(f(Yt)− f(Ys))] (S10)

= E[g(Ys)
∫ t
s
{〈−b(Yu) +∇ log pT−u(Yu),∇f(Yu)〉+ 1

2∆Mf(Yu)}du].

We introduce the infinitesimal generator A : C2(M) → C(M) given for any f ∈ C2(M) and966

x ∈M by967

A(f)(x) = 〈b(x),∇f(x)〉+ 1
2∆Mf(x).

Similarly, we introduce the infinitesimal generator Ã : [0, T ] × C2(M) → C(M) given for any968

f ∈ C2(M), t ∈ [0, T ] and x ∈M by969

Ã(t, f)(x) = 〈−b(x) +∇ log pT−t(x),∇f(x)〉+ 1
2∆Mf(x).

With these notations, (S11) can be written as follows: we want to show that for any g ∈ C2(M) and970

s, t ∈ [0, T ] with t ≥ s we have971

E[g(Ys)(f(Yt)− f(Ys))] = E[g(Ys)
∫ t
s
Ã(u,Yu)du]. (S11)

The rest of this section follows the first part of the proof of Haussmann and Pardoux (1986, Theorem972

2.1). Let t, s ∈ [0, T ] with t ≥ s. We have973

E[g(Ys)(f(Yt)− f(Ys))] = E[g(XT−s)(f(XT−t)− f(XT−t))]

= E[E[g(XT−s)|XT−t]f(XT−t)]− E[g(XT−s)f(XT−s)]

= E[v(T − t,XT−t)f(XT−t)]− E[v(T − s,XT−s)f(XT−s)],
(S12)

with v : [0, T − s] × M → R given for any u ∈ [0, T − s] and x ∈ M by v(u, x) =974

E[g(XT−s)|Xu = x]. We have that v satisfies the backward Kolmogorov equation, i.e. we have for975

any u ∈ [0, T − s] and x ∈M976

∂uv(u, x) = −Av(u, x). (S13)
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Note that it is not trivial to show that v is regular enough to satisfy the backward Kolmogorov equation.977

In this informal derivation, we assume that v is regular enough and will provide a different rigorous978

proof of the time-reversal formula in Appendix G.2. However, note that it is possible to show that v979

indeed satisfies the backward Kolmogorov equation by adapting arguments from Haussmann and980

Pardoux (1986) to the manifold framework.981

Let h : [0, T − s] ×M → R given for any u ∈ [0, T − s] and x ∈ M by h(u, x) = v(u, x)f(x).982

Using (S13), we have for any u ∈ [0, T − s] and x ∈M983

∂uh(u, x) +Ah(u, x) = f(x)∂uv(u, x) + f(x)Av(u, x) + v(u, x)Af(x) + 〈∇f(x),∇v(u, x)〉
= v(u, x)Af(x) + 〈∇f(x),∇v(u, x)〉. (S14)

In addition, using the divergence theorem (see Lee, 2018, p.51), we have for any u ∈ [0, T − s]984

E[〈∇f(Xu),∇v(u,Xu)〉] =
∫
M〈∇f(xu),∇v(u, xu)pu(xu)〉dpref(xu)

= −
∫
M v(u, xu)div(pu∇f)(xu)dpref(xu)

= −
∫
M v(u, xu)∆Mf(xu)pu(xu)dpref(xu)

−
∫
M v(u, xu)〈∇f(xu),∇ log pu(xu)〉pu(xu)dpref(xu)

= −E[v(u,Xu)∆Mf(Xu)]− E[v(u,Xu)〈∇f(Xu),∇ log pu(Xu)〉].
Therefore, using this result and (S14) we get that for any u ∈ [0, T − s]985

E[∂uh(u,Xu) +Ah(u,Xu)] = E[v(u,Xu){〈b(Xu)−∇ log pu(Xu),∇f(Xu)〉 − 1
2∆Mf(Xu)}]

= −E[v(u,Xu)Ã(T − u, f)(Xu)].

Combining this result and (S9) and that for any u ∈ [0, T − s] and x ∈ M, v(u, x) =986

E[g(XT−s)|Xu = x] we get987

E[v(T − t,XT−t)f(XT−t)]− E[v(T − s,XT−s)f(XT−s)]

= E[h(T − t,XT−t)− h(T − s,XT−s)]

=
∫ T−s
T−t E[v(u,Xu)Ã(T − u,Xu)]du

= E[g(XT−s)
∫ T−s
T−t Ã(T − u,Xu)du].

Using this result, (S12) and the change of variable u 7→ T − u we obtain988

E[g(Ys)(f(Yt)− f(Ys))] = E[g(XT−s)
∫ T−s
T−t Ã(T − u,Xu)du] = E[g(Ys)

∫ t
s
Ã(u,Yu)du].

Hence, (S11) holds and we have proved Theorem 1. Again, we emphasize that in order to make the989

proof completely rigourous one needs to derive regularity properties of v.990

G.2 Proof of Theorem 1991

In this section, we follow another approach to prove the time-reversal formula. We are going to992

use the integration by part formula of Cattiaux et al. (2021, Theorem 3.17) in a similar spirit as993

Cattiaux et al. (2021, Theorem 4.9) in the Euclidean setting. In order to adapt arguments from994

Cattiaux et al. (2021) to our Riemannian setting, we use the Nash embedding theorem in order to995

embed our processes in a Euclidean space and leverage tools from Girsanov theory. The rest of the996

section is organized as follows. First in Appendix G.2.1, we recall basic properties of infinitesimal997

generators and recall the integration by part formula of Cattiaux et al. (2021, Theorem 3.17). Then in998

Appendix G.2.2, we extend some Girsanov theory to compact Riemannian manifolds using the Nash999

embedding theorem. We conclude the proof in Appendix G.2.3.1000

G.2.1 Diffusion processes and integration by part formula1001

In this section, we state a simplified version of Cattiaux et al. (2021, Theorem 3.17) for Markov1002

continuous path (probability) measure on Polish spaces. Let (X,X ) be a Polish space. We say that P1003

is a path measure if P ∈ P(C([0, T ] ,X)). Let (Xt)t∈[0,T ] with distribution P. We denote (Ft)t∈[0,T ]1004

the filtration such that for any t ∈ [0, T ], Ft = σ(Xs, s ∈ [0, t]). Let (Mt)t∈[0,T ] be a Polish-valued1005

stochastic process. We say that (Mt)t∈[0,T ] is a P-local martingale if it is a local martingale w.r.t.1006

the filtration (Ft)t∈[0,T ]. A function u : [0, T ]× X→ R is said to be in the domain of the extended1007

generator of P if there exists a process (ĀPu(t,X[0,t]))t∈[0,T ] such that:1008
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(a) (ĀPu(t,X[0,t]))t∈[0,T ] is adapted w.r.t. (Ft)t∈[0,T ].1009

(b)
∫ T

0
|ĀPu(t,X[0,t])|dt < +∞, P-a.s.1010

(c) The process (Mt)t∈[0,T ] is a P-local martingale, where for any t ∈ [0, T ]1011

Mt = u(t,Xt)− u(0,X0)−
∫ t

0
ĀPu(s,X[0,s])ds.

The domain of the extended generator is denoted dom(ĀP). We say that (u, v) with u, v : [0, T ]×1012

X → R is in the domain of the carré du champ if u, v, uv ∈ dom(ĀP). In this case, we define the1013

carré du champ ῩP as1014

ῩP(u, v) = ĀP(uv)− ĀP(u)v − ĀP(v)u.

Note that if X = M is a Riemannian manifold, C2(M) ⊂ dom(ĀP) and for any u ∈ C2(M)1015

ĀP(u) = 〈∇u,X〉+ 1
2∆Mu with X ∈ Γ(TM) then we have that C2(M)× C2(M) ⊂ dom(ῩP)1016

and for any u, v ∈ C2(M), ῩP(u, v) = 〈∇u,∇v〉. Assume that there exists UP ⊂ dom(ĀP)∩Cb(X)1017

such that UP is an algebra. We denote UP,2 such that1018

UP,2 = {u ∈ UP : ĀPu ∈ L2(P), ῩP(u, u) ∈ L1(P)}.
Finally we denote R(P) the time-reverse path measure, i.e. for any A ∈ B(C([0, T ] ,X)) we have1019

R(P)(A) = P(R(A)), where R(A) = {t 7→ ωT−t : ω ∈ A}. In what follows, we assume P is1020

Markov. It is well-known, see (Léonard et al., 2014, Theorem 1.2) for instance, that in this case1021

R(P) is also Markov. In addition, since P is Markov, for any u ∈ dom(ĀP) and t ∈ [0, T ] there1022

exists AP such that ĀPu(t,X[0,t]) = APu(t,Xt) with APu : [0, T ]× X→ R. Similarly, we define1023

ΥP(u, v) : [0, T ]× X→ R from ῩP(u, v).1024

We are now ready to state the integration by part formula, (Cattiaux et al., 2021, Theorem 3.17).1025

Theorem S11. Let u, v ∈ UP,2. The following hold:1026

(a) If u ∈ dom(AR(P)) and AR(P)u ∈ L1(P) then for almost any t ∈ [0, T ]1027

E[{APu(t,Xt) +AR(P)u(T − t,Xt)}v(Xt) + ΥP(u, u)(t,Xt)] = 0.

