
APPENDIX586

A Preprocessing and tokenization details587

A.1 Search space primitives588

Below are the exact descriptions of the hyperparameter primitives used to define a given X (d).589

• Double: Specifies a continuous range of possible values in the closed interval [xmin, xmax]590

for some real values xmin ≤ xmax.591

• Integer: Specifies an integer range of possible values in [xmin, xmax] ∈ Z for some592

integers xmin ≤ xmax.593

• Discrete: Specifies a finite, ordered set of values from R.594

• Categorical: Specifies an unordered list of strings.595

A.2 Data preprocessing and tokenization596

We list out the full set of preprocessing steps (from Section 4.1) below:597

• Omit parameter and metric names in all trials, remove redundant keywords ("parameter",598

"trial", etc.), order trial parameters according to those in metadata m, and replace599

keywords and enumerations in metadata m with short strings and integers respectively.600

These replacements are:601

– “name”→ “N”602

– “metric”→ “O”603

– “goal”→ “G”, with values “MAXIMIZE”→ 1, “MINIMIZE”→ 2604

– “type” → “P”, with values “DOUBLE” → 1, “INTEGER” → 2, “DISCRETE”605

→ 1, “CATEGORICAL”→ 4606

– “algorithm"→ "A"607

– “min_value"→ "m", “max_value"→ "M"608

– “scale_type"→ "S", with values “LINEAR”→ 1, “LOG”→ 2609

– “categories"→ "C"610

• Insert short separator symbols, e.g. ? between parameter/metrics in a trial, "|" between trials,611

and "&" between experiment description and parameter configurations in metadata.612

• Convert all values in history h to single integers.613

– Represent discrete and categorical parameters with their index in the set of values.614

– Normalize float and integer parameter values in x(d)t with their value range and the615

function values yt with their minimum and maximum seen values in the entire study.616

Then quantize the normalized values to an integer, e.g., “0.12345"→ "123" with a617

quantization level of Q = 1000. More formally, we apply the following transformation618

q(·):619

q(z) = int[znorm ∗Q], where znorm = (z − zmin)/(zmax − zmin) (7)

The shortened text string is then converted to a sequence of tokens via the SentencePiece tokenizer620

[44] with a vocabulary of 33000 words. Quantized numbers in h are always converted into single621

tokens. As long asQ is sufficiently large, there is no concern from the loss of precision over numerical622

quantizations, and thus the serialized study contains nearly the same amount of information as the623

original data. For comparison, the naive tokenization for the example of Table 1 with t = 100 trials624

will produce 8221 tokens which can overload GPU memory, while our proposed tokenization will625

only produce 584 tokens, a 14x reduction.626
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B Algorithm and baseline details627

B.1 Dataset algorithms628

Grid Search: DOUBLE parameters are first log-transformed if specified. They are then converted629

into DISCRETE parameters by discretizing their ranges into 100 equidistant points. Suggestions630

are outputted using lexicographic ordering from the cartesian product over all parameters’ feasible631

points. The traversal order follows the alphabetical ordering of parameter names. That is, given632

two parameters "Foo" and "Bar", both in [0,1] range, the sequence of trials looks like: {"Foo":633

0, "Bar":0} , {"Foo": 0, "Bar":0.01}, ..., {"Foo": 0, "Bar":1},634

{"Foo": 0.01, "Bar":0}, {"Foo": 0.01, "Bar":0.01}, ....635

Shuffled Grid Search: Shuffled grid search is the same as Grid Search in how it handles DOUBLE636

parameters. Instead of traversing the grid in a deterministic order, it selects without replacement a637

random point from the grid at each iteration.638

Regularized Evolution [48]: In summary, this algorithm at every iteration randomly selects a639

tournament subset from the current population, and mutates the argmax member of the tournament.640

When inserting a new trial, the oldest trial will be removed. We use a population size of 25 and641

tournament size of 5. The mutation operation uniformly at random selects one of the parameters642

x(r) from x, and mutates x(r) based on the following: for DOUBLE, INTEGER, the new value is643

uniformly sampled from
[
x
(r)
min, x

(r)
max

]
, while for DISCRETE, CATEGORICAL, the new value is644

uniformly sampled from the feasible list.645

Hill Climbing: This is a naive implementation, where at every iteration t, the current xpivot646

is mutated (using the same operation as Regularized Evolution) to xmutated, and evaluated. If647

f(xmutated) > f(xpivot), then we reassign xpivot to be the mutated xmutated. An extension of this648

method can be "batched", as seen in [60], although we not include this for the sake of clarity and649

presentation.650

Eagle Strategy [49]: Eagle strategy is a metaheuristics algorithm that is a slight variation of Particle651

