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Abstract

The goal of robust reinforcement learning (RL) is to learn a policy that is robust1

against the uncertainty in model parameters. Parameter uncertainty commonly2

occurs in many real-world RL applications due to simulator modeling errors,3

changes in the real-world system dynamics over time, and adversarial disturbances.4

Robust RL is typically formulated as a max-min problem, where the objective is to5

learn the policy that maximizes the value against the worst possible models that lie6

in an uncertainty set. In this work, we propose a robust RL algorithm called Robust7

Fitted Q-Iteration (RFQI), which uses only an offline dataset to learn the optimal8

robust policy. Robust RL with offline data is significantly more challenging than9

its non-robust counterpart because of the minimization over all models present10

in the robust Bellman operator. This poses challenges in offline data collection,11

optimization over the models, and unbiased estimation. In this work, we propose a12

systematic approach to overcome these challenges, resulting in our RFQI algorithm.13

We prove that RFQI learns a near-optimal robust policy under standard assumptions14

and demonstrate its superior performance on standard benchmark problems.15

1 Introduction16

Reinforcement learning (RL) algorithms often require a large number of data samples to learn17

a control policy. As a result, training them directly on the real-world systems is expensive and18

potentially dangerous. This problem is typically overcome by training them on a simulator (online19

RL) or using a pre-collected offline dataset (offline RL). The offline dataset is usually collected either20

from a sophisticated simulator of the real-world system or from the historical measurements. The21

trained RL policy is then deployed assuming that the training environment, the simulator or the offline22

data, faithfully represents the model of the real-world system. This assumption is often incorrect23

due to multiple factors such as the approximation errors incurred while modeling, changes in the24

real-world parameters over time and possible adversarial disturbances in the real-world. For example,25

the standard simulator settings of the sensor noise, action delay, friction, and mass of a mobile robot26

can be different from that of the actual real-world robot, in addition to changes in the terrain, weather27

conditions, lighting, and obstacle densities of the testing environment. Unfortunately, the current RL28

control policies can fail dramatically when faced with even mild changes in the training and testing29

environments (Sünderhauf et al., 2018; Tobin et al., 2017; Peng et al., 2018).30

The goal in robust RL is to learn a policy that is robust against the model parameter mismatches31

between the training and testing environments. The robust planning problem is formalized using32

the framework of Robust Markov Decision Process (RMDP) (Iyengar, 2005; Nilim and El Ghaoui,33

2005). Unlike the standard MDP which considers a single model (transition probability function), the34

RMDP formulation considers a set of models which is called the uncertainty set. The goal is to find35

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.



an optimal robust policy that performs the best under the worst possible model in this uncertainty36

set. The minimization over the uncertainty set makes the robust MDP and robust RL problems37

significantly more challenging than their non-robust counterparts.38

In this work, we study the problem of developing a robust RL algorithm with provably optimal39

performance for an RMDP with arbitrarily large state spaces, using only offline data with function40

approximation. Before stating the contributions of our work, we provide a brief overview of the41

results in offline and robust RL that are directly related to ours. We leave a more thorough discussion42

on related works to Appendix D.43

Offline RL: Offline RL considers the problem of learning the optimal policy only using a pre-collected44

(offline) dataset. Offline RL problem has been addressed extensively in the literature (Antos et al.,45

2008; Bertsekas, 2011; Lange et al., 2012; Chen and Jiang, 2019; Xie and Jiang, 2020; Levine et al.,46

2020; Xie et al., 2021). Many recent works develop deep RL algorithms and heuristics for the offline47

RL problem, focusing on the algorithmic and empirical aspects (Fujimoto et al., 2019; Kumar et al.,48

2019, 2020; Yu et al., 2020; Zhang and Jiang, 2021). A number of theoretical work focus on analyzing49

the variations of Fitted Q-Iteration (FQI) algorithm (Gordon, 1995; Ernst et al., 2005), by identifying50

the necessary and sufficient conditions for the learned policy to be approximately optimal and char-51

acterizing the performance in terms of sample complexity (Munos and Szepesvári, 2008; Farahmand52

et al., 2010; Lazaric et al., 2012; Chen and Jiang, 2019; Liu et al., 2020; Xie et al., 2021). All these53

works assume that the offline data is generated according to a single model and the goal is to find the54

optimal policy for the MDP with the same model. In particular, none of these works consider the offline55

robust RL problem where the offline data is generated according to a (training) model which can be56

different from the one in testing, and the goal is to learn a policy that is robust w.r.t. an uncertainty set.57

Robust RL: The RMDP framework was first introduced in Iyengar (2005); Nilim and El Ghaoui58

(2005). The RMDP problem has been analyzed extensively in the literature (Xu and Mannor, 2010;59

Wiesemann et al., 2013; Yu and Xu, 2015; Mannor et al., 2016; Russel and Petrik, 2019) providing60

computationally efficient algorithms, but these works are limited to the planning problem. Robust61

RL algorithms with provable guarantees have also been proposed (Lim et al., 2013; Tamar et al.,62

2014; Roy et al., 2017; Panaganti and Kalathil, 2021; Wang and Zou, 2021), but they are limited to63

tabular or linear function approximation settings and only provide asymptotic convergence guarantees.64

Robust RL problem has also been addressed using deep RL methods (Pinto et al., 2017; Derman65

et al., 2018, 2020; Mankowitz et al., 2020; Zhang et al., 2020a). However, these works do not provide66

any theoretical guarantees on the performance of the learned policies.67

The works that are closest to ours are by Zhou et al. (2021); Yang et al. (2021); Panaganti and68

Kalathil (2022) that address the robust RL problem in a tabular setting under the generative model69

assumption. Due to the generative model assumption, the offline data has the same uniform number70

of samples corresponding to each and every state-action pair, and tabular setting allows the estimation71

of the uncertainty set followed by solving the planning problem. Our work is significantly different72

from these in the following way: (i) we consider a robust RL problem with arbitrary large state73

space, instead of the small tabular setting, (ii) we consider a true offline RL setting where the74

state-action pairs are sampled according to an arbitrary distribution, instead of using the generative75

model assumption, (iii) we focus on a function approximation approach where the goal is to directly76

learn optimal robust value/policy using function approximation techniques, instead of solving the77

tabular planning problem with the estimated model. To the best of our knowledge, this is the first78

work that addresses the offline robust RL problem with arbitrary large state space using function79

approximation, with provable guarantees on the performance of the learned policy.80

Offline Robust RL: Challenges and Our Contributions: Offline robust RL is significantly more81

challenging than its non-robust counterpart mainly because of the following key difficulties.82

(i) Data generation: The optimal robust policy is computed by taking the infimum over all models in83

the uncertainty set P . However, generating data according to all models in P is clearly infeasible. It84

may only be possible to get the data from a nominal (training) model P o. How do we use the data85

from a nominal model to account for the behavior of all the models in the uncertainty set P?86

(ii) Optimization over the uncertainty set P: The robust Bellman operator (defined in (3)) involves a87
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minimization over P , which is a significant computational challenge. Moreover, the uncertainty set88

P itself is unknown in the RL setting. How do we solve the optimization over P?89

(iii) Function approximation: Approximation of the robust Bellman update requires a modified target90

function which also depends on the approximate solution of the optimization over the uncertainty set.91

How do we perform the offline RL update accounting for both approximations?92

As the key technical contributions of this work, we first derive a dual reformulation of the robust93

Bellman operator which replaces the expectation w.r.t. all models in the uncertainty set P with an ex-94

pectation only w.r.t. the nominal (training) model P o. This enables using the offline data generated by95

P o for learning, without relying on high variance importance sampling techniques to account for all96

models in P . Following the same reformulation, we then show that the optimization problem over P97

can be further reformulated as functional optimization. We solve this functional optimization problem98

using empirical risk minimization and obtain performance guarantees using the Rademacher complex-99

ity based bounds. We then use the approximate solution obtained from the empirical risk minimization100

to generate modified target samples that are then used to approximate robust Bellman update through101

a generalized least squares approach with provably bounded errors. Performing these operations102

iteratively results in our proposed Robust Fitted Q-Iteration (RFQI) algorithm, for which we prove103

that its learned policy achieves non-asymptotic and approximately optimal performance guarantees.104

Notations: For a set X , we denote its cardinality as |X |. The set of probability distribution over X is105

denoted as ∆(X ), and its power set sigma algebra as Σ(X ). For any x ∈ R, we denote max{x, 0} as106

(x)+. For any function f : S × A → R, state-action distribution ν ∈ ∆(S ×A), and real number107

p ≥ 1, the ν-weighted p-norm of f is defined as ∥f∥p,ν = Es,a∼ν [|f(s, a)|p]1/p.108

2 Preliminaries109

A Markov Decision Process (MDP) is a tuple (S,A, r, P, γ, d0), where S is the state space, A is the110

action space, r : S ×A → R is the reward function, γ ∈ (0, 1) is the discount factor, and d0 ∈ ∆(S)111

is the initial state distribution. The transition probability function Ps,a(s
′) is the probability of112

transitioning to state s′ when action a is taken at state s. In the literature, P is also called the model113

of the MDP. We consider a setting where |S| and |A| are finite but can be arbitrarily large. We114

will also assume that r(s, a) ∈ [0, 1], for all (s, a) ∈ S × A, without loss of generality. A policy115

π : S → ∆(A) is a conditional distribution over actions given a state. The value function Vπ,P and116

the state-action value function Qπ,P of a policy π for an MDP with model P are defined as117

Vπ,P (s) = Eπ,P [

∞∑
t=0

γtr(st, at) | s0 = s], Qπ,P (s, a) = Eπ,P [

∞∑
t=0

γtr(st, at) | s0 = s, a0 = a],

where the expectation is over the randomness induced by the policy π and model P . The optimal value118

function V ∗
P and the optimal policy π∗

P of an MDP with the model P are defined as V ∗
P = maxπ Vπ,P119

and π∗
P = argmaxπ Vπ,P . The optimal state-action value function is given by Q∗

P = maxπ Qπ,P .120

The optimal policy can be obtained as π∗
P (s) = argmaxa Q

∗
P (s, a). The discounted state-action121

occupancy of a policy π for an MDP with model P , denoted as dπ,P ∈ ∆(S ×A), is defined as122

dπ,P (s, a) = (1− γ)Eπ,P [
∑∞

t=0 γ
t
1(st = s, at = a)].123

Robust Markov Decision Process (RMDP): Unlike the standard MDP which considers a single124

model (transition probability function), the RMDP formulation considers a set of models. We refer125

to this set as the uncertainty set and denote it as P . We consider P that satisfies the standard (s, a)-126

rectangularity condition (Iyengar, 2005). We note that a similar uncertainty set can be considered127

for the reward function at the expense of additional notations. However, since the analysis will be128

similar and the sample complexity guarantee will be identical up to a constant factor, without loss of129

generality, we assume that the reward function is known and deterministic.130

We specify an RMDP as M = (S,A, r,P, γ, d0), where the uncertainty set P is typically defined as131

P = ⊗(s,a)∈S×A Ps,a, where Ps,a = {Ps,a ∈ ∆(S) : D(Ps,a, P
o
s,a) ≤ ρ}, (1)