(b) If the following hold:1028

i) ΥP(u, v) ∈ C([0, T ]× X,R).1029

ii) U2,P determines the weak convergence of Borel measures.1030

iii) µ defines a finite measure on [0, T ]× X where for any ω ∈ Ū2,P we have1031

µ[ω] = E[
∫ T

0
ΥP(u, ωt)(t,Xt)dt],

where Ū2,P = {ω ∈ C([0, T ]× X,R) : ω(t, ·) ∈ U2,P for any t ∈ [0, T ]}.1032

Then u ∈ dom(AR(P)) and AR(P)u ∈ L1(P).1033

Note that this theorem is a simplified version of Cattiaux et al. (2021, Theorem 3.17) where we restrict1034

ourselves to the case of Markov path measures. In what follows, we wish to apply Theorem S11 to1035

diffusion processes on manifolds. To do so, we will verify that under a finite entropy assumption,1036

the conditions u ∈ dom(AR(P)) and AR(P)u ∈ L1(P) are fullfilled for a class of regular functions u.1037

These integrability results are obtained using Girsanov theory.1038

G.2.2 Girsanov theory on compact Riemannian manifolds1039

In this section, we will consider two types of martingale problems: one on Euclidean spaces and one1040

on the compact Riemannian manifoldM. Let P ∈ P(C([0, T ] ,Rp)). We say that P satisfies the1041

(Euclidean) martingale problem with infinitesimal generator A : [0, T ]× C2(Rp)× Rp → R if for1042

any u ∈ C2
c(Rp), (Mt)t∈[0,T ] is a P-martingale where for any t ∈ [0, T ] we have1043

Mt = M0 +
∫ t

0
A(t, u)(Xs)ds,
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where (Xt)t∈[0,T ] has distribution P and
∫ T

0
|A(t, u)(Xs)dt| < +∞, P-a.s. Let P ∈1044

P(C([0, T ] ,M)). We say that P satisfies the (Riemannian) martingale problem with infinitesi-1045

mal generator Ã : [0, T ]×C2(M)×M→ R if for any u ∈ C2(M), (Mt)t∈[0,T ] is a P-martingale1046

where for any t ∈ [0, T ] we have1047

Mt = M0 +
∫ t

0
Ã(t, u)(Xs)ds,

where (Xt)t∈[0,T ] has distribution P and
∫ T

0
|Ã(t, u)(Xs)dt| < +∞, P-a.s. We now prove the1048

following theorem.1049

Proposition S12. Assume A1. Let Q be the path measure of a Brownian motion onM. Let P be a1050

Markov path measure on C([0, T ] ,M) such that KL (P|Q) < +∞. Then there exists β such that1051

for any t ∈ [0, T ] and x ∈M, β(t, x) ∈ TxM and we have that P satisfies the martingale problem1052

with infinitesimal generator A where for any t ∈ [0, T ], u ∈ C2(M) and x ∈M we have1053

A(t, u)(x) = 〈β(t, x),∇u(x)〉+ 1
2∆Mu(x).

In addition, we have that1054

KL (P|Q) = KL (P0|Q0) + 1
2

∫ T
0
E[‖β(t,Xt)‖2]dt,

where (Xt)t∈[0,T ] has distribution P.1055

Proof. First, we extend (BMt )t∈[0,T ] to Rp using the Nash embedding theorem (see Gunther, 1991).1056

(BMt )t∈[0,T ] can be seen as a process on Rp (for some p ∈ N) which satisfies in a weak sense1057

dBMt =
∑p
i=1 Pi(B

M
t ) ◦ dBi

t = P (BMt ) ◦ dBt,

where (Bt)t∈[0,T ] is a p-dimensional Brownian motion and P ∈ C∞(Rp,Rp×p) is such that for1058

any x ∈ M, P(x) is the projection onto TxM and for any i ∈ {1, . . . , p}, Pi ∈ C∞(Rp,Rp) with1059

Pi = Pei where {ej}dj=1 is the canonical basis of Rp. We refer to Appendix B.1 for more details on1060

the projection operator and its extension to Rp. Using the link between Stratanovitch and Itô integral,1061

there exists b̄ ∈ C∞(Rp,Rp) such that (BMt )t∈[0,T ] can be seen as a process on Rp which satisfies1062

in a weak sense1063

dBMt = b̄(BMt )dt+ P(BMt )dBt,

where b̄ is given in (S2) and satisfies Pb̄(x) = 0 for any x ∈M, see the remark following (S2). For1064

any u, v ∈ C2(M), we consider ū, v̄ extensions to C2
c(Rp) and we have for any s, t ∈ [0, T ]1065

E[v̄(BMs )
∫ t
s

1
2∆Mu(BMu )du]

= E[v̄(BMs )
∫ t
s
{〈∇ū(BMw ), b̄(BMw )〉+ 1

2 〈P(BMw ),∇2ū(BMw )〉}dw].

In particular, we get that for any x ∈M, ∆Mu(x) = 2〈∇ū(x), b̄(x)〉+ 〈P(x),∇2ū(x)〉. Note that1066

(BMt )t∈[0,T ] (seen as a process on Rp) satisfies the condition (U) in Léonard (2012b), i.e. uniqueness1067

of the trajectories given an initial condition. Therefore applying (Léonard, 2012b, Theorem 2.1),1068

(Cattiaux et al., 2021, Claim 4.5), there exists β̄ : [0, T ]× Rp → Rp such that1069

KL (P|Q) = KL (P0|Q0) + 1
2

∫ T
0
E[‖P(Xt)β̄(t,Xt)‖2]dt. (S15)

In addition, P (seen as a process on Rp) satisfies a martingale problem with infinitesimal generator1070

Ā : [0, T ]× C2
c(Rp)× Rp → R such that for any t ∈ [0, T ], ū ∈ C2(Rp) and x ∈ Rp1071

Ā(t, ū)(x) = 〈b̄(x) + P(x)β̄(t, x),∇ū(x)〉+ 1
2 〈P(x),∇2ū(x)〉.

Let β : [0, T ] ×M such that for any t ∈ [0, T ] and x ∈ M we have β(t, x) = P(x)β̄(t, x). In1072

particular, we have that for any x ∈M, β(t, x) ∈ TxM. Let u ∈ C2(M) and consider an extension1073

ū to C2(Rp). For any t ∈ [0, T ] and x ∈M we have1074

Ā(t, ū)(x) = 〈b̄(x) + P(x)β̄(t, x),∇ū(x)〉+ 1
2 〈P(x),∇2ū(x)〉

= 〈β(t, x),∇ū(x)〉+ 1
2∆Mu(x)

= 〈β(t, x),∇u(x)〉+ 1
2∆Mu(x).
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In particular, we have that P (seen as a process onM) satisfies a martingale problem with infinitesimal1075

generator A : [0, T ]× C2
c(M)×M→ R such that for any t ∈ [0, T ], u ∈ C2(Rp) and x ∈M1076

A(t, ū)(x) = 〈β(t, x),∇u(x)〉+ 1
2∆Mu(x).

In addition, rewriting (S16) we have1077

KL (P|Q) = KL (P0|Q0) + 1
2

∫ T
0
E[‖β(t,Xt)‖2]dt, (S16)

which concludes the proof.1078

We also derive the following useful lemma, which will be used in the proof of convergence of RSGM.1079

Corollary S13. Assume A1. Let P1,P2 be a Markov path measure on C([0, T ] ,M) with P1
0 = P2

0. In1080

addition, assume that there exist b1, b2 ∈ C∞([0, T ] ,X (M)) such that (X1
t )t∈[0,T ] and (X2

t )t∈[0,T ]1081

are associated to P1 and P2 respectively and satisfy weakly dXi
t = b1(t,Xi

t)dt+ dBt for i ∈ {1, 2}.1082

Then, we have that1083

KL(P1|P2) = 1
2

∫ T
0
E[‖b1(t,X1

t )− b2(t,X1
t )‖2]dt.

Proof. Upon, using the Nash embedding theorem (see Gunther, 1991), we can assume thatM is a sub-1084

manifold of Rp with p ∈ N such that the Riemannian metric onM is induced by the Euclidean metric1085

on Rp. SinceM is compact, there exists R > 0 such thatM ⊂ B̄(0, R). Let ϕ ∈ C∞(Rp, [0, 1])1086

such that for any x ∈ B̄(0, R), ϕ(x) = 1 and for any x ∈ Rp with ‖x‖ ≥ R+ 1, ϕ(x) = 0. Consider1087

b̄1, b̄2 ∈ C2
c([0, T ]×Rp,Rp) such that for any t ∈ [0, T ] and x ∈M, b̄i(x) = bi(x) with i ∈ {1, 2}.1088

Consider (X̄i
t)t∈[0,T ] such that for any i ∈ {1, 2}1089

dX̄i
t = ϕ(X̄i

t){P(X̄i
t)b̄

i(t, X̄i
t) + b̄(X̄t)}dt+ ϕ(X̄i

t)P(X̄i
t)dBt,

where b̄ ∈ C∞(Rp,Rp) is defined in the proof of Proposition S12. Let X̄i
0 ∼ P1

0 for any i ∈ {1, 2}1090

then for any i ∈ {1, 2}, (X̄i
t)t∈[0,T ] (seen as a process on M) is such that L((X̄i

t)t∈[0,T ]) = Pi.1091

Indeed, denote {Āit}t∈[0,T ] the generator of (X̄i
t)t∈[0,T ] for any i ∈ {1, 2}. Let f ∈ C∞(M,R) and1092

f̄ ∈ C∞(Rp,R) an extension to Rp. We have that for any i ∈ {1, 2}, x ∈M and t ∈ [0, T ]1093

Āit(f̄)(x) = 〈b̄i(t, x) + b̄(x),∇f̄(x)〉+ (1/2)〈P(x),∇2f̄(x)〉
= 〈bi(t, x),∇f(x)〉+ (1/2)∆Mf(x).

Hence, for any i ∈ {1, 2}, (X̄i
t)t∈[0,T ] (seen as a process on M) and (Xi

t)t∈[0,T ] have the same1094

infinitesimal generators. Hence, L((X̄i
t)t∈[0,T ]) = Pi for any i ∈ {1, 2}. For any i ∈ {1, 2}, denote1095

P̄i = L((X̄i
t)t∈[0,T ]) (seen as a process on Rp). Note that since for any x ∈ Rp with ‖x‖ ≥ R+ 1,1096

ϕ(x) = 0 we have that (Liptser and Shiryaev, 2001, Equation (7.137)) is satisfied. In addition, since1097

for any x ∈ Rp with ‖x‖ ≥ R + 1, ϕ(x) + ‖∇ϕ(x)‖ = 0, we have that (Liptser and Shiryaev,1098

2001, Equation (4.110), Equation (4.111)) are satisfied. In addition, letting for any t ∈ [0, T ] and1099

x ∈ Rp, α(t, x) = b̄1(t, x) − b̄2(t, x) = P(x)(b̄1(t, x) − b̄2(t, x)), we have that for any t ∈ [0, T ],1100

P(x)α(t, x) = P(x)(b̄1(t, x) − b̄2(t, x)). Therefore, we can apply (Liptser and Shiryaev, 2001,1101

Section 7.6.4) and using that P(x)b̄(x) = 0 for any x ∈ M (see the proof of Proposition S12), we1102

have that1103

(dP̄1/dP̄2)((X̄1
t )t∈[0,T ]) = exp [

∫ T
0
〈b̄1(t, X̄1

t )− b̄2(t, X̄1
t ),P(X̄1

t )dX̄1
t 〉

−(1/2)
∫ T

0
〈b̄1(t, X̄1

t )− b̄2(t, X̄1
t ),P(X̄1

t )(b̄
1(t, X̄1

t ) + b̄2(t, X̄1
t ))〉dt]

= exp [
∫ T

0
〈b̄1(t, X̄1

t )− b̄2(t, X̄1
t ),P(X̄1

t ){b̄1(t, X̄1
t ) + b̄(X̄1

t )}〉dt
+
∫ T

0
〈b̄1(t, X̄1

t )− b̄2(t, X̄1
t ),P(X̄1

t )dBt〉
−(1/2)

∫ T
0
〈b̄1(t, X̄1

t )− b̄2(t, X̄1
t ),P(X̄1

t )(b̄
1(t, X̄1

t ) + b̄2(t, X̄1
t ))〉dt]

= exp[(1/2)
∫ T

0
‖b̄1(t, X̄1

t )− b̄2(t, X̄1
t )‖2dt+

∫ T
0
〈b̄1(t, X̄1

t )− b̄2(t, X̄1
t ),P(X̄1

t )dBt〉].
Therefore, we have that1104

KL(P̄1|P̄2) = (1/2)
∫ T

0
E[‖b̄1(t, X̄1

t )− b̄2(t, X̄1
t )‖2]dt.