Swarm Optimization [61].652

The algorithm is originally formulated for continuous search spaces only. The reason is that it involves653

a subroutine (move step) where we take a convex combination of a particle (called firefly in [49]) and654

another particle that has a better objective value. Mathematically, given two particle vectors x and x′655

and the coefficient c ∈ [0, 1], the move step generates cx + (1− c)x′.656

The algorithm is extended to support DISCRETE and CATEGORICAL parameters by applying a
separate move operation for each non-continuous dimension d:

move(x(d), x′(d), c, α) =


x(d) with probability (1− α)c

x′(d) with probability (1− α)(1− c)
random value with probability α

where α is a small perturbation coefficient that decreases in the dimension of the search space.657

Vizier [2]: Vizier’s default algorithm is available via Google Cloud as Vertex Vizier. We have658

contacted the authors of the algorithm and received the the following details on its implementation.659

In summary, the algorithm uses a particular implementation of GP-UCB with trust regions. The GP660

regressor model consists of the following:661

• α ∼ TruncatedLogNormal controls the amplitude of Matern5/2 kernel.662

• λi ∼ TruncatedLogNormal (i.i.d. for each dimension i) controls the length scale for the663

i-th dimension.664

• σ ∼ TruncatedLogNormal controls the Gaussian noise.665

• z ∼ Normal(0, σ) is the observation noise.666

• f ∼ GP(λ, α) is the function.667
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• y(x) ∼ f(x) + z is the noisy function.668

where the prior distribution parameters are chosen depending on the user’s estimate of the observation669

noise.670

The algorithm then uses gradient descent with line search for step sizes to obtain the MAP estimate671

of α, λ and σ. Furthermore, the algorithm uses a variation of Eagle Strategy (explained above) to672

optimize the UCB acquisition function with coefficient of 1.8. In order to prevent overexploration673

that may result from the large UCB coefficient, the algorithm optimizes acquisition functions inside674

trust region. The trust region is the union of L∞-norm balls around explored points. The radius of675

the L∞-norm ball grows in the number of explored points. The algorithm also starts at the center of676

the search space (unless user specifies an alternative initial batch).677

GP-UCB: It is the same as Vizier’s GP-UCB, except for the model definition. We used the model678

definition from the github repository of the authors of "Heteroscedastic and Evolutionary Bayesian679

Optimisation solver" (HEBO) [62], the winner of 2020 Blackbox Optimization challenge [63]. It is680

worth noting that HEBO uses multi-dimensional acquisition functions derived from the GP model.681

The priors over hyperparameters are thus not tuned to optimize the performance of GP-UCB algorithm,682

which explains its suboptimal performance.683

B.2 Gaussian Process for uncertainty estimation684

We use the same GP model as GP-UCB.685

When comparing the function prediction performance with the OPTFORMER, we choose [ymin, ymax]686

to normalize function value token based on the range of observed value in the sampled sequence687

(x1, y1, . . .xt, yt), and therefore the real value of yt always resides in the prediction support of the688

OPTFORMER.689

To compensate for the fact that GP’s distribution is wider than the real support used by the Transformer,690

we truncate the GP’s prediction into [ymin, ymax] for a fairer comparison.691

B.3 Transfer learning baselines692

We use the following methods as transfer-learning baselines for the HPO-B dataset from Section 6.3:693

ABLR [12, 51]: BO with multi-task adaptive Bayesian linear regression. Our implementation of694

ABLR is equivalent to a GP with 0 mean and a dot-product kernel with learned basis functions.695

We use a neural net (NN) with (128, 128) hidden layers and tanh activation as the basis functions.696

We then train ABLR by optimizing the negative log likelihood (NLL) over NN weights θ as well697

covariance matrix SS> and bias parameters δ2 that define the dot-product kernel k, i.e.698

k(x, x′) = φϑ(x)>SS>φϑ(x′) + δ2, (8)

where matrix S ∈ R128×256, basis function φθ is parameterized by NN weights ϑ and δ ∈ R.699