P o = (P o
s,a, (s, a) ∈ S×A) is the nominal model, D(·, ·) is a distance metric between two probability132

distributions, and ρ > 0 is the radius of the uncertainty set that indicates the level of robustness. The133
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nominal model P o can be thought as the model of the training environment. It is either the model134

of the simulator on which the (online) RL algorithm is trained, or in our setting, it is the model135

according to which the offline data is generated. The uncertainty set P (1) is the set of all valid136

transition probability functions (valid testing models) in the neighborhood of the nominal model P o,137

which by definition satisfies (s, a)-rectangularity condition (Iyengar, 2005), where the neighborhood138

is defined using the distance metric D(·, ·) and radius ρ. In this work, we consider the Total Variation139

(TV) uncertainty set defined using the TV distance, i.e., D(Ps,a, P
o
s,a) = (1/2)∥Ps,a − P o

s,a∥1.140

The RMDP problem is to find the optimal robust policy which maximizes the value against the worst141

possible model in the uncertainty set P . The robust value function V π corresponding to a policy π142

and the optimal robust value function V ∗ are defined as (Iyengar, 2005; Nilim and El Ghaoui, 2005)143

V π = inf
P∈P

Vπ,P , V ∗ = sup
π

inf
P∈P

Vπ,P . (2)

The optimal robust policy π∗ is such that the robust value function corresponding to it matches the144

optimal robust value function, i.e., V π∗
= V ∗. It is known that there exists a deterministic optimal145

policy (Iyengar, 2005) for the RMDP. The robust Bellman operator is defined as (Iyengar, 2005)146

(TQ)(s, a) = r(s, a) + γ inf
Ps,a∈Ps,a

Es′∼Ps,a [max
b

Q(s′, b)]. (3)

It is known that T is a contraction mapping in the infinity norm and hence it has a unique fixed147

point Q∗ with V ∗(s) = maxa Q
∗(s, a) and π∗(s) = argmaxa Q

∗(s, a) (Iyengar, 2005). The148

Robust Q-Iteration (RQI) can now be defined using the robust Bellman operator as Qk+1 = TQk.149

Since T is a contraction, it follows that Qk → Q∗. So, RQI can be used to compute (solving the150

planning problem) Q∗ and π∗ in the tabular setting with a known P . Due to the optimization over the151

uncertainty set Ps,a for each (s, a) pair, solving the planning problem in RMDP using RQI is much152

more computationally intensive than solving it in MDP using Q-Iteration.153

Offline RL: Offline RL considers the problem of learning the optimal policy of an MDP when the154

algorithm does not have direct access to the environment and cannot generate data samples in an155

online manner. For learning the optimal policy π∗
P of an MDP with model P , the algorithm will only156

have access to an offline dataset DP = {(si, ai, ri, s′i)}Ni=1, where (si, ai) ∼ µ, µ ∈ ∆(S × A) is157

some distribution, and s′i ∼ Psi,ai . Fitted Q-Iteration (FQI) is a popular offline RL approach which158

is amenable to theoretical analysis while achieving impressive empirical performance. In addition159

to the dataset DP , FQI uses a function class F = {f : S × A → [0, 1/(1 − γ)]} to approximate160

Q∗
P . The typical FQI update is given by fk+1 = argminf∈F

∑N
i=1(r(si, ai) + γmaxb fk(s

′
i, b)−161

f(si, ai))
2, which aims to approximate the non-robust Bellman update using offline data with function162

approximation. Under suitable assumptions, it is possible to obtain provable performance guarantees163

for FQI (Szepesvári and Munos, 2005; Chen and Jiang, 2019; Liu et al., 2020).164

3 Offline Robust Reinforcement Learning165

The goal of an offline robust RL algorithm is to learn the optimal robust policy π∗ using a pre-collected166

offline dataset D. The data is typically generated according to a nominal (training) model P o, i.e.,167

D = {(si, ai, ri, s′i)}Ni=1, where (si, ai) ∼ µ, µ ∈ ∆(S × A) is some data generating distribution,168

and s′i ∼ P o
si,ai

. The uncertainty set P is defined around this nominal model P o as given in (1)169

w.r.t. the total variation distance metric. We emphasize that the learning algorithm does not know170

the nominal model P o as it has only access to D, and hence it also does not know P . Moreover, the171

learning algorithm does not have data generated according to any other models in P and has to rely172

only on D to account for the behavior w.r.t. all models in P .173

Learning policies for RL problems with large state-action spaces is computationally intractable. RL174

algorithms typically overcome this issue by using function approximation. In this paper, we consider175

two function classes F = {f : S ×A → [0, 1/(1− γ)]} and G = {g : S ×A → [0, 2/(ρ(1− γ))]}.176

We use F to approximate Q∗ and G to approximate the dual variable functions which we will177

introduce in the next section. For simplicity, we will first assume that these function classes are178
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finite but exponentially large, and we will use the standard log-cardinality to characterize the sample179

complexity results, as given in Theorem 1. We note that, at the cost of additional notations and180

analysis, infinite function classes can also be considered where the log-cardinalities are replaced by181

the appropriate notions of covering number.182

Similar to the non-robust offline RL, we make the following standard assumptions about the data183

generating distribution µ and the representation power of F .184

Assumption 1 (Concentratability). There exists a finite constant C > 0 such that for any ν ∈185

{dπ,P o | any policy π} ⊆ ∆(S ×A), we have ∥ν/µ∥∞ ≤
√
C.186

Assumption 1 states that the ratio of the distribution ν and the data generating distribution µ,187

ν(s, a)/µ(s, a), is uniformly bounded. This assumption is widely used in the offline RL literature188

(Munos, 2003; Agarwal et al., 2019; Chen and Jiang, 2019; Wang et al., 2021; Xie et al., 2021) in189

many different forms. We borrow this assumption from Chen and Jiang (2019), where they used it for190

non-robust offline RL. In particular, we note that the distribution ν is in the collection of discounted191

state-action occupancies on model P o alone for the robust RL.192

Assumption 2 (Approximate completeness). Let µ ∈ ∆(S × A) be the data distribution. Then,193

supf∈F inff ′∈F ∥f ′ − Tf∥22,µ ≤ εc.194

Assumption 2 states that the function class F is approximately closed under the robust Bellman195

operator T . This assumption has also been widely used in the offline RL literature (Agarwal et al.,196

2019; Chen and Jiang, 2019; Wang et al., 2021; Xie et al., 2021).197

One of the most important properties that the function class F should have is that there must exist a198

function f ′ ∈ F which well-approximates Q∗. This assumption is typically called approximate realiz-199

ability in the offline RL literature. This is typically formalized by assuming inff∈F ∥f − Tf∥22,µ ≤ εr200

(Chen and Jiang, 2019). It is known that the approximate completeness assumption and the concen-201

tratability assumption imply the realizability assumption (Chen and Jiang, 2019; Xie et al., 2021).202

4 Robust Fitted Q-Iteration: Algorithm and Main Results203

In this section, we give a step-by-step approach to overcome the challenges of the offline robust204

RL outlined in Section 1. We then combine these intermediate steps to obtain our proposed RFQI205

algorithm. We then present our main result about the performance guarantee of the RFQI algorithm,206

followed by a brief description about the proof approach.207

4.1 Dual Reformulation of Robust Bellman Operator208

One key challenge in directly using the standard definition of the optimal robust value function209

given in (2) or of the robust Bellman operator given in (3) for developing and analyzing robust RL210

algorithms is that both involve computing an expectation w.r.t. each model P ∈ P . Given that the211

data is generated only according to the nominal model P o, estimating these expectation values is212

really challenging. We show that we can overcome this difficulty through the dual reformulation of213

the robust Bellman operator, as given below.214

Proposition 1. Let M be an RMDP with the uncertainty set P specified by (1) using the total215

variation distance D(Ps,a, P
o
s,a) = (1/2)∥Ps,a−P o

s,a∥1. Then, for any Q : S ×A → [0, 1/(1−γ)],216

the robust Bellman operator T given in (3) can be equivalently written as217

(TQ)(s, a) = r(s, a)− γ inf
η∈[0, 2

ρ(1−γ)
]
(Es′∼P o

s,a
[(η − V (s′))+]− η + ρ(η − inf

s′′
V (s′′))+), (4)

where V (s) = maxa∈A Q(s, a). Moreover, the inner optimization problem in (4) is convex in η.218

Note that in (4), the expectation is now only w.r.t. the nominal model P o, which opens up the219

possibility of using empirical estimates obtained from the data generated according to P o. This220

avoids the need to use importance sampling based techniques to account for all models in P , which221

often have high variance, and thus, are not desirable.222
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While (4) provides a form that is amenable to estimation using offline data, it involves finding223

infs′′ V (s′′). Though this computation is straightforward in a tabular setting, it is infeasible in a224

function approximation setting. In order to overcome this issue, we make the following assumption.225

Assumption 3 (Fail-state). The RMDP M has a ‘fail-state’ sf , such that r(sf , a) = 0 and226

Psf ,a(sf ) = 1, ∀a ∈ A, ∀P ∈ P .227

We note that this is not a very restrictive assumption because such a ‘fail-state’ is quite natural in228

most simulated or real-world systems. For example, a state where a robot collapses and not able to229

get up, either in a simulation environment like MuJoCo or in real-world setting, is such a fail state.230

Assumption 3 immediately implies that Vπ,P (sf ) = 0, ∀P ∈ P , and hence V ∗(sf ) = 0 and231

Q∗(sf , a) = 0, ∀a ∈ A. It is also straightforward to see that Qk+1(sf , a) = 0, ∀a ∈ A, where232

Qk’s are the RQI iterates given by the robust Bellman update Qk+1 = TQk with the initialization233

Q0 = 0. By the contraction property of T , we have Qk → Q∗. So, under Assumption 3, without loss234

of generality, we can always keep Qk(sf , a) = 0, ∀a ∈ A and for all k in RQI (and later in RFQI).235

So, in the light of the above description, for the rest of the paper we will use the robust Bellman236

operator T by setting infs′′ V (s′′) = 0. In particular, for any function f : S × A → [0, 1/(1− γ)]237

with f(sf , a) = 0, the robust Bellman operator T is now given by238

(Tf)(s, a) = r(s, a)− γ inf
η∈[0, 2

(ρ(1−γ))
]
(Es′∼P o

s,a
[(η −max

a′
f(s′, a′))+]− (1− ρ)η). (5)

4.2 Approximately Solving the Dual Optimization using Empirical Risk Minimization239

Another key challenge in directly using the standard definition of the optimal robust value function240

given in (2) or of the robust Bellman operator given in (3) for developing and analyzing robust241

RL algorithms is that both involve an optimization over P . The dual reformulation given in (5)242

partially overcomes this challenge also, as the optimization over P is now replaced by a convex243

optimization over a scalar η ∈ [0, 2/(ρ(1− γ))]. However, this still requires solving an optimization244

for each (s, a) ∈ S × A, which is clearly infeasible even for moderately sized state-action spaces,245

not to mention the function approximation setting. Our key idea to overcome this difficulty is246

to reformulate this as a functional optimization problem instead of solving it as multiple scalar247

optimization problems. This functional optimization method will make it amenable to approximately248

solving the dual problem using an empirical risk minimization approach with offline data.249

Consider the probability (measure) space (S ×A,Σ(S ×A), µ) and let L1(S ×A,Σ(S ×A), µ) be250

the set of all absolutely integrable functions defined on this space.1 In other words, L1 is the set of all251

functions g : S × A → C ⊂ R, such that ∥g∥1,µ is finite. We set C = [0, 2/ρ(1− γ)], anticipating252

the solution of the dual optimization problem (5). We also note µ is the data generating distribution253

which is a σ-finite measure.254

For any given function f : S ×A → [0, 1/(1− γ)], we define the loss function Ldual(·; f) as255