Hence, we get1105

KL(P̄1|P̄2) = (1/2)
∫ T

0
E[‖b1(t,X1

t )− b2(t,X1
t )‖2]dt.

which concludes the proof.1106
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Once Proposition S12 is established, we can obtain the following straightforward extension of1107

Cattiaux et al. (2021, Proposition 4.6).1108

Proposition S14. Assume A1. Let Q be a Brownian motion with Q0 = pref and P a path measure1109

on C([0, T ] ,M) such that KL (P|Q) < +∞. Then, there exist βP, βR(P) : [0, T ] ×M → such1110

that for any t ∈ [0, T ] and x ∈ M, βP(t, x), βR(P)(t, x) ∈ TxM. In addition, we have that P and1111

R(P) satisfy martingale problems with infinitesimal generator AP, respectively AR(P) where for any1112

t ∈ [0, T ], u ∈ C2(M) and x ∈M we have1113

AP(t, u)(x) = 〈βP(t, x),∇u(x)〉+ 1
2∆Mu(x),

AR(P)(t, u)(x) = 〈βR(P)(t, x),∇u(x)〉+ 1
2∆Mu(x).

Finally, we have that1114 ∫ T
0
E[‖βP(t,Xt)‖2]dt+

∫ T
0
E[
∥∥βR(P)(t,XT−t)

∥∥2
]dt < +∞,

where (Xt)t∈[0,T ] has distribution P.1115

Proof. The proof is straightforward upon combining Proposition S12 and the fact that KL (P|Q) =1116

KL (R(P)|R(Q)) = KL (R(P)|Q) < +∞, using that Q is stationary.1117

We conclude this section, with the following application of Theorem S11.1118

Proposition S15. For any u, v ∈ C∞(M), we have that for almost any t ∈ [0, T ]1119

E[v(Xt)〈βP(t,Xt) + βR(P)(T − t,Xt),∇u(Xt)〉+ 〈∇u(Xt),∇u(Xt)〉] = 0. (S17)

Proof. Remark that C2(M) ⊂ dom(ΥP) and C2(M) ⊂ dom(ΥR(P)). In addition, we have that1120

for any u, v ∈ C2(M), ΥP(u, v) = ΥR(P)(u, v) = 〈u, v〉. Note that by Proposition S14 and1121

Theorem S11 we have that for any u, v ∈ C∞(M), (S17) holds.1122

G.2.3 Concluding the proof1123

Using Proposition S15 we can now conclude the proof of Theorem 1. First, remark that we can1124

identify βP = b. Let u, v ∈ C∞(M), we have that1125

E[v(Xt)〈b(Xt) + βR(P)(T − t,Xt),∇u(Xt)〉+ ∆Mu(Xt)v(Xt) + 〈∇u(Xt),∇v(Xt)〉] = 0.

Using that for any t ∈ [0, T ], Pt admits a smooth positive density w.r.t. pref denoted pt and the1126

divergence theorem, see (Lee, 2018, p.51), we have that for any t ∈ [0, T ],1127 ∫
M{〈βR(P)(T − t, x),∇u(x)〉+ 〈b(x),∇u(x)〉}v(x)pt(x)dpref(x)

= −
∫
M〈∇u(x)pt(x),∇v(x)〉dpref(x)−

∫
M∆Mu(x)v(x)pt(x)dpref(x)

=
∫
M〈∇ log pt(x),∇u(x)v(x)pt(x)dpref(x).

Therefore, we get that for any t ∈ [0, T ] and x ∈ M, 〈βR(P)(T − t, x),∇u(x)〉 = 〈−b(x) +1128

∇ log pt(x),∇u(x)〉, which concludes the proof.1129

H Convergence of RSGM1130

In this section, we study the convergence of RSGM and prove Theorem 4. We state our main results1131

in Appendix H.1 and give discretization bounds following the recent work of Cheng et al. (2022) in1132

sec:discr-bounds-grw.1133

H.1 Main results1134

In this section, we prove Theorem 4. We start by recalling the sequence considered in RSGM. Let1135

(Yk)k∈{0,...,N} be given by Y0 ∼ pref and for any k ∈ {0, . . . , N − 1}1136

Yk+1 = expYk [γsθ?(T − nγ, Yk) +
√

2Zk+1],

where {Zk})n∈N is a sequence of independent square integrable random variables with zero mean1137

and identity covariance matrix. For ease of reading, we restate Theorem 4.1138
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Theorem S16. Assume A1, that p0 is smooth and positive and that there exists M ≥ 0 such that for1139

any t ∈ [0, T ] and x ∈ M, ‖sθ?(t, x)−∇ log pt(x)‖ ≤ M, with sθ? ∈ C([0, T ] ,X (M)). Then if1140

T > 1/2, there exists C ≥ 0 independent on T such that1141

W1(L(YN ), p0) = C(e−λ1T +
√
T/2M + eT γ1/2),

where W1 is the Wasserstein distance of order one on the probability measures onM.1142

Proof. For any k ∈ {1, . . . , N}, denote Rk such that for any x ∈ Rd, A ∈ B(Rd) and k ∈1143

{0, . . . , N − 1} we have1144

E[Rk+1(Yk,A)] = E[1A(Yk+1)].

Define for any k0, k1 ∈ {1, . . . , N} with k1 ≥ k0 Qk0,k1 =
∏k1
`=k0

Rk1+k0−`. Finally, for ease of1145

notation, we also define for any k ∈ {1, . . . , N}, Qk = Qk+1,N . Note that for any k ∈ {1, . . . , N},1146

Yk has distribution π∞Qk, where π∞ ∈ P(M) with density w.r.t. the Hausdorff measure pref . Let1147

P ∈ P(C) be the probability measure associated with (Bt)t∈[0,T ] with B0 ∼ π0, where π0 ∈ P(M)1148

admits a density w.r.t. the Hausdorff measure given by p0. We denote (Ŷt)t∈[0,T ] the process defined1149

by the diffusion dŶt = sθ?(T − t, Ŷt)dt + dBt and Ŷ0 ∼ π∞. We also denote P̂R ∈ P(C) the1150

probability measure associated with (Ŷt)t∈[0,T ]. First note that using that P0 = π0 we have for any1151

A ∈ B(M)1152

π0PT |0(PR)T |0(A) = PT (PR)T |0(A) = (PR)0(PR)T |0(A) = (PR)T (A) = π0(A).

Hence we have that1153

π0 = π0PT |0(PR)T |0. (S18)
Let ϕ ∈ C(M) with is 1-Lipschitz, i.e. for any x, y ∈ M, |ϕ(x) − ϕ(y)| ≤ d(x, y). SinceM is1154

compact, we have that ϕ is bounded. Using this result, (S18), the data processing theorem (Kullback,1155

1997, Theorem 4.1) and Pinsker’s inequality (Bakry et al., 2014, Equation 5.2.2) we have1156

|E[ϕ(YN )]−
∫
M ϕ(x)p0(x)dµ(x)|

≤ |E[ϕ(B0)]− E[ϕ(YT )]|+ |E[ϕ(ŶT )]− E[ϕ(YT )]||E[ϕ(ŶT )]− E[ϕ(YN )]|
≤ ‖ϕ‖∞‖π0 − π∞(PR)T |0‖TV + |E[ϕ(ŶT )]− E[ϕ(YT )]|+ |E[ϕ(ŶT )]− E[ϕ(YN )]|
≤ ‖ϕ‖∞‖π0PT |0(PR)T |0 − π∞(PR)T |0‖TV + |E[ϕ(ŶT )]− E[ϕ(YT )]|+ |E[ϕ(ŶT )]− E[ϕ(YN )]|
≤ ‖ϕ‖∞‖π0PT |0 − π∞‖TV + |E[ϕ(ŶT )]− E[ϕ(YT )]|+ |E[ϕ(ŶT )]− E[ϕ(YN )]|
≤ ‖ϕ‖∞‖π0PT |0 − π∞‖TV +

√
2‖ϕ‖∞KL1/2(π∞PR|0|π∞P̂R|0) + |E[ϕ(ŶT )]− E[ϕ(YN )]|.

We now control each one of these terms. The first term can be easily controlled using the geometric1157

ergodicity of the Brownian motion on compact manifolds. The second term can be controlled1158

using the Girsanov theory on isometrically embedded manifolds. For the last term, we rely on the1159

convergence of the GRW to its associated diffusion as presented in Appendix H.2. We now control1160

each one of these terms.1161

(a) Using Proposition S10, we have that ‖π0PT |0−π∞‖TV ≤ C1/2eλ1/2e−λ1T where λ1 is the first1162

positive eigenvalue of −∆M in L2(π∞). Therefore, we get that1163

‖ϕ‖∞‖π0PT |0 − π∞‖TV ≤ C1/2eλ1/2‖ϕ‖∞e−λ1T .

(b) Recall that we have that PR|0 is associated with the process dYt = ∇ log pT−t(Yt)dt+ dBMt1164

and that P̂R|0 is associated with the process dŶt = sθ?(T − t, Ŷt)dt+ dBMt . Using Corollary S131165

we have that1166

KL(π∞PR|0|π∞P̂R|0) = 1
2

∫ T
0
E[‖sθ?(T − t,Yt)−∇ log pT−t(Yt)‖2] ≤M2T.