FSBO [7]: Bare-bone few-shot BO. We did not include data-driven initialization due to lack of700

reproducing details. Following [7], our implementation of FSBO is equivalent to BO using a GP701

with 0 mean and a squared-exponential kernel on top of a NN with (128, 128) hidden layers and tanh702

activation functions. We train the NN weights as well as the parameters in the squared-exponential703

kernel.704

HyperBO [52, 53]: BO with pre-trained GPs. Following [53], we pre-train a GP with Matérn32705

kernel on top of a NN with one hidden layer of width 2×D and tanh activation functions. Here D is706

the input dimension of the search space.707

For training, we use the Adam optimizer with learning rate 0.001 and batch size 50 for all the708

transfer-learning baselines. Notice that these transfer-learning methods require “pre-training” a GP709

on the same search space. We sample 10000 random data points on each HPO-B surrogate functions710

from each search space. We train a separate GP for each search space.711
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C Data details712

C.1 Dataset details713

RealWorldData dataset: The RealWorldData dataset contains a total of 750K studies collected714

from users, and thus each study has a variable number of trials. Since some user studies can potentially715

have an excessive number of trials (e.g. 10K+), for all studies we only consider the first 300 trials for716

experiments. Since the dataset also includes usernames (due its origin from a proprietary database),717

we made sure to anonymize every study first.718

We split the dataset in temporal order to avoid information leak, use most studies for training, and719

select 16 studies generated by a different set of users for testing. To bootstrap these studies into actual720

functions to be evaluated, we fit a GP for each study and output the function value as the GP’s median721

function (due to the use of output warping).722

HPO-B dataset: For HPO-B dataset, a tuning task is identified with a (search space id, dataset id)723

pair, which refers to tuning the hyperparameters defined in a search space for some machine learning724

model trained on a dataset. we use the "v3-augmented" meta-training/validation/test splits that725

includes all the 16 test search spaces as well as less frequent search spaces in the meta-training split.726

There are uniquely 1730, 91, and 86 tasks for training, validation and testing respectively. For every727

tuning task, [5] fits an XGBoost model to the trial data of every tuning task as the objective function.728

Similar to the BBOB dataset, we generate 10M, 500K studies for training and validation respec-729

tively, along with the same set of controlled algorithms. For each of the test tuning task, we run 5730

optimizations each with a different initial set of observations provided in [5].731

The HPO-B uses the Apache 2.0 open-source license.732

BBOB dataset: The BBOB dataset contains a total of 10M studies for training, each containing733

exactly 300 trials. An additional 500K studies (using different randomization seeds) are used for734

validation. While the number of studies can be freely generated and effectively unlimited, we found735

that 10M studies were sufficient for the Transformer to train properly.736

The functions we use for data are from [47], and consist of separable functions (Sphere,737

Ellipsoid Separable, Rastrigin Separable, Bueche Rastrigin,738

{Linear Slope}), moderately conditioned, potentially multi-modal functions (Attractive739

Sector, Step Elllipsoid, {Rosenbrock Rotated}), ill-conditioned functions740

(Discus, Bent Cigar, Sharp Ridge, {Sum of Powers}), multi-modal functions741

(Weierstrass, Schaffers F7, Schaffers F7 Illconditioned, {Greiwank742

Rosenbrock}), and functions with weak global structures (Schwefel, Gallagher 21,743

Gallagher 101, Katsuura, {Lunacek}). The functions noted with the extra "{}" are for744

testing and excluded from the training data. We apply significant randomization over the functions745

for both the training dataset and test-time evaluation. In order, we randomize the following:746

• Function dimension D, which is uniformly selected from a range. For training data genera-747

tion, this range is [1, 20].748

• Orthonormal rotation matrix Γ, which is applied to the input first, i.e. producing a new749

function f ′(x) = f(Γx).750

• Shift vector xshift which is also applied to the input first, i.e. producing a new function751

f ′(x) = f(x− xshift), where xshift has all of its coordinate-wise entries sampled from752