Ldual(g; f) = Es,a∼µ[Es′∼P o
s,a

[(g(s, a)−max
a′

f(s′, a′))+]− (1− ρ)g(s, a)], ∀g ∈ L1. (6)

In the following lemma, we show that the scalar optimization over η for each (s, a) pair in (5) can be256

replaced by a single functional optimization w.r.t. the loss function Ldual.257

Lemma 1. Let Ldual be the loss function defined in (6). Then, for any function f : S × A →258

[0, 1/(1− γ)], we have259

inf
g∈L1

Ldual(g; f) = Es,a∼µ

[
inf

η∈[0, 2
(ρ(1−γ))

]

(
Es′∼P o

s,a

[(
η −max

a′
f(s′, a′)

)
+

]
− (1− ρ)η

)]
. (7)

Note that the RHS of (7) has minimization over η for each (s, a) pair and minimization is inside the260

expectation Es,a∼µ[·]. However, the LHS of (7) has a single functional minimization over g ∈ L1261

and this minimization is outside the expectation. For interchanging the expectation and minimization,262

1In the following, we will simply denote L1(S ×A,Σ(S ×A), µ) as L1 for conciseness.
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and for moving from point-wise optimization to functional optimization, we use the result from263

Rockafellar and Wets (2009, Theorem 14.60), along with the fact that L1 is a decomposable space. We264

also note that this result has been used in many recent works on distributionally robust optimization265

(Shapiro, 2017; Duchi and Namkoong, 2018) (see Appendix A for more details).266

We can now define the empirical loss function L̂dual corresponding to the true loss Ldual as267

L̂dual(g; f) =
1

N

N∑
i=1

(g(si, ai)−max
a′

f(s′i, a
′))+ − (1− ρ)g(si, ai). (8)

Now, for any given f , we can find an approximately optimal dual function through the empirical risk268

minimization approach as infg∈L1 L̂dual(g; f).269

As we mentioned in Section 3, our offline robust RL algorithm is given an input function class270

G = {g : S × A → [0, 2/(ρ(1 − γ))]} to approximate the dual variable functions. So, in the271

empirical risk minimization, instead of taking the infimum over all the functions in L1, we can only272

take the infimum over all the functions in G. For this to be meaningful, G should have sufficient273

representation power. In particular, the result in Lemma 1 should hold approximately even if we274

replace the infimum over L1 with infimum over G. One can see that this is similar to the realizability275

requirement for the function class F as described in Section 3. We formalize the representation power276

of G in the following assumption.277

Assumption 4 (Approximate dual realizability). For all f ∈ F , there exists a uniform constant εdual278

such that infg∈G Ldual(g; f)− infg∈L1 Ldual(g; f) ≤ εdual279

Using the above assumption, for any given f ∈ F , we can find an approximately optimal dual280

function ĝf ∈ G through the empirical risk minimization approach as ĝf = argming∈G L̂dual(g; f).281

In order to characterize the performance of this approach, consider the operator Tg for any g ∈ G as282

(Tgf)(s, a) = r(s, a)− γ(Es′∼P o
s,a

[(g(s, a)−max
a′

f(s′, a′))+]− (1− ρ)g(s, a)), (9)

for all f ∈ F and (s, a) ∈ S × A. We will show in Lemma 6 in Appendix C that the error283

supf∈F ∥Tf − Tĝf f∥1,µ is O(log(|F|/δ)/
√
N) with probability at least 1− δ.284

4.3 Robust Fitted Q-iteration285

The intuitive idea behind our robust fitted Q-iteration (RFQI) algorithm is to approximate the exact286

RQI update step Qk+1 = TQk with function approximation using offline data. The exact RQI step287

requires updating each (s, a)-pair separately, which is not scalable to large state-action spaces. So,288

this is replaced by the function approximation as Qk+1 = argminf∈F ∥TQk − f∥22,ν . It is still289

infeasible to perform this update as it requires to exactly compute the expectation (w.r.t. P o and ν)290

and to solve the dual problem accurately. We overcome these issues by replacing both these exact291

computations with empirical estimates using the offline data. We note that this intuitive idea is similar292

to that of the FQI algorithm in the non-robust case. However, RFQI has unique challenges due to the293

nature of the robust Bellman operator T and the presence of the dual optimization problem within T .294

Given a dataset D, we also follow the standard non-robust offline RL choice of least-squares residual295

minimization (Chen and Jiang, 2019; Xie et al., 2021; Wang et al., 2021). Define the empirical loss296

of f given f ′ (which represents the Q-function from the last iteration) and dual variable function g as297

L̂RFQI(f ; f
′, g) =

1

N

N∑
i=1

(
r(s, a) + γ

(
− (g(si, ai)−maxa′ f ′(s′i, a

′))+
+ (1− ρ)g(si, ai)

)
− f(si, ai)

)2

. (10)

The correct dual variable function to be used in (10) is the optimal dual variable g∗f ′ =298

argming∈G Ldual(g; f
′) corresponding to the last iterate f ′, which we will approximate it by299

ĝf ′ = argming∈G L̂dual(g; f
′). The RFQI update is then obtained as argminf∈F L̂RFQI(f ; f

′, ĝf ′).300

Summarizing the individual steps described above, we formally give our RFQI algorithm below.301
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Algorithm 1 Robust Fitted Q-Iteration (RFQI) Algorithm

1: Input: Offline dataset D = (si, ai, ri, s
′
i)

N
i=1, function classes F and G.

2: Initialize: Q0 ≡ 0 ∈ F .
3: for k = 0, · · · ,K − 1 do
4: Dual variable function optimization: Compute the dual variable function corresponding to

Qk through empirical risk minimization as gk = ĝQk
= argming∈G L̂dual(g;Qk) (see (8)).

5: Robust Q-update: Compute the next iterate Qk+1 through least-squares regression as
Qk+1 = argminQ∈F L̂RFQI(Q;Qk, gk) (see (10)).

6: end for
7: Output: πK = argmaxa QK(s, a)

Now we state our main theoretical result on the performance of the RFQI algorithm.302

Theorem 1. Let Assumptions 1-4 hold. Let πK be the output of the RFQI algorithm after K iterations.303

Denote Jπ = Es∼d0 [V
π(s)] where d0 is initial state distribution. Then, for any δ ∈ (0, 1), with304

probability at least 1− 2δ, we have305

Jπ∗
− JπK ≤ γK

(1− γ)2
+

√
C(
√
6εc + γεdual)

(1− γ)2
+

16

ρ(1− γ)3

√
18C log(2|F||G|/δ)

N
.

Remark 1. Theorem 1 states that the RFQI algorithm can achieve approximate optimality. To see306

this, note that with K ≥ O( 1
log(1/γ) log(

1
ε(1−γ) )), and neglecting the second term corresponding to307

(inevitable) approximation errors εc and εdual, we get Jπ∗−JπK ≤ ε/(1− γ) with probability greater308

than 1− 2δ for any ε, δ ∈ (0, 1), as long as the number of samples N ≥ O( 1
(ρε)2(1−γ)4 log

|F||G|
δ ).309

So, the above theorem can also be interpreted as a sample complexity result.310

Remark 2. The known sample complexity of robust-RL in the tabular setting is Õ( |S|2|A|
(ρε)2(1−γ)4 ) (Yang311

et al., 2021; Panaganti and Kalathil, 2022). Considering Õ(log(|F||G|)) to be Õ(|S||A|), we can312

recover the same bound as in the tabular setting (we save |S| due to the use of Bernstein inequality).313

Remark 3. Under similar Bellman completeness and concentratability assumptions, RFQI sample314

complexity is comparable to that of a non-robust offline RL algorithm, i.e.,O( 1
ε2(1−γ)4 log

|F|
δ ) (Chen315

and Jiang, 2019). As a consequence of robustness, we have ρ−2 and log(|G|) factors in our bound.316

4.4 Proof Sketch317

Here we briefly explain the key ideas used in the analysis of RFQI for obtaining the optimality gap318

bound in Theorem 1. The complete proof is provided in Appendix C.319

Step 1: To bound Jπ∗−JπK , we connect it to the error ∥Qπ∗−QK∥1,ν for any state-action distribution320

ν. While the similar step follows almost immediately using the well-known performance lemma in the321

analysis of non-robust FQI, such a result is not known in the robust RL setting. So, we derive the basic322

inequalities to get a recursive form and to obtain the bound Jπ∗ − JπK ≤ 2∥Qπ∗ −QK∥1,ν/(1− γ)323

(see (22) and the steps before in Appendix C).324

Step 2: To bound ∥Qπ∗ −QK∥1,ν for any state-action distribution ν such that ∥ν/µ∥∞ ≤
√
C, we325

decompose it to get a recursion, with approximation terms based on the least-squares regression and326

empirical risk minimization. Recall that ĝf is the dual variable function from the algorithm for state-327

action value function f ∈ F . Denote f̂g as the least squares solution from the algorithm for the state-328

action value function f ∈ F and dual variable function g ∈ G, i.e., f̂g = argminQ∈F L̂RFQI(Q; f, g).329

By recursive use of the obtained inequality (23) (see Appendix C) and using uniform bound, we get330

∥Qπ∗
−QK∥1,ν ≤

γK

1− γ
+

√
C

1− γ
sup
f∈F
∥Tf − Tĝf f∥1,µ +

√
C

1− γ
sup
f∈F

sup
g∈G
∥Tgf − f̂g∥2,µ.

Step 3: We recognize that supf∈F ∥Tf−Tĝf f∥1,µ is an empirical risk minimization error term. Using331

Rademacher complexity based bounds, we show in Lemma 6 that this error is O(log(|F|/δ)/
√
N)332
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with high probability.333

Step 4: Similarly, we also recognize that supf∈F supg∈G ∥Tgf − f̂g∥2,µ is a least-squares regression334

error term. We also show that this error is O(log(|F||G|/δ)/
√
N) with high probability. We adapt335

the generalized least squares regression result to accommodate the modified target functions resulting336

from the robust Bellman operator to obtain this bound (see Lemma 7).337

The proof is complete after combining steps 1-4 above.338

5 Experiments339

Here, we demonstrate the robust performance of our RFQI algorithm by evaluating it on Cartpole340

and Hopper environments in OpenAI Gym (Brockman et al., 2016). In all the figures shown, the341

quantity in the vertical axis is averaged over 20 different seeded runs depicted by the thick line and342

the band around it is the ±0.5 standard deviation. Due page limit, a more detailed description of the343

experiments, and results on additional experiments, are deferred to Appendix E.344

For the Cartpole, we compare RFQI algorithm against the non-robust RL algorithms FQI and DQN,345

and the soft-robust RL algorithm proposed in Derman et al. (2018). We test the robustness of the346

algorithms by changing the parameter force_mag (to model external force disturbance), and also by347

introducing action perturbations (to model actuator noise). Fig. 1 and Fig. 2 shows superior robust per-348

formance of RFQI compared to the non-robust FQI and DQN. The RFQI performance is similar to that349

of soft-robust DQN. We note that soft-robust RL algorithm (here soft-robust DQN) is an online deep350