(c) Let us define {Ȳk}Nk=0 such that for any k ∈ {0, . . . , N}, Ȳk
0 = Ŷ0 = Y0 and for any t ∈ [0, kγ]1167

we have that Ȳ0
t = Ŷt. For any t ∈ [kγ, T ], we have that Ȳk

t = Yt,k, where Ykγ,k = Ŷkγ and for1168

any j ∈ {k, . . . , N − 1} and t ∈ [0, γ]1169

Yjγ+t,k = expYjγ,k [tsθ?(T − jγ, Yjγ,k) +
√
tEkj Zj ],
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where {Zj}N−1
j=0 are independent Gaussian random variables with identity covariance matrix and zero1170

mean and Ekj is a frame of TYjγ,kM such that for any j ∈ {k+ 1, . . . , N −1}, Ek+1
j = Γ

Yjγ,k+1

Yjγ,k
Ekj1171

and {E0
j }N−1
j=0 is such that for any j ∈ {0, . . . , N − 1}, E0

j is a frame of TYjγM. One [0, kγ], we1172

define (Ŷk
t )t∈[0,kγ] as follows. For any k ∈ {0, . . . , N − 1}, we set (Yk+1

t )t∈[0,kγ] = (Yk
t )t∈[0,kγ].1173

For any k ∈ {0, . . . , N − 1}, we set (Yt)kγ,(k+1)γ as in Proposition S21 (taking the notations of1174

Proposition S21, X0
1 = Ŷk

(k+1)γ and Xγ = Ŷk
kγ). Note that we have {ȲN

jγ,0}Nj=0 = {Y Nj }Nj=0 and1175

{Ȳt,N}t∈[0,T ] = {Ŷt}t∈[0,T ]. Therefore, we have that1176

|ϕ(ŶT )− ϕ(YN )| = |ϕ(Ȳ0
T )− ϕ(ȲN

T )|
≤∑N−1

k=0 |ϕ(Ȳk
T )− ϕ(Ȳk+1

T )| ≤ ‖∇ϕ‖∞
∑N−1
k=0 d(Ȳk

T , Ȳ
k+1
T ).

In addition, using Proposition S21 and Proposition S22, we have that there exists C ≥ 0 such that for1177

any k ∈ {0, . . . , N − 1}1178

E[d(Ȳk,T , Ȳk+1,T )] ≤ C exp[(N − k)γ]γ3/2.

Therefore, we get that there exists C ≥ 0 such that1179

|E[ϕ(ŶT )]− E[ϕ(YN )]| ≤ C exp[T ]γ1/2,

Therefore, we get that there exists C ≥ 0 such that for any ϕ ∈ C(M) which is 1-Lipschitz, we have1180

E[ϕ(YN )]−
∫
M ϕ(x)p0(x)dpref(x) ≤ C(eλ1/2‖ϕ‖∞e−λ1T +

√
T/2‖ϕ‖∞M + eT γ1/2). (S19)

Let x0 ∈ M. Let Lip(M) the set of Lipschitz functions onM with Lipschitz constant equal to 1.1181

Let Lip(M)0 the set of Lipschitz functions onM with Lipschitz constant equal to 1 and such that1182

for any ϕ ∈ Lip(M)0, ϕ(x0) = 0. Note that in this case, we have that ‖ϕ‖∞ ≤ diam(M). Using1183

(S19), we have1184

W1(L(YN ), p0) = sup{E[ϕ(YN )]−
∫
M ϕ(x)p0(x)dpref(x) : ϕ ∈ Lip(M)}

= sup{E[ϕ(YN )]−
∫
M ϕ(x)p0(x)dpref(x) : ϕ ∈ Lip(M)0}

≤ C(eλ1/2diam(M)e−λ1T +
√
T/2diam(M)M + eT γ1/2),

which concludes the proof.1185

We now state a result regarding the continuous-time process (i.e. we now longer consider discretization1186

errors). We recall that we denote (Ŷt)t∈[0,T ] the process defined by the diffusion dŶt = sθ?(T −1187

t, Ŷt)dt+ dBt and Ŷ0 ∼ π∞.1188

Theorem S17. Assume A1, that p0 is smooth and positive and that there exists M ≥ 0 such that for1189

any t ∈ [0, T ] and x ∈ M, ‖sθ?(t, x)−∇ log pt(x)‖ ≤ M, with sθ? ∈ C([0, T ] ,X (M)). Then if1190

T > 1/2, there exists C ≥ 0 independent on T such that1191

‖L(ŶT )− p0‖TV = C(e−λ1T +
√
T/2M).

Proof. The proof is identical to the one of Theorem S16, except that we do not have to deal with the1192

discretization error. We use that for any µ, ν ∈ P(M)1193

‖µ− ν‖TV = sup{µ[f ]− ν[f ] : f ∈ C(M), ‖f‖∞ ≤ 1}.
1194

The result of Theorem S17 should be compared with the one of (Rozen et al., 2021, Theorem 3).1195

With our result we control a L1 bound between the density of ŶT and the one of p0. In (Rozen et al.,1196

2021, Theorem 3) a L∞ bound between the densities is recovered. It can be shown that p̂T = L(ŶT ).1197

Let κ be the modulus of continuity of p̂T − p0, i.e. for any ε ≥ 01198

κ(ε) = sup{|p̂T (x)− p0(x)− p̂T (y) + p0(y)| : x, y ∈M, d(x, y) ≤ ε}.
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Let x0 ∈M such that1199

|p̂T (x0)− p0(x0)| = M = sup{|p̂T (x)− p0(x)| : x ∈M}.
For any x ∈ B̄(x0, κ(M/2)), we have |p̂T (x) − p0(x)| ≥ M/2. Hence, denoting Volκ =1200 ∫

B̄(x0,κ(M/2))
dpref(x) > 0, we have1201

(2/Volκ)
∫
M |p̂T (x)− p0(x)|dpref(x) ≥ ‖p̂T − p0‖∞ .

Hence, there exists C ≥ 0 such that for any T > 1/21202

‖p̂T − p0‖∞ ≤ C(e−λ1T +
√
T/2M).

Therefore, we recover the same guarantees as Theorem S17 (note that M is not explicitly controlled1203

using network properties in our work, but we could use universal approximation properties as in1204

Rozen et al. (2021) in order to obtain a similar result).1205

H.2 Discretization bounds for GRW1206

In this section, we establish discretization bounds for GRW. Our results are a straightforward extension1207

of Cheng et al. (2022) to the case where the drift term in the GRW is time-inhomogeneous.1208

SinceM is compact, we have that for any x1, x2 ∈ M , there exists a minimizing geodesic such1209

that γ ∈ C∞([0, 1] ,M) and γ(0) = x1 and γ(1) = x2. When this choice is not unique we fix a1210

minimizing geodesic. We denote Γx2
x1

: Tx1
M → Tx2

M the associated parallel transport. Let1211

b ∈ C∞([0, T ] ,X (M)).1212

We start by introducing a family of GRWs defined on progressively finer grids. Let γ >1213

0, X0 ∈ M, E0 ∈ FX0
M (the vector space of frames at X0) and consider the families1214

{E`k : k ∈ {0, . . . , 2`}, ` ∈ N}, {X`
k : k ∈ {0, . . . , 2`}, ` ∈ N} such that X0

0 = X0,1215

X0
1 = expX0

0
[γb(0, X0

0 ) +
√
γ(B1 − B0)E0

0 ] and E0
1 = Γ

X0
1

X0
0
E0

0 (note that E`2` is not used in the1216

proof but defined for completeness). In addition, we have that for any ` ∈ N with ` ≥ 1, X`
0 = X0,1217

E`0 = E0 and for any k ∈ {0, . . . , 2`−1 − 1}1218

X`
2k+1 = expX`2k [γ`b(2kγ`, X

`
2k) + E`2k(B(2k+1)γ` −B2kγ`)],

E`2k+1 = Γ
X`2k+1

X`2k
E`2k,

X`
2k+2 = expX`2k+1

[γ`b((2k + 1)γ`, X
`
2k+1) + E`2k+1(B(2k+2)γ` −B(2k+1)γ`)],

E`2k+2 = Γ
X`2k+2

X`−1
k+1

E`−1
k+1, (S20)

where γ` = γ/2`. For any ` ∈ N, we also define (X`
t)t∈[0,γ] such that for any ` ∈ N, k ∈ {0, . . . , 2`−1219

1}, we have for any t ∈ [kγ`, (k + 1)γ`) , X`
t = expX`k [(t − kγ`)b(kγ`, X`

k) + E`k(Bt − Bkγ`)].1220

Note that for any ` ∈ N and k ∈ {0, . . . , 2` − 1}, X`
kγ`

= Xk.1221

We are going to use the following useful lemma, see (Cheng et al., 2022, Lemma 62).1222

Lemma S18. Assume A1. Then, there exists C ≥ 0 such that for any x, y ∈ M, γ : [0, 1] →M1223

minimizing geodesic with γ(0) = x, γ(1) = y and u ∈ TxM, v ∈ TyM we have1224

d(expy[v], expx[u])2 ≤ (1 + Cκ2 exp[4κ])d(x, y)2 + C exp[4κ]‖Γxyv − u‖2 + 2〈γ′(0),Γxyv − u〉,
with κ = ‖u‖+ ‖v‖.1225

We are now ready to state the main result of this section.1226

Proposition S19. Assume A1. Then, there exists C ≥ 0 such that for any ` ∈ N1227

E[supt∈[0,γ] d(X`
t,X

`+1
t )2] ≤ Cγ32−2`.

Proof. Let ` ∈ N, k ∈ {0, . . . , 2` − 1} and t ∈ [kγ`, (k + 1)γ`]. We define U tk = d(X`
t,X

`+1
t )2,1228

Uk = sup{U tk : t ∈ [kγ`, (k + 1)γ`]} and U−1 = 0. We also introduce for any j ∈ {0, . . . , 2` − 1}1229

and for t ∈ [kγ`, (2k + 1)γ`+1), X̄`+1
t = X`+1

t and for t ∈ [(2k + 1)γ`+1, (k + 1)γ`)1230

X̄`+1
t = expX`+1

2j
[γ`+1b(2jγ`+1, X

`+1
2j )+(t−(2k+1)γ`+1)b((2j+1)γ`+1, X

`+1
2j )+(Bt−Bjγ`)E

`+1
2j ].
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Using this result and that for any a, b ≥ 0, (a+ b)2 ≤ (1 + 2−`)a2 + (1 + 2`)b2, we have that for1231

any t ∈ [kγ`, (k + 1)γ`]1232

U tk+1 ≤ (1 + 2−`)d(X`
t, X̄

`+1
t )2 + (1 + 2`)d(X̄`+1

t ,X`+1
t )2. (S21)

Note that for t ∈ [kγ`, (2k + 1)γ`+1], the second term in (S21) is zero. We now bound each one of1233

these terms:1234

(a) First, we assume that t ∈ [(k + 1)γ`, (2k + 1)γ`+1]. Recall that1235

X̄`+1
t = expX`+1

2k
[γ`+1b(kγ`, X

`+1
2k ) + (t− (2k + 1)γ`+1)b((2k + 1)γ`+1, X

`+1
2k ) + (Bt −Bkγ`)E

`+1
2k ],

X`
t = expX`k [(t− kγ`)b(kγ`, X`

k) + (Bt −Bkγ`)E
`
k].

