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A Derivations of Contrastive Laplacian Eigenmaps

In this section, we perform the transition of Eq. (4) into Eq.(5). We note that Eq. (4) relies on two
terms: Ev∼pd(v)

[
Eu∼pd(u|v)(u

>v)
]

and ηEv∼pd(v)

[
Eu′∼pn(u′|v)

(
−u′>v

)]
. The above two terms

are evaluated over two different distributions u ∼ pd(u | v) and u′ ∼ pn (u
′ | v), respectively. Below

we discuss how to reformulate Ev∼pd(v)[Eu∼pd(u|v)u
>v] into the matrix form Y>LY (reformulation

of the second term can be performed by analogy), where L=I−W(+) and W(+) = D−1/2ŴD−1/2

Let pd(v) = 1√
Dvv

and pd(u | v) = Wuv√
Duu

. Then we have:

Ev∼pd(v)[Eu∼pd(u|v)u
>v] =

∑
u,v

Ŵuv√
DvvDuu

u>v =

d′∑
i

∑
u,v

Ŵuv√
DvvDuu

uivi. (15)

Note our slight abuse of notations where ui and vi are i-th coefficients of vectors u and v, whereas
u and v are note indexes. We notice that

∑
u,v

Ŵuv√
DvvDuu

uivi has a bilinear form 〈Yi,W
(+)Yi〉,

which leads to:
d′∑
i

y>
i W

(+)yi = Tr(Y>W(+)Y), (16)

where u and v are rows of Y. Moreover, ui denotes the i-th element of the vector u and yi is the i-th
column of the matrix Y.

By analogy, if we sample κ for the random graph (negative graph), we have:

Ev∼pd(v)[Eu′∼pn(u′|v)−u′>v] = − 1

κ

κ∑
k=1

Ev∼pd(v)[Eu′∼p∗
n(u

′|v)u
′>v] = − 1

κ

κ∑
k=1

Tr(Y>W
(−)
k Y),

(17)
where p∗n(u

′|v) represents some uniform probability p′ > 0 of creating the negative links between
nodes u′ and v, which results in a sparse matrix W

(−)
k . Averaging κ times over such adjacency

matrices is equivalent to sampling from the negative distribution pn(u
′|v).

Combining Eq. (16) and (17) gives Eq. (5).

Block-Contrastive Loss. Based on Eq. (15), we can extend Eq. (11) into two different items:

Eu∼pd(u|v)(u
>v) = v>

∑
u

Ŵuv√
DvvDuu

u = v>
∑
u

W (+)
uv u, (18)

and
Eu′∼pn(u′|v)

(
u′>v

)
= v>

∑
u′

W
(−)
u′v u

′. (19)

*The corresponding author. Code: https://github.com/allenhaozhu/COLES.
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Thus, we have µ+ =
∑

u W
(+)
uv u and µ− =

∑
u′ W

(−)
u′v u

′ in our case. For brevity, we omit b in
the above result, whose role in Eq. (11) is to normalize by the block size e.g., the number of links
between v and u (and some b′ for v and u′, respectively). Based on the above derivations, Eq. (11)
can be reformulated as:

−Eu∼pd(u|v)(u
>v)+Eu′∼pn(u′|v)

(
−u′>v

)
= −v>(µ+−µ−) = −v>

∑
u

(W (+)
uv −W (−)

uv )u. (20)

Thus,
∑

u,v(W
(+)
uv −W

(−)
uv )u>v with the corresponding matrix form Tr(Y>(W (+) −W (−))Y).

B Graph Homophily Predicts that COLES Outperforms SampledNCE with
Sigmoid (an Intuitive Illustration)

Let us define the graph homophily for graph G(+) with the degree-normalized adjacency matrix
W(+), n nodes and multiclass labels l1, · · · , ln as:

H
(
G(+)

)
=

1

n

n∑
i=1

1

|Ni|
∑
j∈Ni

δ(li − lj) =
1

n

n∑
i=1

n∑
j=1

W
(+)
ij δ(li − lj), (21)

where δ(li − lj) equals one if li equals lj , zero otherwise.

Furthermore, for negative sampling, we use the so-called negative graph G(−), which is a sparse
graph with the uniform probability p′ > 0 of connection between each pair of nodes. Thus, in
expectation, the homophily of this graph is equal to homophily for the fully-connected graph, and is
given by:

H
(
G(−)

)
=

1

n

n∑
i=1

n∑
j=1

W
(−)
ij δ(li − lj) =

1

C

C∑
c=1

ρ2c , (22)

where C is the number of classes, ρ1, · · · , ρC are class probabilities e.g., ρ1 = 0.1 means that class
one is given to the 10% of nodes.