RL algorithm (and not an offline RL algorithm) and has no provable performance guarantee. More-351

over, soft-robust RL algorithm requires generating online data according a number of models in the352

uncertainty set, whereas RFQI only requires offline data according to a single nominal training model.353

For the Hopper, we compare RFQI algorithm against the non-robust RL algorithms FQI and TD3354

(Fujimoto et al., 2018), and the soft-robust RL (here soft-robust DDPG) algorithm proposed in Derman355

et al. (2018). We test the robustness of the algorithms by changing the parameter leg_joint_stiffness.356

Fig. 3 shows the superior performance of our RFQI algorithm against the non-robust algorithms and357

soft-robust DDPG algorithm. The average episodic reward of RFQI remains almost the same initially,358

and later decays much less and gracefully when compared to the non-robust FQI and TD3.359

6 Conclusion360

In this work, we presented a novel robust RL algorithm called Robust Fitted Q-Iteration algorithm361

with provably optimal performance for an RMDP with arbitrarily large state space, using only offline362

data with function approximation. We also demonstrated the superior performance of the proposed363

algorithm on standard benchmark problems.364

One limitation of our present work is that, we considered only the uncertainty set defined with respect365

to the total variation distance. In future work, we will consider uncertainty sets defined with respect to366

other f -divergences such as KL-divergence and Chi-square divergence. Finding a lower bound for the367

sample complexity and relaxing the assumptions used are also important and challenging problems.368
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Appendix591

A Useful Technical Results592

In this section, we state some existing results from concentration inequalities, generalization bounds,593

and optimization theory that we will use later in our analysis. We first state the Berstein’s inequality594

that utilizes second-moment to get a tighter concentration inequality.595

Lemma 2 (Bernstein’s inequality (Vershynin, 2018, Theorem 2.8.4)). Let X1, · · · , XT be indepen-596

dent random variables. Assume that |Xt − E[Xt]| ≤ M , for all t. Then, for any ε > 0, we597

have598

P

(∣∣∣ 1
T

T∑
t=1

(Xt − E[Xt])
∣∣∣ ≥ ε

)
≤ 2 exp

(
− T 2ε2

2σ2 + 2MTε
3

)
,

where σ2 =
∑T

t=1 E[X2
t ]. Furthermore, if X1, · · · , XT are independent and identically distributed599

random variables, then for any δ ∈ (0, 1), we have600 ∣∣∣E[X1]−
1

T

T∑
t=1

Xt

∣∣∣ ≤√2E[X2
1 ] log(2/δ)

T
+

M log(2/δ)

3T
,

with probability at least 1− δ.601

We now state a result for the generalization bounds on empirical risk minimization (ERM) problems.602

This result is adapted from Shalev-Shwartz and Ben-David (2014, Theorem 26.5, Lemma 26.8,603

Lemma 26.9).604

Lemma 3 (ERM generalization bound). Let P be the data generating distribution on the space X605

and let H be a given hypothesis class of functions. Assume that for all x ∈ X and h ∈ H we have606

that |l(h, x)| ≤ c1 for some positive constant c1 > 0. Given a dataset D = {Xi}Ni=1, generated607

independently from P , denote ĥ as the ERM solution, i.e. ĥ = argminh∈H(1/N)
∑N

i=1 l(h,Xi).608

For any fixed δ ∈ (0, 1) and h∗ ∈ argminh∈H EX∼P [l(h,X)], we have609

EX∼P [l(ĥ, X)]− EX∼P [l(h
∗, X)] ≤ 2R(l ◦ H ◦ D) + 5c1

√
2 log(8/δ)

N
, (11)

with probability at least 1− δ, where R(·) is the Rademacher complexity of l ◦ H given by610

R(l ◦ H ◦ D) = 1

N
E{σi}N

i=1

(
sup

g ∈ l◦H

N∑
i=1

σig(Xi)

)
,

in which σi’s are independent from Xi’s and are independently and identically distributed according611

to the Rademacher random variable σ, i.e. P(σ = 1) = 0.5 = P(σ = −1).612

Furthermore, if H is a finite hypothesis class, i.e. |H| < ∞, with |h ◦ x| ≤ c2 for all h ∈ H and613

x ∈ X , and l(h, x) is c3-Lipschitz in h, then we have614

EX∼P [l(ĥ, X)]− EX∼P [l(h
∗, X)] ≤ 2c2c3

√
2 log(|H|)

N
+ 5c1

√
2 log(8/δ)

N
, (12)

with probability at least 1− δ.615

We now mention two important concepts from variational analysis (Rockafellar and Wets, 2009)616

literature that is useful to relate minimization of integrals and the integrals of pointwise minimization617

under special class of functions.618

Definition 1 (Decomposable spaces and Normal integrands619

(Rockafellar and Wets, 2009, Definition 14.59, Example 14.29)). A space X of measurable620

functions is a decomposable space relative to an underlying measure space (Ω,A, µ), if for every621

function x0 ∈ X , every set A ∈ A with µ(A) < ∞, and any bounded measurable function622

x1 : A → R, the function x(ω) = x0(ω)1(ω /∈ A) + x1(ω)1(ω ∈ A) belongs to X . A function623

f : Ω×R→ R (finite-valued) is a normal integrand, if and only if f(ω, x) is A-measurable in ω for624

each x and is continuous in x for each ω.625
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Remark 4. A few examples of decomposable spaces are Lp(S ×A,Σ(S ×A), µ) for any p ≥ 1 and626

M(S ×A,Σ(S ×A)), the space of all Σ(S ×A)-measurable functions.627

Lemma 4 (Rockafellar and Wets, 2009, Theorem 14.60). Let X be a space of measurable functions628

from Ω to R that is decomposable relative to a σ-finite measure µ on the σ-algebra A. Let f :629

Ω× R→ R (finite-valued) be a normal integrand. Then, we have630

inf
x∈X

∫
ω∈Ω

f(ω, x(ω))µ(dω) =

∫
ω∈Ω

(
inf
x∈R

f(ω, x)

)
µ(dω).

Moreover, as long as the above infimum is not −∞, we have that631

x′ ∈ argmin
x∈X

∫
ω∈Ω

f(ω, x(ω))µ(dω),

if and only if x′(ω) ∈ argminx∈R f(ω, x) · µ almost surely.632

We now give one result from distributioanlly robust optimization. The f -divergence between the633

distributions P and P o is defined as634

Df (P∥P o) =

∫
f(

dP

dP o
)dP o, (13)

where f is a convex function (Csiszár, 1967; Moses and Sundaresan, 2011). We obtain different635

divergences for different forms of the function f , including some well-known divergences. For636

example, f(t) = |t− 1|/2 gives Total Variation (TV), f(t) = t log t gives Kullback-Liebler (KL),637

f(t) = (t− 1)2 gives Chi-square, and f(t) = (
√
t− 1)2 gives squared Hellinger divergences.638

Let P o be a distribution on the space X and let l : X → R be a loss function. We have the following639

result from the distributionally robust optimization literature, see e.g., Duchi and Namkoong (2018,640

Proposition 1) and Shapiro (2017, Section 3.2).641

Proposition 2. Let Df be the f -divergence as defined in (13). Then,642

sup
Df (P∥P o)≤ρ

EP [l(X)] = inf
λ>0,η∈R

EP o

[
λf∗

(
l(X)− η

λ

)]
+ λρ+ η, (14)

where f∗(s) = supt≥0{st− f(t)} is the Fenchel conjugate.643

Note that on the right hand side of (14), the expectation is taken only with respect to P o. We will use644

the above result to derive the dual reformulation of the robust Bellman operator.645

B Proof of the Proposition 1646

As the first step, we adapt the result given in Proposition 2 in two ways: (i) Since Proposition 1647

considers the TV uncertainty set, we will derive the specific form of this result for the TV uncertainty648

set, (ii) Since Proposition 1 considers the minimization problem instead of the maximization problem,649

unlike in Proposition 2, we will derive the specific form of this result for minimization.650

Lemma 5. Let Df be as defined in (13) with f(t) = |t− 1|/2 corresponding to the TV uncertainty651

set. Then,652

inf
Df (P∥P o)≤ρ

EP [l(X)] = − inf
η∈R

EP o [(η − l(X))+] + (η − inf
x∈X

l(x))+ × ρ− η,

Proof. First, we will compute the Fenchel conjugate of f(t) = |t− 1|/2. We have653

f∗(s) = sup
t≥0
{st− 1

2
|t− 1|} = max

{
sup

t∈[0,1]

{(s+ 1

2
)t− 1

2
} , sup

t>1
{(s− 1

2
)t+

1

2
}
}
.

It is easy to see that for s > 1/2, we have f∗(s) = +∞, and for s ≤ −1/2, we have f∗(s) = −1/2.654

For s ∈ [−1/2, 1/2], we have655

f∗(s) = max
{

sup
t∈[0,1]

{(s+ 1

2
)t− 1

2
} , sup

t>1
({(s− 1

2
)t+

1

2
}
}
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= max
{
((s+

1

2
) · 1− 1

2
), ((s− 1

2
) · 1 + 1

2
)
}
= s.

Thus, we have656

f∗(s) =


− 1

2 s ≤ − 1
2 ,

s s ∈ [− 1
2 ,

1
2 ]

+∞ s > 1
2 .

.

From Proposition 2, we obtain657

sup
Df (P∥P o)≤ρ

EP [l(X)] = inf
λ>0,η∈R

EP o [λf∗(
l(X)− η

λ
)] + λρ+ η

= inf
λ,η:λ>0,η∈R, supx∈X l(x)−η

λ ≤ 1
2

EP o [λmax{ l(X)− η

λ
,−1

2
}] + λρ+ η

= inf
λ,η:λ>0,η∈R, supx∈X l(x)−η

λ ≤ 1
2

EP o [max{l(X)− η,−λ/2}] + λρ+ η

= inf
λ,η:λ>0,η∈R, supx∈X l(x)−η

λ ≤ 1
2

EP o [(l(X)− η + λ/2)+]− λ/2 + λρ+ η

= inf
λ,η′:λ>0,η′∈R, supx∈X l(x)−η′

λ ≤1

EP o [(l(X)− η′)+] + λρ+ η′.

The second equality follows since f∗( l(X)−η
λ ) = +∞ whenever l(X)−η

λ > 1
2 , which can be ignored658

as we are minimizing over λ and η. The fourth equality follows form the fact that max{x, y} =659

(x − y)+ + y for any x, y ∈ R. Finally, the last equality follows by making the substitution660

η′ = η − λ/2. Taking the optimal value of λ, i.e., λ = (supx∈X l(x)− η′)+, we get661

sup
Df (P∥P o)≤ρ

EP [l(X)] = inf
η∈R

EP o [(l(X)− η)+] + (sup
x∈X

l(x)− η)+ρ+ η.

Now,662

inf
Df (P∥P o)≤ρ

EP [l(X)] = − sup
Df (P∥P o)≤ρ

EP [−l(X)]

= − inf
η∈R

EP o [(−l(X)− η)+] + (sup
x∈X
−l(x)− η)+ρ+ η

= − inf
η′∈R

EP o [(η′ − l(X))+] + (η′ − inf
x∈X

l(x))+ρ− η′,

which completes the proof.663

We are now ready to prove Proposition 1.664

Proof of Proposition 1. For each (s, a), the optimization problem in (3) is given by665

minPs,a∈Ps,a Es′∼Ps,a [V (s′)], and our focus is on the setting where Ps,a is given by the TV uncer-666

tainty set. So, Ps,a can be equivalently defined using the f -divergence with f(t) = |t − 1|/2 as667

Ps,a = {Ps,a : Df (Ps,a||P o
s,a) ≤ ρ}. We can now use the result of Lemma 5 to get668

inf
Ps,a∈Ps,a

Es′∼Ps,a
[V (s′)] = − inf

η∈R
Es′∼P o

s,a
[(η − V (s′))+] + (η − inf

s′′∈S
V (s′′))+ρ− η.