Hence, using Lemma S18, we have that1236

d(X̄`+1
t ,X`

t)
2 ≤ (1 + Cκ2

k exp[4κk])d(X`
k, X

`+1
2k )2 (S22)

+ C exp[4κk]‖ΓX
`
k

X`+1
2k

vk − uk‖2 + 2〈w′(0),Γ
X`k
X`+1

2k

vk − uk〉,

with w : [0, 1]→M a minimizing geodesic between X`
k and X`+1

2k1237

κk = ‖uk‖+ ‖vk‖,
u1
k = (t− kγ`)b(kγ`, X`

k),

v1
k = γ`+1b(2kγ`+1, X

`+1
2k ) + (t− (2k + 1)γ`+1)b((2k + 1)γ`+1, X

`+1
2k ),

u2
k = (Bt −Bkγ`)E

`
k, v2

k = (Bt −Bkγ`)E
`+1
2k ,

uk = u1
k + u2

k, vk = v1
k + v2

k.

In particular, since E`k = Γ
X`k
X`+1

2k

E`+1
2k using (S20), we have that u2

k = Γ
X`k
X`+1

2k

v2
k. Therefore, combin-1238

ing this result and that t− (2k + 1)γ`+1 + γ`+1 = t− kγ`, we get that1239

‖ΓX
`
k

X`+1
2k

v1
k − u1

k‖ ≤ γ`+1‖b(kγ`, X`
k)− Γ

X`k
X`+1

2k

b(kγ`, X
`+1
2k )‖

+ γ`+1‖b(kγ`, X`
k)− Γ

X`k
X`+1

2k

b((2k + 1)γ`+1, X
`+1
2k )‖

≤ γ`‖b(kγ`, X`
k)− Γ

X`k
X`+1

2k

b(kγ`, X
`+1
2k )‖+ L2γ

2
`

≤ L1γ`d(X`
k, X

`+1
2k ) + L2γ

2
` .

Therefore, we get that ‖uk − vk‖ ≤ L1γ`d(X`
k, X

`+1
2k ) + L2γ

2
` . In addition, we have that ‖w′(0)‖ ≤1240

d(X`
k, X

`+1
2k ) since w is a minimizing geodesic. Combining these results and (S22) we get that1241

d(X̄`+1
t ,X`

t)
2 ≤ (1 + Cκ2

k exp[4κk])d(X`
k, X

`+1
2k )2

+ C exp[4κk](L1γ`d(X`
k, X

`+1
2k ) + L2γ

2
` )2

+ 2(L1γ`d(X`
k, X

`+1
2k ) + L2γ

2
` )d(X`

k, X
`+1
2k )

≤ (1 + Cκ2
k exp[4κk] + 2C exp[4κk]L2

1γ
2
` )d(X`

k, X
`+1
2k )2

+ 2(L1γ`d(X`
k, X

`+1
2k ) + L2γ

2
` )d(X`

k, X
`+1
2k ) + 2L2

2γ
4
`

≤ (1 + Cκ2
k exp[4κk] + 2C exp[4κk]L2

1γ
2
` + 2L1γ` + 4L2γ`)d(X`

k, X
`+1
2k )2 + 8L2γ

3
` ,

Hence, there exists C1 ≥ 0 (not dependent on k or `) such that1242

(1 + 2−`)d(X̄`+1
t ,X`

t)
2 ≤ (1 + C1{κ2

k exp[4κk] + γ2
` exp[4κk] + 2−`})d(X`

k, X
`+1
2k )2 + C1γ

3
` .

Next, we assume that t ∈ [kγ`, (2k + 1)γ`+1]. Recall that1243

X̄`+1
t = expX`+1

2k
[(t− kγ`)b(kγ`, X`+1

2k ) + (Bt −Bkγ`)E
`+1
2k ],

X`
t = expX`k [(t− kγ`)b(kγ`, X`

k) + (Bt −Bkγ`)E
`
k].
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Hence, using Lemma S18, we have that1244

d(X̄`+1
t ,X`

t)
2 ≤ (1 + Cκ2

k exp[4κk])d(X`
k, X

`+1
2k )2 (S23)

+ C exp[4κk]‖ΓX
`
k

X`+1
2k

vk − uk‖2 + 2〈w′(0),Γ
X`k
X`+1

2k

vk − uk〉,

with w : [0, 1]→M a minimizing geodesic between X`
k and X`+1

2k1245

κk = ‖uk‖+ ‖vk‖,
u1
k = (t− kγ`)b(kγ`, X`

k),

v1
k = (t− kγ`)b(kγ`, X`+1

2k ),

u2
k = (Bt −Bkγ`)E

`
k, v2

k = (Bt −Bkγ`)E
`+1
2k ,

uk = u1
k + u2

k, vk = v1
k + v2

k.

In particular, since E`k = Γ
X`k
X`+1

2k

E`+1
2k using (S20) and t− (2k + 1)γ`+1 + γ`+1 = t− kγ`, we have1246

that u2
k = Γ

X`k
X`+1

2k

v2
k. Therefore, we get that1247

‖ΓX
`
k

X`+1
2k

v1
k − u1

k‖ ≤ γ`+1‖b(kγ`, X`
k)− Γ

X`k
X`+1

2k

b(kγ`, X
`+1
2k )‖

≤ γ`‖b(kγ`, X`
k)− Γ

X`k
X`+1

2k

b(kγ`, X
`+1
2k )‖+ L2γ

2
`

≤ L1γ`d(X`
k, X

`+1
2k ).

Therefore, we get that ‖uk − vk‖ ≤ L1γ`d(X`
k, X

`+1
2k ). In addition, we have that ‖w′(0)‖ ≤1248

d(X`
k, X

`+1
2k ) since w is a minimizing geodesic. Combining these results and (S23) we get that1249

d(X̄`+1
t ,X`

t)
2 ≤ (1 + Cκ2

k exp[4κk])d(X`
k, X

`+1
2k )2

+ C exp[4κk]L2
1γ

2
` d(X`

k, X
`+1
2k )2

+ 2L1γ`d(X`
k, X

`+1
2k )d(X`

k, X
`+1
2k )

≤ (1 + Cκ2
k exp[4κk] + 2C exp[4κk]L2

1γ
2
` )d(X`

k, X
`+1
2k )2

+ 2L1γ`d(X`
k, X

`+1
2k )2 + 2L2

2γ
4
`

≤ (1 + Cκ2
k exp[4κk] + 2C exp[4κk]L2

1γ
2
` + 2L1γ`)d(X`

k, X
`+1
2k )2.

Hence, there exists C1 ≥ 0 (not dependent on k or `) such that for any t ∈ [kγ`, (k + 1)γ`]1250

(1 + 2−`)d(X̄`+1
t ,X`

t)
2 ≤ (1 + C1{κ2

k exp[4κk] + γ2
` exp[4κk] + 2−`})d(X`

k, X
`+1
2k )2 + C1γ

3
` .

(S24)

(b) We recall that if t ∈ [kγ`, (2k + 1)γ`+1] the second term in (S21) is zero. Therefore in what1251

follows, we assume t ∈ [(2k + 1)γ`+1, (k + 1)γ`]. We introduce1252

X̂`+1
t = expX`+1

2k+1
[(t− (2k+ 1)γ`+1)Γ

X`+1
2k+1

X`+1
2k

b((2k+ 1)γ`+1, X
`+1
2k ) + (Bt−B(2k+1)γ`+1

)E`+1
2k+1].

(S25)
In what follows, we provide an upper-bound for d(X̄`+1

t ,X`+1
t ). First, we have that1253

d(X̄`+1
t ,X`+1

t ) ≤ d(X̄`+1
t , X̂`+1

t ) + d(X̂`+1
t ,X`+1

t ).

We recall that1254

X̄`+1
t = expX`+1

2k
[γ`+1b(2kγ`+1, X

`+1
2k )+(t−(2k+1)γ`+1)b((2k+1)γ`+1, X

`+1
2k )+(Bt−Bkγ`)E

`+1
2k ].

(S26)
Denote ak, bk such that1255

ak = b(2kγ`+1, X
`+1
2k ) + (B(2k+1)γ`+1

−Bkγ`)E
`+1
2k ,

bk = (t− (2k + 1)γ`+1)b((2k + 1)γ`+1, X
`+1
2k ) + (Bt −B(2k+1)γ`+1

)E`+1
2k .
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Using (S20), (S25) and (S26) we have that1256

X`+1
2k+1 = expX`+1

2k
[ak], X̂`+1

t = expX`+1
2k+1

[Γ
X`+1

2k+1

X`+1
2k

bk], X̄`+1
t = expX`+1

2k
[ak + bk].

Using this result and (Sun et al., 2019, Lemma 3), there exists C2 ≥ 0 (not dependent on k or `) such1257

that1258

d(X̂`+1
t , X̄`+1

t ) ≤ C2(‖ak‖+ ‖bk‖)3.

Using this result and that for any t ∈ [0, γ] and x ∈M, ‖b(t, x)‖ ≤ K we get that there exists C3 ≥ 01259

(not dependent on k or `) such that1260

d(X̂`+1
t , X̄`+1

t )2 ≤ C3(γ6
`+1 + ‖Bt −B(2k+1)γ`+1

‖6 + ‖B(2k+1)γ` −B(k+1)γ`‖6). (S27)

Finally, we recall that1261

X̂`+1
t = expX`+1

2k+1
[(t− (2k + 1)γ`+1)Γ

X`+1
2k+1

X`+1
2k

b((2k + 1)γ`+1, X
`+1
2k ) + (Bt −B(2k+1)γ`+1

)E`+1
2k+1],

X`+1
t = expX`+1

2k+1
[(t− (2k + 1)γ`+1)b((2k + 1)γ`+1, X

`+1
2k+1) + (Bt −B(2k+1)γ`+1

)E`+1
2k+1].