Looking at Eq. (8), we notice that for the SampledNCE with sigmoid, one can think of D(x) and
1−D(x′) as a sigmoid for xpr and a reverse sigmoid for pg , respectively. Therefore, to understand
how well two distributions are separated, one can measure:

Sep(v, u, u′) =
|D(u>v)−D(u′>v)|
D(u>v) +D(u′>v)

, (23)

where Sep(v, u, u′) → 1 if the dot-products of embeddings 〈v,u〉 and 〈v,u′〉 can be separated from
each other linearly, and Sep(v, u, u′) → 0 if they cannot be separated.

To this end, we make a simple assumption. If H
(
G(+)

)
→ H

(
G(−)

)
, this means that pr and pg

become highly similar, which is good for the underlying JS divergence but it means that is impossible
to find embeddings which will separate two distributions (contrastive learning fails in this regime). At
the other extreme end, H

(
G(+)

)
� H

(
G(−)

)
, which indicates that we can easily find embeddings

that separate pr and pg. However, these embeddings can be disjoint, which is manageable for the
underlying surrogate of Wasserstein distance ins COLES but is hard for SampledNCE with sigmoid
with the underlying JS divergence.

To validate our intuition, Figure 2 shows ∆Acc. between COLES-GCN and GCN+SampledNCE as
a function of ∆H = H

(
G(+)

)
−H

(
G(−)

)
. We use the same experimental setting as the one used

for results reported in Table 2. After sorting results by homophily in the ascending order, we note
that the overall trend agrees with our expectations that for small ∆H, both methods struggle more
as it is harder for the contrastive setting to find distinctive embeddings. However, as ∆H increases,
the overlap between pr and pg decreases, making it easier to find distinctive embeddings. COLES
benefits a lot under this setting, whereas SampledNCE with sigmoid benefits to a lesser degree.

The above simple illustration/intuition is by no means an exhaustive proof given we evaluated it on
only three datasets, and embeddings can exploit often complex neighborhood patterns which the
homophily index cannot capture (something appearing as random from the homophily perspective
may still enjoy an informative complex pattern). Nonetheless, our observation supports our claim
that COLES works well in the regime where contrastive learning is easily viable, whereas the
SampledNCE with sigmoid struggles more by contrast.
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Figure 2: ∆Acc. between COLES-GCN and GCN+SampledNCE w.r.t. ∆H. We sorted the results by
∆H. Thus, the first, second and third point on each curve (from left to right) corresponds to Pubmed,
Citeseer and Cora, respectively. In parentheses, we indicate the number of labeled training samples
per class.

C Reproducibility

C.1 Datasets

In this paper we use six datasets to evaluate our method. Cora is a well-known citation network
labeled according to the paper topic. Most of approaches report on a small subset of this dataset. The
Cora dataset consists of 2708 scientific publications classified into one of seven classes. The citation
network consists of 5429 links. Each publication in the dataset is described by a 0/1-valued word
vector indicating the absence/presence of the corresponding word from the dictionary. The dictionary
consists of 1433 unique words. Cora Full consists of 19793 scientific publications classified into
one of seventy classes. The citation network consists of 65311 links. The dictionary consists of 1433
unique words.

The CiteSeer dataset consists of 3312 scientific publications classified into one of six classes. The
citation network consists of 4732 links. Each publication in the dataset is described by a 0/1-valued
word vector indicating the absence/presence of the corresponding word from the dictionary. The
dictionary consists of 3703 unique words.

The Pubmed dataset consists of 19717 scientific publications from PubMed database pertaining to
diabetes classified into one of three classes. The citation network consists of 44338 links. Each
publication in the dataset is described by a TF/IDF weighted word vector from a dictionary which
consists of 500 unique words.

The Reddit dataset is a graph dataset from Reddit posts made in the month of September, 2014.
The node label in this case is the community, or subreddit, that a post belongs to. The 50 large
communities have been sampled to build a post-to-post graph, connecting posts if the same user
comments on both. In total, this dataset contains 232,965 posts with an average degree of 492. The
first 20 days are used for training and the remaining days for testing (with 30% used for validation).

The Ogbn-arxiv dataset contains a directed graph, representing the citation network between all
Computer Science (CS) arXiv papers indexed by MAG [46]. Each node is an arXiv paper and each
directed edge indicates that one paper cites another one. Each paper comes with a 128-dimensional
feature vector obtained by averaging the embeddings of words in its title and abstract. The embeddings
of individual words are computed by running the skip-gram model [33] over the MAG corpus. We
also provide the mapping from MAG paper IDs into the raw texts of titles and abstracts here. In
addition, all papers are also associated with the year that the corresponding paper was published.
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