From Proposition 2, the function h(η) = Es′∼P o
s,a

[(η − V (s′))+] + ρ(η − infs′′ V (s′′))+ − η is669

convex in η. Since V (s′) ≥ 0, h(η) = −η ≥ 0 when η ≤ 0. So, infη∈(−∞,0] h(η), achieved at670

η = 0. Also, since V (s) ≤ 1/(1− γ), we have671

h(
2

ρ(1− γ)
) = Es′∼P o

s,a
[

2

ρ(1− γ)
− V (s′)] + ρ(

2

ρ(1− γ)
− inf

s′′
V (s′′))− 2

ρ(1− γ)

≥ − 1

(1− γ)
+ ρ(

2

ρ(1− γ)
− 1

(1− γ)
) =

2

(1− γ)
− (1 + ρ)

(1− γ)
≥ 0.
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So, it is sufficient to consider η ∈ [0, 2
ρ(1−γ) ] for the above optimization problem.672

Using these, we get673

(TQ)(s, a) = r(s, a) + γ inf
Ps,a∈Ps,a

Es′∼Ps,a [V (s′)]

= r(s, a) + γ · −1 · inf
η∈η∈[0, 2

ρ(1−γ)
]
Es′∼P o

s,a
[(η − V (s′))+] + (η − inf

s′′∈S
V (s′′))+ρ− η.

This completes the proof of Proposition 1.674

C Proof of Theorem 1675

We start by proving Lemma 1 which mainly follows from Lemma 4 in Appendix A.676

Proof of Lemma 1. Let h((s, a), η) = Es′∼P o
s,a

((η −maxa′ f(s′, a′))+ − (1− ρ)η). We note that677

h((s, a), η) is Σ(S × A)-measurable in (s, a) ∈ S × A for each η ∈ [0, 1/(ρ(1− γ))] and is678

continuous in η for each (s, a) ∈ S ×A. Now it follows that h((s, a), η) is a normal integrand (see679

Definition 1 in Appendix A). We now note that L1(S ×A,Σ(S ×A), µ) is a decomposable space680

(Remark 4 in Appendix A). Thus, this lemma now directly follows from Lemma 4.681

Now we state a result and provide its proof for the empirical risk minimization on the dual parameter.682

Lemma 6 (Dual Optimization Error Bound). Let ĝf be the dual optimization parameter from the683

algorithm (Step 4) for the state-action value function f and let Tg be as defined in (9). With probability684

at least 1− δ, we have685

sup
f∈F
∥Tf − Tĝf f∥1,µ ≤

4γ(2− ρ)

ρ(1− γ)

√
2 log(|G|)

N
+

25γ

ρ(1− γ)

√
2 log(8|F|/δ)

N
+ γεdual.

Proof. Fix an f ∈ F . We will also invoke union bound for the supremum here. We recall from (8)686

that ĝf = argming∈G L̂dual(g; f). From the robust Bellman equation, we directly obtain687

∥Tĝf f − Tf∥1,µ = γ(Es,a∼µ|Es′∼P o
s,a

((ĝf (s, a)−max
a′

f(s′, a′))+ − (1− ρ)ĝf (s, a))

− inf
η∈[0,2/(ρ(1−γ))]

Es′∼P o
s,a

((η −max
a′

f(s′, a′))+ − (1− ρ)η)|)

(a)
= γ(Es,a∼µEs′∼P o

s,a
((ĝf (s, a)−max

a′
f(s′, a′))+ − (1− ρ)ĝf (s, a))

− Es,a∼µ[ inf
η∈[0,2/(ρ(1−γ))]

Es′∼P o
s,a

((η −max
a′

f(s′, a′))+ − (1− ρ)η)])

(b)
= γ(Es,a∼µ,s′∼P o

s,a
((ĝf (s, a)−max

a′
f(s′, a′))+ − (1− ρ)ĝf (s, a))

− inf
g∈L1

Es,a∼µ,s′∼P o
s,a

((g(s, a)−max
a′

f(s′, a′))+ − (1− ρ)g(s, a)))

= γ(Es,a∼µ,s′∼P o
s,a

((ĝf (s, a)−max
a′

f(s′, a′))+ − (1− ρ)ĝf (s, a))

− inf
g∈G

Es,a∼µ,s′∼P o
s,a

((g(s, a)−max
a′

f(s′, a′))+ − (1− ρ)g(s, a)))

+ γ( inf
g∈G

Es,a∼µ,s′∼P o
s,a

((g(s, a)−max
a′

f(s′, a′))+ − (1− ρ)g(s, a))

− inf
g∈L1

Es,a∼µ,s′∼P o
s,a

((g(s, a)−max
a′

f(s′, a′))+ − (1− ρ)g(s, a)))

(c)

≤ γ(Es,a∼µ,s′∼P o
s,a

((ĝf (s, a)−max
a′

f(s′, a′))+ − (1− ρ)ĝf (s, a))

− inf
g∈G

Es,a∼µ,s′∼P o
s,a

((g(s, a)−max
a′

f(s′, a′))+ − (1− ρ)g(s, a))) + γεdual

(d)

≤ 2γR(l ◦ G ◦ D) + 25γ

ρ(1− γ)

√
2 log(8/δ)

N
+ γεdual
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(e)

≤ 4γ(2− ρ)

ρ(1− γ)

√
2 log(|G|)

N
+

25γ

ρ(1− γ)

√
2 log(8/δ)

N
+ γεdual.

(a) follows since infg h(g) ≤ h(ĝf ). (b) follows from Lemma 1. (c) follows from the approximate688

dual realizability assumption (Assumption 4).689

For (d), we consider the loss function l(g, (s, a, s′)) = (g(s, a)−maxa′ f(s′, a′))+− (1−ρ)g(s, a)690

and dataset D = {si, ai, s′i}Ni=1. Note that |l(g, (s, a, s′))| ≤ 5/(ρ(1− γ)) (since f ∈ F and g ∈ G).691

Now, we can apply the empirical risk minimization result (11) in Lemma 3 to get (d), where R(·) is692

the Rademacher complexity.693

Finally, (e) follows from (12) in Lemma 3 when combined with the facts that l(g, (s, a, s′)) is694

(2− ρ)-Lipschitz in g and g(s, a) ≤ 2/(ρ(1− γ)), since g ∈ G.695

With union bound, with probability at least 1− δ, we finally get696

sup
f∈F
∥Tf − Tĝf f∥1,µ≤

4γ(2− ρ)

ρ(1− γ)

√
2 log(|G|)

N
+

25γ

ρ(1− γ)

√
2 log(8|F|/δ)

N
+ γεdual,

which concludes the proof.697

We next prove the least-squares generalization bound for the RFQI algorithm.698

Lemma 7 (Least squares generalization bound). Let f̂g be the least-squares solution from the699

algorithm (Step 5) for the state-action value function f and dual variable function g. Let Tg be as700

defined in (9). Then, with probability at least 1− δ, we have701

sup
f∈F

sup
g∈G
∥Tgf − f̂g∥2,µ ≤

√
6εc +

16

ρ(1− γ)

√
18 log(2|F||G|/δ)

N
.

Proof. We adapt the least-squares generalization bound given in Agarwal et al. (2019, Lemma A.11)702

to our setting. We recall from (10) that f̂g = argminQ∈F L̂RFQI(Q; f, g). We first fix functions703

f ∈ F and g ∈ G. For any function f ′ ∈ F , we define random variables zf
′

i as704

zf
′

i = (f ′(si, ai)− yi)
2 − ((Tgf)(si, ai)− yi)

2
,

where yi = ri − γ(g(si, ai) − maxa′ f(s′i, a
′))+ + γ(1 − ρ)g(si, ai), and (si, ai, s

′
i) ∈ D705

with (si, ai) ∼ µ, s′i ∼ P o
si,ai

. It is straightforward to note that for a given (si, ai), we have706

Es′i∼P o
si,ai

[yi] = (Tgf)(si, ai).707

Also, since g(si, ai) ≤ 2/(ρ(1− γ)) (because g ∈ G) and f(si, ai), f
′(si, ai) ≤ 1/(1− γ) (because708

f, f ′ ∈ F), we have (Tgf)(si, ai) ≤ 5/(ρ(1− γ)). This also gives us that yi ≤ 5/(ρ(1− γ)).709

Using this, we obtain the first moment and an upper-bound for the second moment of zf
′

i as follows:710

Es′i∼P o
si,ai

[zf
′

i ] = Es′i∼P o
si,ai

[(f ′(si, ai)− (Tgf)(si, ai)) · (f ′(si, ai) + (Tgf)(si, ai)− 2yi)]

= (f ′(si, ai)− (Tgf)(si, ai))
2,

Es′i∼P o
si,ai

[(zf
′

i )2] = Es′i∼P o
si,ai

[(f ′(si, ai)− (Tgf)(si, ai))
2 · (f ′(si, ai) + (Tgf)(si, ai)− 2yi)

2]

= (f ′(si, ai)− (Tgf)(si, ai))
2 · Es′i∼P o

si,ai
[(f ′(si, ai) + (Tgf)(si, ai)− 2yi)

2]

≤ C1(f
′(si, ai)− (Tgf)(si, ai))

2,

where C1 = 162/(ρ2(1− γ)2). This immediately implies that711

Esi,ai∼µ,s′i∼P o
si,ai

[zf
′

i ] = ∥Tgf − f ′∥22,µ ,

Esi,ai∼µ,s′i∼P o
si,ai

[(zf
′

i )2] ≤ C1 ∥Tgf − f ′∥22,µ .