Let us define1262

τk = ‖ck‖+ ‖dk‖,
ck = c1k + c2k, dk = d1

k + d2
k,

c1k = (t− (2k + 1)γ`+1)b((2k + 1)γ`+1, X
`+1
2k+1),

d1
k = (t− (2k + 1)γ`+1)Γ

X`+1
2k+1

X`+1
2k

b((2k + 1)γ`+1, X
`+1
2k ),

c2k = d2
k = (Bt −B(2k+1)γ`+1

)E`+1
2k+1. (S28)

Using Lemma S18, we get that1263

d(X`+1
t , X̂`+1

t )2 ≤ C exp[4τk]‖ck − dk‖2 ≤ CL2
2γ

2
`+1 exp[4τk]d(X`+1

2k+1, X
`+1
2k )2. (S29)

In addition, using Lemma S18, we get that1264

d(X`+1
2k+1, X

`+1
2k )2 ≤ exp[4‖ek‖]‖ek‖,

with ek = γ`+1b(kγ`, X
`+1
2k ) + (B(2k+1)γ`+1

−Bkγ`)E
`+1
2k . Combining this result and (S29), we1265

get that1266

d(X`+1
t , X̂`+1

t )2 ≤ C3γ
2
`+1(γ2

`+1 + ‖B(2k+1)γ`+1
−Bkγ`‖2) exp[4τk + ‖ek‖]. (S30)

Combining (S27) and (S30), there exists C5 such that1267

d(X̄`+1
t ,X`+1

t )2 ≤ C5γ
2
`+1(γ2

`+1 + ‖B(2k+1)γ`+1
−Bkγ`‖2) exp[4τk + ‖ek‖]

+ C5(γ6
`+1 + ‖Bt −B(2k+1)γ`+1

‖6 + ‖B(2k+1)γ` −B(k+1)γ`‖6). (S31)

In what follows, we denote1268

αk = C1{(κ+
k )2 exp[4κk] + γ2

` exp[4κ+
k ] + 2−`}.

βk = C1γ
3
` + C5(1 + 2`)γ2

`+1(γ2
`+1 + ‖B(2k+1)γ`+1

−Bkγ`‖2) exp[4τ+
k + ‖ek‖]

+C5(1 + 2`) (γ6
`+1 + supt∈[kγ`,(k+1)γ`]

{‖Bt −B(2k+1)γ`+1
‖6}+ ‖B(2k+1)γ` −B(k+1)γ`‖6),

with τ+
k = sup{‖ck‖+ ‖dk‖ : t ∈ [kγ`, (k + 1)γ`]}, see (S28). Therefore, using (S21), (S24) and1269

(S31), we get that for any k ∈ {0, . . . , 2` − 1}1270

Uk+1 ≤ (1 + αk)Uk + βk.

Let {Rk}2
`

k=−1 such that R−1 = 0 and for any k ∈ {0, . . . , 2` − 1}1271

Rk+1 = (1 + αk)Rk + βk.
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Then, for any k ∈ {0, . . . , 2` − 1}, we have that R2`−1 ≥ Rk ≥ Uk. Therefore1272

E[R2` ] ≥ E[sup{Uk : k ∈ {0, . . . , 2`}}] ≥ E[sup{d(X`
t,X

`+1
t )2 : t ∈ [0, γ]}]. (S32)

In addition, using that for any k ∈ {0, . . . , 2`− 1}, E[αk|Fk] = ᾱk and E[βk|Fk] = β̄k are constant,1273

where Fk = σ({Bt : t ∈ [0, kγ`]}). Therefore, we get that for any k ∈ {0, . . . , 2` − 1}1274

E[Rk+1] = (1 + ᾱk)E[Rk] + β̄k.

Therefore, using the discrete Grönwall lemma we get that for any k ∈ {0, . . . , 2` − 1}1275

E[R2` ] ≤ β̄2`−1 + exp[
∑2`−1
n=0 ᾱn]

∑2`−1
j=0 β̄jᾱj .

In addition, there exists C8 ≥ 0 such that for any k ∈ {0, . . . , 2`}, ᾱk ≤ C82−` and β̄k ≤ C8γ
32−2`.1276

Hence, there exists C9 ≥ 0 such that1277

E[R2` ] ≤ C9γ
32−2`,

which concludes the proof upon using (S32).1278

1279

Proposition S20. Assume A1. Then, there exists (Xt)t∈[0,γ] such that lim`→+∞ sup{d(X`
t,Xt) :1280

t ∈ [0, γ]} = 0 and (Xt)t∈[0,γ] is a weak solution to dXt = b(t,Xt)dt+ dBMt .1281

Proof. The proof is a straightforward application of Proposition S19 and (Cheng et al., 2022, A.11282

(Step 2 and Step 3), A.2).1283

Proposition S21. Assume A1. Then, there exists C ≥ 0 such that E
[
d(X0

1 ,Xγ)2 ≤ Cγ3/2
]
.1284

Proof. Using Proposition S19, there exists C ≥ 0 such that for any ` ∈ N1285

E[supt∈[0,γ] d(X`
t,X

`+1
t )] ≤ Cγ3/22−`.

Therefore, combining this result and Proposition S20 we get that for any ` ∈ N1286

E[supt∈[0,γ] d(X`
t,Xt)] ≤ 2Cγ3/2,

which concludes the proof.1287

Finally, we consider the two following processes (X1
k , X

2
k)k∈N such that for any k ∈ N and i ∈ {1, 2}1288

1289

Xi
k+1 = expXik [γb(kγ,Xi

k) +
√
γEikZk],

where {Zk}k∈N is a family of independent Gaussian random variables with zero mean and identity1290

covariance matrix, and for any k ∈ N, E1
k is a frame for TX1

k
M and E2

k = Γ
X2
k

X1
k
E1
k .1291

Proposition S22. Assume A1. Then, there exists C ≥ 0 such that for any k ∈ N1292

E
[
d(X1

k , X
2
k)
]
≤ exp[Ckγ]E

[
d(X1

0 , X
2
0 )
]
.

Proof. Let k ∈ N. Using Lemma S18, there exists D ≥ 0 such that1293

d(X1
k+1, X

2
k+1)2 ≤ (1 +Dκ2

k exp[4κk])d(X1
k , X

2
k)2

+D exp[4κk]‖ΓX
1
k

X2
k
vk − uk‖2 + 2〈w′(0),Γ

X1
k

X2
k
vk − uk〉,

with w : [0, 1]→M a minimizing geodesic between X1
k and X2

k1294

κk = ‖uk‖+ ‖vk‖,
u1
k = γb(kγ,X1

k),

v1
k = γb(kγ,X2

k),

u2
k =
√
γZkE

1
k, v2

k =
√
γZkE

2
k,

uk = u1
k + u2

k, vk = v1
k + v2

k.
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We have that Γ
X1
k

X2
k
v2
k = vk and1295

‖ΓX
1
k

X2
k
v1
k − u1

k‖ ≤ L1γd(X1
k , X

2
k).

In addition, ‖w′(0)‖ ≤ d(X1
k , X

2
k). Therefore, we get that1296

d(X1
k+1, X

2
k+1)2 ≤ (1 +Dκ2

k exp[4κk] +Dγ2 exp[4κk] + 2γ)d(X1
k , X

2
k)2.

Hence, using that for any t ≥ 0,
√

1 + t ≤ 1 + t/2, we have1297

d(X1
k+1, X

2
k+1) ≤ (1 +Dκ2

k exp[4κk] +Dγ2 exp[4κk] + 2γ)d(X1
k , X

2
k).

Therefore, we get that there exists C ≥ 0 such that1298

E[d(X1
k+1, X

2
k+1)] ≤ (1 + Cγ)E[d(X1

k , X
2
k)],

which concludes the proof.1299

I Proof of Proposition 31300

Proof. Let t ∈ (0, T ] and st ∈ C∞(M). Using the divergence theorem (see Lee, 2018, p.51), we1301

have1302

`t|s(st)=
∫
M×M ‖∇ log pt|s(xt|xs)‖2dPs,t(xs, xt) +

∫
M ‖st(xt)‖2dPt(xt)

−2
∫
M×M〈∇ log pt|s(xt|xs), st(xt)〉MdPs,t(xs, xt)

=
∫
M×M ‖∇ log pt|s(xt|xs)‖2dPs,t(xs, xt) +

∫
M ‖st(xt)‖2dPt(xt)

−2
∫
M×M〈∇ log pt|s(xt|xs), st(xt)〉Mpt|s(xt|xs)ps(xs)d(pref ⊗ pref)(xs, xt)

=
∫
M×M ‖∇ log pt|s(xt|xs)‖2dPs,t(xs, xt) +

∫
M ‖st(xt)‖2dPt(xt)

−2
∫
M{
∫
M〈∇pt|s(xt|xs), st(xt)〉Mdpref(xt)}ps(xs)dpref(xs)

=
∫
M×M ‖∇ log pt|s(xt|xs)‖2dPs,t(xs, xt) +

∫
M ‖st(xt)‖2dPt(xt)

+2
∫
M{
∫
M div(st)(xt)pt|s(xt|xs)dpref(xt)}ps(xs)dpref(xs),

which concludes the proof.1303

J Comparison with Moser flows1304

In this section, we compare ourselves with Rozen et al. (2021) in greater details. Rozen et al. (2021)1305

also aims at interpolating between a reference distribution pref and a target distribution p0. We assume1306

that we have access to the density pref and that we know how to sample form pref (which is often the1307

case if pref is the uniform distribution onM). Contrary to RSGM, pref is not necessary the uniform1308

distribution.1309

We then consider the following interpolation p̂t = (1 − t)p̂0 + tp̂1, with p̂0 = pref and p̂1 = p0.1310

Let (Xt)t∈[0,1] be given by X0 ∼ p̂0 and dXt = vt(Xt)dt where for any t ∈ [0, 1], vt =1311

u/((1− t)p̂0 + p̂1), with div(u) = p̂0 − p̂1. Using the Fokker-Planck equation, we have that for any1312

t ∈ [0, 1], Xt ∼ p̂t. In Rozen et al. (2021), u is replaced by a parametric version uθ and the authors1313

optimize the loss1314

`(θ) = E[(p̂0 − div(uθ))
+,ε(X1)] + λ

∫
M(p̂0 − div(uθ))

−,ε(x)dx,

with λ, ε > 0 and for any f : M → R, f+,ε = max(f, ε) and f−,ε = ε − min(f, ε). Given1315

uθ, we then consider (Xθ
t )t∈[0,1] such that dXθ

t = vθt (X
θ
t )dt, where for any t ∈ [0, 1], vθt =1316

uθ/(p̂0 + tdiv(uθ)). Note that uθ also enables density estimation using that p̂1 = p̂0 − div(uθ).1317

Density estimation is not directly accessible using RSGM, however in Appendix K we propose a way1318

to perform such an estimation using Fisher score in a manner akin to Choi et al. (2021).1319

Let p̂0 = pref to be the uniform distribution onM. As RSGM, Moser flow defines a continuous1320

time interpolation between p0 and pref. One major difference between the two approaches is that1321
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Figure S3: The reference distribution is pref = N(0, 1).