From these calculations, it is also straightforward to see that |zf
′

i − Esi,ai∼µ,s′i∼P o
si,ai

[zf
′

i ]| ≤ 2C1712

almost surely.713
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Now, using the Bernstein’s inequality (Lemma 2), together with a union bound over all f ′ ∈ F , with714

probability at least 1− δ, we have715

|∥Tgf − f ′∥22,µ −
1

N

N∑
i=1

zf
′

i | ≤

√
2C1∥Tgf − f ′∥22,µ log(2|F|/δ)

N
+

2C1 log(2|F|/δ)
3N

, (15)

for all f ′ ∈ F . Setting f ′ = f̂g , with probability at least 1− δ/2, we have716

∥Tgf − f̂g∥22,µ ≤
1

N

N∑
i=1

z
f̂g
i +

√
2C1∥Tgf − f̂g∥22,µ log(4|F|/δ)

N
+

2C1 log(4|F|/δ)
3N

. (16)

Now we upper-bound (1/N)
∑N

i=1 z
f̂g
i in the following. Consider a function f̃ ∈ argminh∈F ∥h−717

Tgf∥22,µ. Note that f̃ is independent of the dataset. We note that our earlier first and second moment718

calculations hold true for f̃ , replacing f ′, as well. Now, from (15) setting f ′ = f̃ , with probability at719

least 1− δ/2 we have720

1

N

N∑
i=1

zf̃i − ∥Tgf − f̃∥22,µ ≤

√
2C1∥Tgf − f̃∥22,µ log(4|F|/δ)

N
+

2C1 log(4|F|/δ)
3N

. (17)

Suppose (1/N)
∑N

i=1 z
f̃
i ≥ 2C1 log(4|F|/δ)/N holds, then from (17) we get721

1

N

N∑
i=1

zf̃i − ∥Tgf − f̃∥22,µ ≤

√√√√∥Tgf − f̃∥22,µ ·
1

N

N∑
i=1

zf̃i +
2C1 log(4|F|/δ)

N
. (18)

We note the following algebra fact: Suppose x2 − ax+ b ≤ 0 with b > 0 and a2 ≥ 4b, then we have722

x ≤ a. Taking x = (1/N)
∑N

i=1 z
f̃
i in this fact, from (18) we get723

1

N

N∑
i=1

zf̃i ≤ 3∥Tgf − f̃∥22,µ +
4C1 log(4|F|/δ)

3N
≤ 3∥Tgf − f̃∥22,µ +

2C1 log(4|F|/δ)
N

. (19)

Now suppose (1/N)
∑N

i=1 z
f̃
i ≤ 2C1 log(4|F|/δ)/N , then (19) holds immediately. Thus, (19)724

always holds with probability at least 1− δ/2. Furthermore, recall f̃ ∈ argminh∈F ∥h− Tgf∥22,µ,725

we have726

1

N

N∑
i=1

zf̃i ≤ 3∥Tgf − f̃∥22,µ +
2C1 log(4|F|/δ)

N

= 3min
h∈F
∥h− Tgf∥22,µ +

2C1 log(4|F|/δ)
N

≤ 3εc +
2C1 log(4|F|/δ)

N
, (20)

where the last inequality follows from the approximate robust Bellman completion assumption727

(Assumption 2).728

We note that since f̂g is the least-squares regression solution, we know that (1/N)
∑N

i=1 z
f̂g
i ≤729

(1/N)
∑N

i=1 z
f̃
i . With this note in (20), from (16), with probability at least 1− δ, we have730

∥Tgf − f̂g∥22,µ ≤ 3εc +
2C1 log(4|F|/δ)

N

+

√
2C1∥Tgf − f̂g∥22,µ log(4|F|/δ)

N
+

2C1 log(4|F|/δ)
3N

≤ 3εc +
3C1 log(4|F|/δ)

N
+

√
3C1∥Tgf − f̂g∥22,µ log(4|F|/δ)

N
.
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From the earlier algebra fact, taking x = ∥Tgf − f̂g∥22,µ, with probability at least 1− δ, we have731

∥Tgf − f̂g∥22,µ ≤ 6εc +
9C1 log(4|F|/δ)

N
.

From the fact
√
x+ y ≤

√
x+
√
y, with probability at least 1− δ, we get732

∥Tgf − f̂g∥2,µ ≤
√
6εc +

√
9C1 log(4|F|/δ)

N
.

Using union bound for f ∈ F and g ∈ G, with probability at least 1− δ, we finally obtain733

sup
f∈F

sup
g∈G
∥Tgf − f̂g∥2,µ ≤

√
6εc +

√
18C1 log(2|F||G|/δ)

N
,

which completes the least-squares generalization bound analysis.734

We are now ready to prove the main theorem.735

Proof of Theorem 1. We let Vk(s) = Qk(s, πk(s)) for every s ∈ S. Since πk is the greedy policy736

w.r.t Qk, we also have Vk(s) = Qk(s, πk(s)) = maxa Qk(s, a). We recall that V ∗ = V π∗
and737

Q∗ = Qπ∗
. We also recall from Section 2 that Qπ∗

is a fixed-point of the robust Bellman operator738

T defined in (3). We also note that the same holds true for any stationary deterministic policy π739

from Iyengar (2005) that Qπ satisfies Qπ(s, a) = r(s, a) + γminPs,a∈Ps,a
Es′∼Ps,a

[V π(s′)]. We740

can now further use the dual form (5) under Assumption 3. We first characterize the performance741

decomposition between V π∗
and V πK . For a given s0 ∈ S, we observe that742

V π∗
(s0)− V πK (s0) = (V π∗

(s0)− VK(s0))− (V πK (s0)− VK(s0))

= (Qπ∗
(s0, π

∗(s0))−QK(s0, πK(s0)))− (QπK (s0, πK(s0))−QK(s0, πK(s0)))

(a)

≤ Qπ∗
(s0, π

∗(s0))−QK(s0, π
∗(s0)) +QK(s0, πK(s0))−QπK (s0, πK(s0))

= Qπ∗
(s0, π

∗(s0))−QK(s0, π
∗(s0)) +QK(s0, πK(s0))−Qπ∗

(s0, πK(s0))

+Qπ∗
(s0, πK(s0))−QπK (s0, πK(s0))

(b)

≤ Qπ∗
(s0, π

∗(s0))−QK(s0, π
∗(s0)) +QK(s0, πK(s0))−Qπ∗

(s0, πK(s0))

+ γ sup
η
(Es1∼P o

s0,πK (s0)
((η − V πK (s1))+ − (η − V π∗

(s1))+))

(c)

≤ |Qπ∗
(s0, π

∗(s0))−QK(s0, π
∗(s0))|+ |Qπ∗

(s0, πK(s0))−QK(s0, πK(s0))|
+ γEs1∼P o

s0,πK (s0)
(|V π∗

(s1)− V πK (s1)|).

(a) follows from the fact that πK is the greedy policy with respect to QK . (b) follows from the743

Bellman optimality equations and the fact | supx f(x)− supx g(x)| ≤ supx |f(x)− g(x)|. Finally,744

(c) follows from the facts (x)+ − (y)+ ≤ (x− y)+ and (x)+ ≤ |x| for any x, y ∈ R.745

We now recall the initial state distribution d0. Thus, we have746

Es0∼d0 [V
π∗
]− Es0∼d0 [V

πK ] ≤

Es0∼d0

[
|Qπ∗

(s0, π
∗(s0))−QK(s0, π

∗(s0))|+ |Qπ∗
(s0, πK(s0))−QK(s0, πK(s0))|

+ γEs1∼P o
s0,πK (s0)

(|V π∗
(s1)− V πK (s1)|)

]
.

Since V π∗
(s) ≥ V πK (s) for any s ∈ S, by telescoping we get747

Es0∼d0
[V π∗

]− Es0∼d0
[V πK ] ≤

∞∑
h=0

γh×
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(
Es∼dh,πK

[|Qπ∗
(s, π∗(s))−QK(s, π∗(s))|+ |Qπ∗

(s, πK(s))−QK(s, πK(s))|]
)
, (21)

where dh,πK
∈ ∆(S) for all natural numbers h ≥ 0 is defined as748

dh,πK
=

{
d0 if h = 0,

P o
s′,πK(s′) otherwise, with s′ ∼ dh−1,πK

.

We emphasize that the state distribution dh,πK
’s are different from the discounted state-action749

occupancy distributions. We note that a similar state distribution proof idea is used in Agarwal et al.750

(2019).751

Recall ∥f∥2p,ν = (Es,a∼ν |f(s, a)|p)1/p, where ν ∈ ∆(S ×A). With this we have752

Es0∼d0
[V π∗

]− Es0∼d0
[V πK ] ≤

∞∑
h=0

γh

(
∥Qπ∗

−QK∥1,dh,πK
◦π∗ + ∥Qπ∗

−QK∥1,dh,πK
◦πK

)
,

(22)

where the state-action distributions dh,πK
◦ π∗(s, a) ∝ dh,πK

(s)1{a = π∗(s)} and dh,πK
◦753

πK(s, a) ∝ dh,πK
(s)1{a = πK(s)} directly follows by comparing with (21).754

We now bound one of the RHS terms above by bounding for any state-action distribution ν satisfying755

Assumption 1 (in particular the following bound is true for dh,πK
◦ π∗ or dh,πK

◦ πK in (21)):756

∥Qπ∗
−QK∥1,ν ≤ ∥Qπ∗

− TQK−1∥1,ν + ∥TQK−1 −QK∥1,ν
(a)

≤ ∥Qπ∗
− TQK−1∥1,ν +

√
C∥TQK−1 −QK∥1,µ

= (Es,a∼ν |Qπ∗
(s, a)− TQK−1(s, a)|) +

√
C∥TQK−1 −QK∥1,µ

(b)

≤ (Es,a∼νγ sup
η
|Es′∼P o

s,a
((η −max

a′
QK−1(s

′, a′))+ − (η −max
a′

Qπ∗
(s′, a′))+)|)

+
√
C∥TQK−1 −QK∥1,µ

(c)

≤ (Es,a∼ν |Es′∼P o
s,a

(max
a′

Qπ∗
(s′, a′)−max

a′
QK−1(s

′, a′))+|) +
√
C∥TQK−1 −QK∥1,µ

(d)

≤ γ(Es,a∼νEs′∼P o
s,a

max
a′
|Qπ∗

(s′, a′)−QK−1(s
′, a′)|) +

√
C∥TQK−1 −QK∥1,µ

(e)

≤ γ∥Qπ∗
−QK−1∥1,ν′ +

√
C∥TQK−1 −QK∥1,µ

(f)

≤ γ∥Qπ∗
−QK−1∥1,ν′ +

√
C∥TgK−1

QK−1 −QK∥2,µ +
√
C∥TQK−1 − TgK−1

QK−1∥1,µ,
(23)

where (a) follows by the concentratability assumption (Assumption 1), (b) from Bellman equation,757

operator T , and the fact | supx p(x)− supx q(x)| ≤ supx |p(x)− q(x)|, (c) from the fact |(x)+ −758

(y)+| ≤ |(x−y)+| for any x, y ∈ R, (d) follows by Jensen’s inequality and by the facts | supx p(x)−759

supx q(x)| ≤ supx |p(x)−q(x)| and (x)+ ≤ |x| for any x, y ∈ R, and (e) by defining the distribution760

ν′ as ν′(s′, a′) =
∑

s,a ν(s, a)P
o
s,a(s

′)1{a′ = argmaxb |Qπ∗
(s′, b)−QK−1(s

′, b)|}, and (f) using761

the fact that ∥ · ∥1,µ ≤ ∥ · ∥2,µ.762

Now, by recursion until iteration 0, we get763

∥Qπ∗
−QK∥1,ν ≤ γK sup

ν̄
∥Qπ∗

−Q0∥1,ν̄ +
√
C

K−1∑
t=0

γt∥TQK−1−t − TgK−1−t
QK−1−t∥1,µ

+
√
C

K−1∑
t=0

γt∥TgK−1−t
QK−1−t −QK−t∥2,µ

(a)

≤ γK

1− γ
+
√
C

K−1∑
t=0

γt∥TQK−1−t − TgK−1−t
QK−1−t∥1,µ

23



+
√
C

K−1∑
t=0

γt∥TgK−1−t
QK−1−t −QK−t∥2,µ

(b)

≤ γK

1− γ
+

√
C

1− γ
sup
f∈F
∥Tf − Tĝf f∥1,µ +

√
C

1− γ
sup
f∈F
∥Tĝf f − f̂ĝf ∥2,µ

≤ γK

1− γ
+

√
C

1− γ
sup
f∈F
∥Tf − Tĝf f∥1,µ +

√
C

1− γ
sup
f∈F

sup
g∈G
∥Tgf − f̂g∥2,µ. (24)

where (a) follows since |Qπ∗
(s, a)| ≤ 1/(1− γ), Q0(s, a) = 0, and (b) follows since ĝf is the dual764

variable function from the algorithm for the state-action value function f and f̂g as the least squares765

solution from the algorithm for the state-action value function f and dual variable function g pair.766

The proof is now complete combining (22) and (24) with Lemma 6 and Lemma 7.767

D Related Works768

Here we provide a more detailed description of the related work to complement what we listed in the769

introduction (Section 1).770

Offline RL: The problem of learning the optimal policy only using an offline dataset is first addressed771

under the generative model assumption (Singh and Yee, 1994; Azar et al., 2013; Haskell et al., 2016;772

Sidford et al., 2018; Agarwal et al., 2020; Li et al., 2020; Kalathil et al., 2021). This assumption773

requires generating the same uniform number of next-state samples for each and every state-action774

pairs. To account for large state spaces, there are number of works (Antos et al., 2008; Bertsekas,775

2011; Lange et al., 2012; Chen and Jiang, 2019; Xie and Jiang, 2020; Levine et al., 2020; Xie et al.,776

2021) that utilize function approximation under similar assumption, concentratability assumption777

(Chen and Jiang, 2019) in which the data distribution µ sufficiently covers the discounted state-action778

occupancy. There is rich literature (Munos and Szepesvári, 2008; Farahmand et al., 2010; Lazaric779

et al., 2012; Chen and Jiang, 2019; Liu et al., 2020; Xie et al., 2021) in the conquest of identifying780

and improving these necessary and sufficient assumptions for offline RL that use variations of Fitted781

Q-Iteration (FQI) algorithm (Gordon, 1995; Ernst et al., 2005). There is also rich literature (Fujimoto782

et al., 2019; Kumar et al., 2019, 2020; Yu et al., 2020; Zhang and Jiang, 2021) that develop offline783

deep RL algorithms focusing on the algorithmic and empirical aspects and propose multitude heuristic784

approaches to advance the field. All these results assume that the offline data is generated according785

to a single model and the goal is to find the optimal policy for the MDP with the same model. In786

particular, none of these works consider the offline robust RL problem where the offline data is787

generated according to a (training) model which can be different from the one in testing, and the goal788

is to learn a policy that is robust w.r.t. an uncertainty set.789

Robust RL: To address the parameter uncertainty problem, Iyengar (2005) and Nilim and El Ghaoui790

(2005) introduced the RMDP framework. Iyengar (2005) showed that the optimal robust value791

function and policy can be computed using the robust counterparts of the standard value iteration and792

policy iteration algorithms. To tackle the parameter uncertainty problem, other works considered793

distributionally robust setting (Xu and Mannor, 2010), modified policy iteration (Kaufman and794

Schaefer, 2013), and more general uncertainty set (Wiesemann et al., 2013). These initial works795

mainly focused on the planning problem (known transition probability dynamics) in the tabular796

setting. Tamar et al. (2014) proposed linear function approximation method to solve large RMDPs.797

Though this work suggests a sampling based approach, a general model-free learning algorithm and798

analysis was not included. Roy et al. (2017) proposed the robust versions of the classical model-free799

reinforcement learning algorithms, such as Q-learning, SARSA, and TD-learning in the tabular setting.800

They also proposed function approximation based algorithms for the policy evaluation. However,801

this work does not have a policy iteration algorithm with provable guarantees for learning the802

optimal robust policy. Derman et al. (2018) introduced soft-robust actor-critic algorithms using neural803

networks, but does not provide any global convergence guarantees for the learned policy. Tessler et al.804

(2019) proposed a min-max game framework to address the robust learning problem focusing on the805
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tabular setting. Lim and Autef (2019) proposed a kernel-based RL algorithm for finding the robust806

value function in a batch learning setting. Mankowitz et al. (2020) employed an entropy-regularized807

policy optimization algorithm for continuous control using neural network, but does not provide any808

provable guarantees for the learned policy. Panaganti and Kalathil (2021) proposed least-squares809

policy iteration method to handle large state-action space in robust RL, but only provide asymptotic810

policy evaluation convergence guarantees whereas Panaganti and Kalathil (2021) provide finite time811

convergence for the policy iteration to optimal robust value.812

Other robust RL related works: Robust control is a well-studied area in the classical control813

theory (Zhou et al., 1996; Dullerud and Paganini, 2013). Recently, there are some interesting works814

that address the robust RL problem using this framework, especially focusing on the linear quadratic815

regulator setting (Zhang et al., 2020b). Risk sensitive RL algorithms (Borkar, 2002; Prashanth and816

Ghavamzadeh, 2016; Fei et al., 2021) and adversarial RL algorithms (Pinto et al., 2017; Zhang et al.,817

2021; Huang et al., 2022) also address the robustness problem implicitly under different frameworks818

which are independent from RMDPs. Our framework and approach of robust MDP is significantly819

different from these line of works.820

The works that are closest to ours are by Zhou et al. (2021); Yang et al. (2021); Panaganti and821

Kalathil (2022) that address the robust RL problem in a tabular setting under the generative model822

assumption. Due to the generative model assumption, the offline data has the same uniform number823

of samples corresponding to each and every state-action pair, and tabular setting allows the estimation824

of the uncertainty set followed by solving the planning problem. Our work is significantly different825

from these in the following way: (i) we consider a robust RL problem with arbitrary large state826

space, instead of the small tabular setting, (ii) we consider a true offline RL setting where the827

state-action pairs are sampled according to an arbitrary distribution, instead of using the generative828

model assumption, (iii) we focus on a function approximation approach where the goal is to directly829

learn optimal robust value/policy using function approximation techniques, instead of solving the830

tabular planning problem with the estimated model. To the best of our knowledge, this is the first831

work that addresses the offline robust RL problem with arbitrary large state space using function832

approximation, with provable guarantees on the performance of the learned policy.833

E Experiment Details834

We provide more detailed and practical version of our RFQI algorithm (Algorithm 1) in this section.835

We also provide more experimental results evaluated on Cartpole, Hopper, and Half-Cheetah OpenAI836

Gym Mujoco (Brockman et al., 2016) environments.837

We provide our code in an anonymous github webpage https://github.com/curious-beaver/838

RFQI containing instructions to reproduce all results in this paper. We implemented our RFQI839

algorithm based on the architecture of Batch Constrained deep Q-learning (BCQ) algorithm (Fujimoto840

et al., 2019) 2 and Pessimistic Q-learning (PQL) algorithm (Liu et al., 2020) 3. We note that PQL841

algorithm (with b = 0 filtration thresholding (Liu et al., 2020)) and BCQ algorithm are the practical842

versions of FQI algorithm with neural network architecture.843

E.1 RFQI Practical Algorithm844

We provide the practical version of our RFQI algorithm in Algorithm 2 and highlight the difference845

with BCQ and PQL algorithms in blue (steps 8 and 9).846

RFQI algorithm implementation details: The Variational Auto-Encoder (VAE) Ga
ω (Kingma and847

Welling, 2013) is defined by two networks, an encoder Eω1
(s, a) and decoder Dω2

(s, z), where848

ω = {ω1, ω2}. The encoder outputs mean and standard deviation, (µ, σ) = Eω1
(s, a), of a normal849

distribution. A latent vector z is sampled from the standard normal distribution and for a state s,850

the decoder maps them to an action Dω2 : (s, z) 7→ ã. Then the evidence lower bound (ELBO) of851

2Available at https://github.com/sfujim/BCQ
3Available at https://github.com/yaoliucs/PQL
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Algorithm 2 RFQI Practical Algorithm

1: Input: Offline dataset D, radius of robustness ρ, maximum perturbation Φ, target update rate τ ,
mini-batch size N , maximum number of iterations K, number of actions u.

2: Initialize: Two state-action neural networks Qθ1 and Qθ2 , one dual neural network gθ3
policy (perturbation) model: ξφ ∈ [−Φ,Φ]), and action VAE Ga

ω, with random parameters θ1,
θ2, φ, ω, and target networks Qθ′

1
, Qθ′

2
, ξφ′ with θ′1 ← θ1, θ

′
2 ← θ2, φ′ ← φ.

3: for k = 1, · · · ,K do
4: Sample a minibatch B with N samples from D.
5: Train ω ← argminω ELBO(B;Ga

ω). Sample u actions a′i from Ga
ω(s

′) for each s′.
6: Perturb u actions a′i = a′i + ξφ(s

′, a′i).
7: Compute next-state value target for each s′ in B:

Vt = max
a′
i

(0.75 ·min{Qθ′
1
, Qθ′

2
}+ 0.25 ·max{Qθ′

1
, Qθ′

2
}).

8: θ3 ← argminθ
∑

[max{gθ(s, a)− Vt(s
′), 0} − (1− ρ)gθ(s, a)].

9: Compute next-state Q target for each (s, a, r, s′) pair in B:

Qt(s, a) = r − γ ·max{gθ3(s, a)− Vt(s
′), 0}+ γ(1− ρ)gθ3(s, a).

10: θ ← argminθ
∑

(Qt(s, a)−Qθ(s, a))
2.

11: Sample u actions ai from Ga
ω(s) for each s.

12: φ← argmaxφ
∑

maxai
Qθ1(s, ai + ξφ(s, ai)).

13: Update target network: θ′ = (1− τ)θ′ + τθ, φ′ = (1− τ)φ′ + τφ.
14: end for
15: Output policy: Given s, sample u actions ai from Ga

ω(s). Select action a =
argmaxai

Qθ1(s, ai + ξφ(s, ai)).

VAE is given by ELBO(B;Ga
ω) =

∑
B(a− ã)2 +DKL(N (µ, σ),N (0, 1)), whereN is the normal852

distribution with mean and standard deviation parameters. We refer to (Fujimoto et al., 2019) for853

more details on VAE. We also use the default VAE architecture from BCQ algorithm (Fujimoto et al.,854

2019) and PQL algorithm (Liu et al., 2020) in our RFQI algorithm.855

We now focus on the additions described in blue (steps 8 and 9) in Algorithm 2. For all the other856

networks we use default architecture from BCQ algorithm (Fujimoto et al., 2019) and PQL algorithm857

(Liu et al., 2020) in our RFQI algorithm.858

(1) In each iteration k, we solve the dual variable function gθ optimization problem (step 4 in859

Algorithm 1, step 8 in Algorithm 2) implemented by ADAM (Kingma and Ba, 2014) on the minibatch860

B with the learning rate l1 mentioned in Table 1.861

(2) Our state-action value target function corresponds to the robust state-action value target function862

described in (10). This is reflected in step 9 of Algorithm 2. The state-action value function Qθ863

optimization problem (step 5 in Algorithm 1, step 9 in Algorithm 2) is implemented by ADAM864

(Kingma and Ba, 2014) on the minibatch B with the learning rate l2 mentioned in Table 1.865

Environment Discount Learning rates Q Neural nets Dual Neural nets
γ [l1, l2] θ1 = θ2 = [h1, h2] θ3 = [h1, h2]

CartPole 0.99 [10−3, 10−3] [400, 300] [64, 64]
Hopper 0.99 [10−3, 8× 10−4] [400, 300] [64, 64]

[3× 10−4, 6× 10−4]
Half-Cheetah 0.99 [10−3, 8× 10−4] [400, 300] [64, 64]

[3× 10−4, 6× 10−4]

Table 1: Details of hyper-parameters in FQI and RFQI algorithms experiments.