Moser flows perform the interpolation in density space, i.e. p̂t = (1− t)p̂0 + tp̂1 for any t ∈ [0, 1],1322

whereas RSGM performs the interpolation in sample space, i.e. pt =
∫
M p0(y)pt|0(y, x)dpref(y).1323

Interpolation in the density space results in spontaneous creation of density, whereas interpolation1324

in sample space corresponds to a displacement of the density, see Figures S3a and S3b. In that1325

respect, Moser flows can be seen as vertical displacement whereas RSGM corresponds to horizontal1326

displacement, see Santambrogio (2017). The drawback with the ‘spontaneous creation of density’ of1327

Moser flows, is that when solving trajectories in sample space—for sampling or likelihood evaluation1328

purposes—the Stein score’s amplitude can get extremely high in settings where the reference and1329

target distributions have little overlap as shown on Figure S3c.1330

K Density estimation with Fisher score1331

In this section, we show how we can adapt ideas from Choi et al. (2021) for density estimation onM1332

using the Fisher score. The main idea of using Fisher score is to leverage the following decomposition1333
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for any x ∈M1334

log p0(x) = log pT (x)−
∫ T

0
∂t log pt(x)dt.

Assume that an approximation ŝθ of ∂t log pt (the Fisher score) is available then we have that for any1335

x ∈M1336

log p0(x) ≈ log pref(x)−
∫ T

0
ŝθ(x)dt.

Before turning to our main result, we state the following lemma.1337

Lemma S23. Assume A1. Then, there exists C, T0 ≥ 0 such that for any x ∈ M and T ≥ T0,1338

|pT (x)− 1| ≤ C exp[−λ1T/2], where λ1 is the first non-negative eigenvalue of −∆M in L2(pref).1339

Proof. First, using Proposition S10, there exists C0 ≥ 0 such that for any T ≥ 1/2 we have1340 ∫
M |pT (x)− 1|dpref(x) ≤ C0e−λ1T .

Using (Grigor’yan, 1999, Corollary 5.5), (Hsu, 1999, Theorem 1.2)and the fact thatM is compact,1341

there exists C1, β ≥ 0 such that for any T ≥ 1/2 and x0, xT ∈M1342

‖∇pT |0(xT |x0)‖ ≤ C1(1 + T β). (S33)

In addition, using (Croke, 1980, Proposition 14) we have that there exists C2, r0 > 0 such that for1343

any x0 ∈M and r ∈ (0, r0)1344 ∫
B̄(x0,r)

dpref(x) ≥ C2r
d. (S34)

Assume that that
∫
M |pT (x)− 1|dpref(x) ≤ ε and that there exists x0 ∈M such that |pT (x)− 1| >1345

κε with κ > 0 and let T ≥ T0 with T0 = (κε/(2C1))1/β . Then, using (S33) and (S34), we have for1346

any r ∈ (0, r0)1347

ε ≥
∫

B̄(0,r)
|pT (x)− 1| ≥ C2r

d(κε− C1(1 + T β)r).

Since κε/(2C1(1 + T β)) ∈ (0, r0) we have1348

ε ≥ C2(κε)d+1/(4C1(1 + T β)).

Therefore, we get that1349

ε ≥ C2(κε)d+1/(4C1(1 + T β)).

Therefore, we get that κ ≤ (4C1(1 + T β)/C2)1/(d+1)ε−1/(d+1). Therefore, we have that for any1350

x ∈M1351

|pT (x)− 1| ≤ (8C1(1 + T β)/C2)1/(d+1)ε1−1/(d+1). (S35)
Let T0 ≥ 0 such that for any T ≥ T0 we have1352

(8C1(1 + T β)/C2)1/(d+1)C
1−1/(d+1)
0 e−(1−1/(d+1))λ1T ≤ 21−βC1.

Combining this result and (S36), we get that for any x ∈M and T ≥ 01353

|pT (x)− 1| ≤ (8C1(1 + T β)/C2)1/(d+1)C
1−1/(d+1)
0 e−(1−1/(d+1))λ1T , (S36)

which concludes the proof.1354

The following proposition quantifies this approximation.1355

Proposition S24. Assume A1 and that p0 ∈ C∞(M, (0,+∞)). Let x0 ∈ M and assume that for1356

any t ∈ [0, T ], |ŝθ(t, x0)− ∂t log pt(x0)| ≤ M with M ≥ 0. Then, there exists C, T0 ≥ 0 such that for1357

any T ≥ 01358

| log p0(x0)−
∫ T

0
ŝθ(t, x0)dt| ≤ C exp[−λ1T/2] + MT.,

where λ1 is the first non-negative eigenvalue of −∆M in L2(pref).1359

Proof. First using, Lemma S23, there exists C0, T
(a)
0 ≥ 0 such that for any T ≥ T (a)

01360

|pT (x0)− 1| ≤ C0 exp[−λ1T/2].

Let T (b)
0 = |log(C0)| /λ1. Using that for any s ∈ [1/2,+∞) we have that | log(1 +s)| ≤ 2 log(2)|s|1361

we get that for any T ≥ max(T
(a)
0 , T

(b)
0 )1362

| log pT (x0)| ≤ 2 log(2)C0 exp[−λ1T/2],

which concludes the proof.1363
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In practice, we do not have access to ∂t log pt. However, following (Choi et al., 2021, Proposition 2),1364

we have the following property.1365

Proposition S25. Let ŝ such that for any t ∈ [0, T ] and x ∈ M, ŝ(t, x) = ∂t log pt(x). Then, we1366

have that ŝ = arg min{L(s) : s ∈ C∞([0, T ] ×M,R)}, where for any s ∈ C∞([0, T ] ×M,R)1367

we have1368

L(s) = (1/2)E[
∫ T

0
λ(t)s(t,Xt)dt] + E[

∫ T
0
λ(t)∂ts(t,Xt)dt]

+E[
∫ T

0
∂tλ(t)∂ts(t,Xt)dt] + E[λ(0)s(0,X0)]− E[λ(T )s(T,XT )],

where λ ∈ C∞([0, T ] ,R) is a weighting function.1369

Proof. For any t ∈ [0, T ] and xt ∈M we have1370

ŝ(xt) =
∫
M ∂t log pt|0(xt|x0)p0|t(x0|xt)dx0.

Hence, sinceM is compact and ŝ ∈ C∞([0, T ]×M,R), we have that ŝ = arg min{L0(s) : s ∈1371

C∞([0, T ]×M,R)} where for any s ∈ C∞([0, T ]×M,R) we have1372

L0(s) =
∫ T

0
λ(t)

∫
M×M(s(t, xt)− ∂t log pt|0(xt|x0))2dp0,t(x0, xt)dt (S37)

=
∫ T

0
λ(t)

∫
M s(t, xt)

2dpt(xt)dt− 2
∫ T

0
λ(t)

∫
M×M s(t, xt)∂t log pt|0(x0, xt)dp0,t(x0, xt)dt

+
∫ T

0
λ(t)

∫
M dpt(xt)dt

In addition, we have that1373 ∫ T
0
λ(t)

∫
M×M s(t, xt)∂t log pt|0(xt|x0)dp0,t(x0, xt)dt

=
∫ T

0

∫
M×M λ(t)s(t, xt)∂tpt|0(xt)dp0(x0)dpref(xt)dt.

By integration by parts we get1374 ∫ T
0

∫
M×M λ(t)s(t, xt)∂tpt|0(xt)dp0(x0)dpref(xt)dt

= −
∫ T

0

∫
M×M ∂t(λ(t)s(·, xt))(t)dp0,t(x0, xt)dt

+λ(T )
∫
M s(T, xT )dpT (xT )−

∫
M s(0, x0)dp0(x0)

= −
∫ T

0

∫
M×M ∂tλ(t)s(t, xt)dpt(xt)dt−

∫ T
0

∫
M×M λ(t)∂ts(t, xt)dpt(xt)dt

+λ(T )
∫
M s(T, xT )dpT (xT )− λ(0)

∫
M s(0, x0)dp0(x0)

Combining this result and (S37) we get that1375

L0(s) =
∫ T

0
λ(t)

∫
M×M(s(t, xt)− ∂t log pt|0(xt|x0))2dp0,t(x0, xt)dt

=
∫ T

0
λ(t)

∫
M s(t, xt)

2dpt(xt)dt+ 2
∫ T

0

∫
M×M ∂tλ(t)s(t, xt)dpt(xt)dt

+ 2
∫ T

0

∫
M×M λ(t)∂ts(t, xt)dpt(xt)dt−λ(T )

∫
M s(T, xT )dpT (xT )

+ λ(0)
∫
M s(0, x0)dp0(x0)+

∫ T
0
λ(t)

∫ 2

M dpt(xt)dt,

which concludes the proof.1376

Hence, using Proposition S25, we could estimate jointly the spatial (or Stein) score used in RSGM1377

and the Fisher score considered in this section, see Choi et al. (2021).1378

L Extensions1379

L.1 Schrödinger bridge.1380

For Euclidean SGM, the generative model is given by an approximation of the time-reversal of1381

the noising dynamics (Xt)t∈[0,T ] while the backward dynamics (Yt)t∈[0,T ] is initialized with the1382

invariant distribution of the noising dynamics (the uniform distribution pref in case of RSGM).1383

However, in order for the method to yield good results we need L(Y0) ≈ L(XT ) (see De Bortoli1384
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et al., 2021, Theorem 1). Usually, this requires the number of steps in the backward process to1385

be large in order to keep T large and γ small (where γ > 0 is the stepsize in the GRW). Another1386

limitation of SGM is that existing methods target an easy-to-sample reference distribution. Hence,1387

classical SGM cannot interpolate between two distributions defined by datasets. To circumvent this1388

problem, one can consider a process whose initial and terminal distribution are pinned down using1389

Schrödinger bridges (Schrödinger, 1932; Léonard, 2012a; Chen et al., 2016; De Bortoli et al., 2021;1390

Vargas et al., 2021).1391

L.2 Conditional RSGM.1392

Another extension of interest is conditional sampling. By amortizing SGM with respect to an1393

observation y it is possible to approximately sample from a given posterior distribution. In the1394

Euclidean setting this idea has been successfully applied for several image processing problems such1395

as deblurring, denoising or inpainting (see for instance Kawar et al., 2021a,b; Lee et al., 2021; Sinha1396

et al., 2021; Batzolis et al., 2021; Chung et al., 2021). Similarly, RSGM can be amortized to handle1397

such situations in the case where the underlying posterior distribution is supported on a manifold.1398

Practically, this requires for the score network takes an additional input, i.e sθ (t, x; y).1399

L.3 Invariant distributions1400

In what follows, we propose an extension for modelling probability distributions which known1401

invariance. That is, we assume that p0 (ρ(g)x) = p0(x) for all g ∈ G, with G a group and1402

ρ : G→ GLn(R) a representation. Following Köhler et al. (2020), we have that if pref is invariant1403

w.r.t. G and φ : M → M is equivariant w.r.t. to G, then the pushforward probability density1404

p = pref ◦ φ−1 is invariant w.r.t. G.1405

Let’s consider the probability flow φ associated with the reverse diffusion (3)—given by dYt =1406

{−b(Yt) +∇ log pT−t(Yt)}dt+ dBMt — i.e. the solution of the following ODE (see Appendix C)1407

dYt = {−b(Yt) + 1/2 ∇ log pT−t(Yt)}dt.