Hyper-parameters details: We now give the description of hyper-parameters used in our codebase866

in Table 1. We use same hyper-parameters across different algorithms. Across all learning algorithms867

we use τ = 0.005 for the target network update, K = 5 × 105 for the maximum iterations,868
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|D| = 106 for the offline dataset, |B| = 1000 for the minibatch size. We used grid-search for ρ in869

{0.2, 0.3, · · · , 0.6}. We also picked best of the two sets of learning rates mentioned in Table 1. For870

all the other hyper-parameters we use default values from BCQ algorithm (Fujimoto et al., 2019) and871

PQL algorithm (Liu et al., 2020) in our RFQI algorithm that can be found in our code.872

Offline datasets: Now we discuss the offline dataset used in the our training of FQI and RFQI873

algorithms. For the fair comparison in every plot, we train both FQI and RFQI algorithms on same874

offline datasets.875

Cartpole dataset Dc: We first train proximal policy optimization (PPO) (Schulman et al., 2017)876

algorithm, under default RL baseline zoo (Raffin, 2020) parameters. We then generate the Cartpole877

dataset Dc with 105 samples using an ε-greedy (ε = 0.3) version of this PPO trained policy. We878

note that this offline dataset contains non-expert behavior meeting the richness of the data-generating879

distribution assumption in practice.880

Mixed dataset Dm: For the MuJoCo environments, Hopper and Half-Cheetah, we increase the881

richness of the dataset since these are high dimensional problems. We first train soft actor-critic (SAC)882

(Haarnoja et al., 2018) algorithm, under default RL baseline zoo (Raffin, 2020) parameters, with replay883

buffer updated by a fixed ε-greedy (ε = 0.1) policy with the model parameter actuator_ctrlrange884

set to [−0.85, 0.85]. We then generate the mixed dataset Dm with 106 samples from this ε-greedy885

(ε = 0.3) SAC trained policy. We note that such a dataset generation gives more diverse set of886

observations than the process ofDc generation for fair comparison between FQI and RFQI algorithms.887

D4RL dataset Dd: We consider the hopper-medium and halfcheetah-medium offline datasets in (Fu888

et al., 2020) which are benchmark datasets in offline RL literature (Fu et al., 2020; Levine et al., 2020;889

Liu et al., 2020). These ‘medium’ datasets are generated by first training a policy online using Soft890

Actor-Critic (Haarnoja et al., 2018), early-stopping the training, and collecting 106 samples from this891

partially-trained policy. We refer to (Fu et al., 2020) for more details.892

We end this section by mentioning the software and hardware configurations used. The training893

and evaluation is done using three computers with the following configuration. Operating system894

is Ubuntu 18.04 and Lambda Stack; main softwares are PyTorch, Caffe, CUDA, cuDNN, Numpy,895

Matplotlib; processor is AMD Threadripper 3960X (24 Cores, 3.80 GHz); GPUs are 2x RTX 2080896

Ti; memory is 128GB RAM; Operating System Drive is 1 TB SSD (NVMe); and Data Drive is 4TB897

HDD.898

E.2 More Experimental Results899

Here we provide more experimental results and details in addition to Fig. 1-3 in Section 5.900

For the Cartpole, we compare RFQI algorithm against the non-robust RL algorithms FQI and DQN,901

and the soft-robust RL algorithm proposed in Derman et al. (2018). We trained FQI and RFQI902

algorithms on the dataset Dc (a detailed description of data set is provided in Appendix E.1). We903

test the robustness of the algorithms by changing the parameters force_mag (to model external force904

disturbance), length (to model change in pole length), and also by introducing action perturbations905

(to model actuator noise). The nominal value of force_mag and length parameters are 10 and 0.5906

respectively. Fig. 4 shows superior robust performance of RFQI compared to the non-robust FQI and907

DQN. For example, consider the action perturbation performance plot in Fig. 4 where RFQI algorithm908

improves by 75% compared to FQI algorithm in average cumulative reward for a 40% chance of909

action perturbation. We note that we found ρ = 0.5 is the best from grid-search for RFQI algorithm.910

The RFQI performance is similar to that of soft-robust DQN. We note that soft-robust DQN algorithm911

is an online deep RL algorithm (and not an offline RL algorithm) and has no provable performance912

guarantee. Moreover, soft-robust DQN algorithm requires generating online data according a number913

of models in the uncertainty set, whereas RFQI only requires offline data according to a single914

nominal training model.915

Before we proceed to describe our results on the OpenAI Gym MuJoCo (Brockman et al., 2016) envi-916

ronments Hopper and Half-Cheetah, we first mention their model parameters and its corresponding917
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Figure 4: Cartpole simulation results on offline datasetDc. Average cumulative reward in 20 episodes
versus different model parameter perturbations mentioned in the respective titles.
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Figure 5: Hopper simulation results on offline dataset Dm. Average cumulative reward in 20 episodes
versus different model parameter perturbations mentioned in the respective titles.

nominal values in Table 2. The model parameter names are self-explanatory, for example, stiffness918

control on the leg joint is the leg_joint_stiffness, range of actuator values is the actuator_ctrlrange.919

The front and back parameters in Half-Cheetah are for the front and back legs. We refer to the920

perturbed environments provided in our code and the hopper.xml, halfcheetah.xml files in the environ-921

ment assets of OpenAI Gym MuJoCo (Brockman et al., 2016) for more information regarding these922

model parameters.923

Environment Model parameter Nominal range/value
Hopper actuator_ctrlrange [−1, 1]

foot_joint_stiffness 0
leg_joint_stiffness 0

thigh_joint_stiffness 0
joint_damping 1

joint_frictionloss 0

joint_frictionloss 0
Half-Cheetah front actuator_ctrlrange [−1, 1]

back actuator_ctrlrange [−1, 1]
front joint_stiffness = (thigh_joint_stiffness,

shin_joint_stiffness, foot_joint_stiffness) (180, 120, 60)
back joint_stiffness = (thigh_joint_stiffness,

shin_joint_stiffness, foot_joint_stiffness) (240, 180, 120)
front joint_damping = (thigh_joint_damping,

shin_joint_damping, foot_joint_damping) (4.5, 3.0, 1.5)
back joint_damping = (thigh_joint_damping,

shin_joint_damping, foot_joint_damping) (6.0, 4.5, 3.0)

Table 2: Details of model parameters for Hopper and Half-Cheetah environments.

For the Hopper, we compare RFQI algorithm against the non-robust RL algorithms FQI and TD3924

(Fujimoto et al., 2018). We trained FQI and RFQI algorithms on the mixed dataset Dm (a detailed925

description of dataset provided in Appendix E.1). We note that we do not compare with soft robust926

RL algorithms because of its poor performance on MuJoCo environments in the rest of our figures.927

We test the robustness of the algorithm by introducing action perturbations, and by changing the928

model parameters actuator_ctrlrange, foot_joint_stiffness, and leg_joint_stiffness. Fig. 3 and Fig. 5929

shows RFQI algorithm is consistently robust compared to the non-robust algorithms. We note that930
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Figure 6: Hopper evaluation simulation results on offline dataset Dd. Average cumulative reward in
20 episodes versus different model parameter perturbations mentioned in the respective titles.
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Figure 7: Half-Cheetah evaluation simulation results on offline dataset Dd. Average cumulative
reward in 20 episodes versus different model parameter perturbations mentioned in the respective
titles.

we found ρ = 0.5 is the best from grid-search for RFQI algorithm. The average episodic reward of931

RFQI remains almost the same initially, and later decays much less and gracefully when compared932

to FQI and TD3 algorithms. For example, in plot 3 in Fig. 5, at the foot_joint_stiffness parameter933

value 15, the episodic reward of FQI is only around 1400 whereas RFQI achieves an episodic reward934

of 3200. Similar robust performance of RFQI can be seen in other plots as well. We also note that935

TD3 (Fujimoto et al., 2019) is a powerful off-policy policy gradient algorithm that relies on large 106936

replay buffer of online data collection, unsurprisingly performs well initially with less perturbation937

near the nominal models.938

In order to verify the effectiveness and consistency of our algorithm across different offline dataset,939

we repeat the above experiments, on additional OpenAI Gym MuJoCo (Brockman et al., 2016)940

environment Half-Cheetah, using D4RL dataset Dd (a detailed description of dataset provided in941

Appendix E.1) which are benchmark in offline RL literature (Fu et al., 2020; Levine et al., 2020;942

Liu et al., 2020) than our mixed dataset Dm. Since D4RL dataset is a benchmark dataset for offline943

RL algorithms, here we focus only on the comparison between the two offline RL algorithms we944

consider, our RFQI algorithm and its non-robust counterpart FQI algorithm. We now showcase the945

results on Hopper and Half-Cheetah for this setting.946

For the Hopper, we test the robustness by changing the model parameters gravity, joint_damping, and947

joint_frictionloss. Fig. 6 shows RFQI algorithm is consistently robust compared to the non-robust948

FQI algorithm. We note that we found ρ = 0.5 is the best from grid-search for RFQI algorithm.949

The average episodic reward of RFQI remains almost the same initially, and later decays much less950

and gracefully when compared to FQI algorithm. For example, in plot 2 in Fig. 6, for the 30%951

change in joint_damping parameter, the episodic reward of FQI is only around 1400 whereas RFQI952

achieves an episodic reward of 3000 which is almost the same as for unperturbed model. Similar953

robust performance of RFQI can be seen in other plots as well.954

For the Half-Cheetah, we test the robustness by changing the model parameters joint_stiffness of front955

and back joints, and actuator_ctrlrange of back joint. Fig. 7 shows RFQI algorithm is consistently956

robust compared to the non-robust FQI algorithm. We note that we found ρ = 0.3 is the best from957

grid-search for RFQI algorithm. For example, in plot 1 in Fig. 7, RFQI episodic reward stays at958

around 5500 whereas FQI drops faster to 4300 for more than 50% change in the nominal value.959

Similar robust performance of RFQI can be seen in other plots as well.960
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Figure 8: Similar performance of RFQI and
FQI in Hopper on dataset Dd w.r.t. parameters
actuator_ctrlrange and thigh_joint_stiffness.
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Figure 9: Similar performance of RFQI and FQI
in Half-Cheetah on dataset Dd w.r.t. parameters
joint_damping and joint_frictionloss.

As part of discussing the limitations of our work, we also provide two instances where RFQI and961

FQI algorithm behave similarly. RFQI and FQI algorithms trained on the D4RL dataset Dd per-962

form similarly under the perturbations of the Hopper model parameters actuator_ctrlrange and963

thigh_joint_stiffness as shown in Fig. 8. We also make similar observations under the perturba-964

tions of the Half-Cheetah model parameters joint_damping (both front joint_damping and back965

joint_damping) and joint_frictionloss as shown in Fig. 9. We observed that the robustness perfor-966

mance can depend on the offline data available, which was also observed for non-robust offline RL967

algorithms (Liu et al., 2020; Fu et al., 2020; Levine et al., 2020). Also, perturbing some parameters968

may make the problem really hard especially if the data is not representative with respect to that969

parameter. We believe that this is the reason for the similar performance of RFQI and FQI w.r.t. some970

parameters. We believe that this opens up an exciting area of research on developing online policy971

gradient algorithms for robust RL, which may be able to overcome the restriction and challenges due972

to offline data. We plan to pursue this goal in our future work.973
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