In practice, the Stein score∇ log pt is approximated with the score network sθ(t, ·). It is sufficient to1408

parametrize the score network so that it is equivariant w.r.t. its second argument —assuming that1409

ρ(g) and the drift b commute (e.g. which is true for a linear drift)—since we then have1410

[−b+ 1/2 sθ (T − t, ·)] (ρ(g)Yt) = ρ(g) [−b+ 1/2 sθ (T − t, ·)] (Yt).

M Experimental details1411

In what follows we describe the experimental settings used to generate results introduced in Section 5.1412

The models and experiments have been implemented in Jax (Bradbury et al., 2018), using a modified1413

version of the Riemannian geometry library Geomstats (Miolane et al., 2020). The code will be open1414

sourced in the near future.1415

Models Following Song et al. (2021b), the score-based generative models (SGMs) diffusion1416

coefficient is parametrized as g(t) =
√
β(t) with β : t 7→ βmin + (βmax − βmin) · t.1417

Architecture The architecture of the score network sθ is given by a multilayer perceptron with1418

5 hidden layers for the Earth and SO(3) experiments, and 3 for the high-dimension experiments1419

with 512 units each. We use sinusoidal activation functions. We decompose the output of the score1420

network on the set of divergence free vector fields as per Section 3.3.1421

Loss Where not specified, SGMs are trained with the sliced score matching (SSM) loss `imt , relying1422

on the Hutchinson estimator for computing the divergence with Rademacher noise described in1423

Section 3.3. We found that training with the denoising score matching (DSM) loss `t|0 gave similar1424

results. Regarding the weighting function, for DSM loss `t|0 we use λt = Var[Xt|X0] (where we rely1425

on the closed-form standard deviation available in the Euclidean setting as a proxy for the compact1426

manifold setting), while for the ISM/SSM losses `imt we use λt = g(t)2 = β(t).1427
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Optimization All models are trained by the stochastic optimizer Adam (Kingma and Ba, 2015)1428

with parameters β1 = 0.9, β2 = 0.999, batch-size of 512 data-points. The learning rate is annealed1429

with a linear ramp from 0 to 1000 and from then with a cosine schedule.1430

Likelihood evaluation and sample drawing We rely on the Dormand-Prince solver (Dormand1431

and Prince, 1980), an adaptive Runge-Kutta 4(5) solver, with absolute and relative tolerance of 1e− 51432

to compute approximate numerical solutions of any ODEs. For the rollouts of the SGM SDEs we use1433

a Euler Maruyama predictor and no corrector. Unless stated we use 100 step rollouts.1434

Hardware Models are trained on a cluster with a mixture of GeForce RTX 1080, 1080 Ti and 20801435

Ti GPU cards.1436

M.1 Sphere1437

Data We randomly split the datasets intro training, validation and test datasets with (0.8, 0.1, 0.1)1438

proportions. In each case the earth is approximated as a perfect sphere.1439

Models The mixture of Kent distributions (Peel et al., 2001) were optimised using the EM1440

algorithm and the number of components were selected from a grid search over the range1441

5, 10, 15, 20, 25, 30, 40, 50, 75, 100, based on validation set likelihood and 250 EM iterations. The1442

number of components selected were: Volcano 25, Earthquake 50, Flood 100 and Fire 100.1443

For the stereographic SGM–which is a standard SGM with an Ornstein–Uhlenbeck process followed1444

with the inverse stereographic projection–we found βmin = 0.001 and βmax = 2 to work best.1445

Optimization The score-based models are trained for 600k iterations for all datasets but ‘Flood’1446

where 300k performed best.1447

Additional experimental results1448

Approximate forward sampling Standard Euclidean SGMs rely on a Ornstein–Ulhenbeck (OU)1449

forward process (1) which can easily be simulated since Xt|X0 is Gaussian. In contrast, for most1450

manifolds one has to rely on an approximate sampling scheme—see Section 3.2. First, we directly1451

assess the quality of the approximate samples X̂t|X0 obtained via geodesic random walk (GRW),1452

against ‘exact’ samples Xt|X0 which are obtained by using a high number of discretization steps1453

(N = 1000). We report on Figure S4a the discrepancy between these distributions for different1454

values of discretization steps N , as measured by maximum mean discrepancy (MMD) (Gretton et al.,1455

2012). We see that from N = 5 the approximate samples are very closely distributed to the true1456

samples. Then, in order to assess the impact of this approximation on the RSGMs’ performance,1457

we report on Figure S4b the log-likelihood when varying the number of discretization steps N . We1458

similarly observe that apart from very small values of N , the models’ performance is very robust to1459

the approximation quality of the forward sampling samples.
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(b) Test log-likelihood of trained RSGMs on the Flood
dataset while varying the number of discretization steps
N when simulating forward sampling Xt|X0.

Figure S4: Ablation study on the impact of the forward sampling approximation quality on S2.
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DSM loss `t|0 On Figure S5, we show how the test log-likelihood varies with respect to the two1461

hyparameters of the DSM loss, by training RSGMs over a grid of values for τ and J on the Flood1462

dataset. We can see that the Varadhan approximation by itself (τ = 1) yields descent performance,1463

although a wise combination of Varadhan approximation with a truncation of the heat kernel can give1464

even better results. The performance is relatively robust to the choice of such hyperparameters as1465

long as τ and J are high enough.
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Figure S5: Ablation study on the denoising score matching (DSM) loss `t|0 when combining the heat kernel trun-
cation and the Varadhan approximation: ∇xt log pt|0(xt|x0) ≈ 1(t ≤ τ) exp−1

xt
(x0) + 1(t > τ)SJ,t(x0, xt).

1466

M.2 Torus1467

Data The synthetic data trained on consists of a wrapped Gaussian distribution on Tn with uni-1468

formly chosen random mean and standard deviation of 0.2. Such a distribution is defined by taking1469

the density of a Normal distribution in the tangent space of the manifold at the mean and passing it1470

through the exponential map at the mean.1471

Architecture To parametrize the vector field on Tn we use a single filed per dimension pointing in1472

a consistent direction around the ith component in the product, with unit norm.1473

Models All models were trained with the same 3 layer, 512 units per layer MLP across different1474

dimension sizes.1475

Optimization The models are optimized for 50k iterations. The RSGM models are trained with1476

both the implicit score-matching loss and the sliced score-matching loss.1477

M.3 Special Orthogonal group1478

Applications of orthogonal constraints span various fields, such as protein docking with ligands bind-1479

ing pose prediction (Ganea et al., 2022), robotics and Computer vision with rigid body transformation1480

estimation (Barfoot et al., 2011; Prokudin et al., 2018), and medical imaging for data alignment (Hou1481

et al., 2018).1482

Data We consider the synthetic dataset consisting of samples in SO3(Rd)4 from the mix-1483

ture distribution with density p(Q) = 1
K

∑K
k=1 NW (Q|Qk, σ

2
k) with K ∈ N, where for any1484

k ∈ {1, . . . ,K}, we have that Q = Qk expId[σkẑ] with z ∼ N(0, IdR3) satisfies Q ∼ NW (Qk, σk)1485

and (·)∧ : R3 → so(3). For any k ∈ {1, . . . ,K}, we set Qk ∼ µ where µ is the uniform distribution1486

on SO3(R) and σ2
k ∼ IG(α = 100, β = 1), where IG is the inverse Gaussian distribution. We choose1487

K = 32 mixture components. We showcase a conditional sampling extension of our model—see1488

Appendix L for more details— by targeting individual mixture components p(Q|k). Our model is1489

trained using the `t|0 (DSM) loss along with the Varadhan asymptotic approximation, see (7).1490

4This manifold is 3-dimensional.
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Architecture To parametrize the vector field, we rely on the basis of the Lie group, so(n) =1491

{A ∈ Md(R) : A> = −A} given by Eij = Uij − Uji for i, j ∈ {1, . . . , d} with i < j and1492

Uij = (δij(k, `))1≤k,`≤d, which induces a basis on the tangent spaces TQSOd for any Q ∈ SOd(R)1493

given by {QEij}1≤i<j≤d. This is the divergence-free vector field approach described in Section 3.3.1494

Models We compare our proposed approach against Moser flows (Rozen et al., 2021) and a wrapped-1495

exponential baseline (Falorsi et al., 2019) defined as the pushforward along the transformation1496

R3
F−1
θ−−−→ R3 g−→ R3 ∧−→ so(3)

exp−−→ SO3(R) with F−1
θ denoting the approximate time-reversed1497

diffusion, g denoting the radial operator defined by g : x 7→ 2π tanh(‖x‖)x/‖x‖, (·)∧ : R3 → so(n)1498

the isomorphism given by the basis on so(3) and exp the matrix exponential. The radial g operator’s1499

constant 2π is chosen as the injectivity radius of the group so that the transformation tanh ◦ ∧ ◦ exp1500

is injective (the set of elements with no preimage is then only the cut locus which is known to have1501

measure zero). Henceforth, this wrapped-exponential transformation cannot be bijective, it is either1502

injective or surjective depending on the choice of radius in the radial operator g.1503

Optimization Models are trained for 100k iterations. The Riemannian SGM is trained with the1504

Varhadan approximation of the denoising score-matching loss (DSM) Section 3.3, and the wrapped-1505

exponential model relies on the exact DSM loss. After a first hyperparameter exploration, a grid search1506

is performed over learning_rate ∈ [2e − 5, 4e − 5], for SGMs over βf ∈ [0.5, 1, 2, 4, 6, 8, 10]1507

and for Moser flows over K ∈ [1000, 10000] and λmin ∈ [1, 10, 100].1508
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