[−4, 4], while the domain is [−5, 5].753

• Discretization, in which the parameter space X (d) is uniformly at random chosen to be either754

a DOUBLE, DISCRETE, CATEGORICAL parameter. The DOUBLE parameter "discretiza-755

tion" is actually a no-op, as it allows the original continuous space X (d) ⊂ R. Otherwise, a756

number L of feasible points is uniformly selected from the range [2, 8], and used to divide757

the original [−5, 5] range into L equally-spaced points. If DISCRETE was chosen, then the758

ordering of the grid points is preserved, otherwise if CATEGORICAL was chosen, then all759

of the gridpoints become effectively unordered strings.760

• Noise Type, in which one of 10 noise settings (including no noise) is uniformly chosen.761

Noise consists of either Gaussian (multiplier sampled from a random Gaussian of varying762
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scale is applied), Uniform (multiplier sampled from uniform distribution of varying scale is763

applied), or Cauchy (additive noise which only occurs at a probabilistic frequency, with a764

varying fixed strength is applied).765

For evaluation, we randomly sample 100 configurations for each of the five test functions, resulting766

in 500 optimization trajectories in total.767

For BBOB, as all parameters are named as "x_i" with i ∈ [0, D) and always have value range in768

[−5, 5], significantly different from the other two datasets, we omit their parameter names and value769

in the metadata m and only keep parameter type information.770

D Model and training details771

The open-sourced T5 model codebase we use can be found at https://github.com/772

google-research/t5x.773

D.1 Conditional probability decomposition774

From Section 4.2, the joint distribution of the optimization history h conditioned on metadata m can775

be written using the chain rule as776

P (h̄|m̄) = P
(
x̄
(1)
1 , x̄

(2)
1 , . . . , x̄

(D)
1 , ?, ȳ1, "|", . . . , x̄(1)T , x̄

(2)
T , . . . , x̄

(D)
T , ?, ȳT |m̄

)
=

T∏
t=1

(
D∏
d=1

P
(
x̄
(d)
t |m̄, h̄t−1, x̄

(1:d−1)
t

))
P
(
?|m̄, h̄t−1, x̄t

)
P
(
ȳt|m̄, h̄t−1, x̄t

)
P
(
"|"|m̄, h̄t

)
(9)

We note that this correctly formalizes the prediction of objects we are most interested in, which are777

parameter values P
(
x̄
(d)
t |m̄, h̄t−1, x̄

(1:d−1)
t

)
and function values P

(
ȳt|m̄, h̄t−1, x̄t

)
.778

D.2 Training779

During training, the encoder (denoted as Eθ) input sequence length is selected to be the maximum780

length of the tokenized metadata m̄ from a dataset, ranging from 256 to 1024. The decoder (denoted781

as Dθ) input sequence is fixed at 1024, which means it can model up to 1024//(D + 3) trials where782

D is the number of parameters. We use Adam optimizer with a rsqrt learning rate schedule and a783

mini-batch size of 256, and train each model up to 1M steps, with early stopping according to the784

validation loss. Each model is trained with a 4x4 TPU-v3 slice.785

Thus the prediction for h̄(n) is:786

Pθ

(
h̄(n)

∣∣∣m, h̄(1:n−1)
)

= SoftMax
[
Dθ(Eθ(m̄), h̄(1:n−1))

]
(10)

D.3 Data augmentation787

We adopt the following three data augmentations to reduce overfitting to the offline datasets:788

1. In order for the model to be invariant to parameter ordering, we apply random parameter789

permutations over metadata m̄ and every suggestion x̄t.790

2. In order for the model to be robust to a different normalization range given a new function,791

we apply random scaling and shifting to the normalized function value ynorm = (y −792

ymin)/(ymax − ymin) before quantization:793

y′norm = ynorm ∗ s+ c, s ∼ Uniform[0.3, 1], c ∼ Uniform[0, 1− s] (11)

and thus y′norm ∈ [c, c+ s] ⊆ [0, 1] after transformation.794

3. Randomly drop textual and parameter value range information in metadata.795
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Table 5: Example of studies in RealWorldData (left), BBOB (middle) and HPO-B (right).
"name": "gan1d 500 iters -
"2022-05-18"
"parameter": {
"name": "learning_rate",
"min_value": 1e-06,
"max_value": 0.01,
"type": "DOUBLE",
"scale_type": "LOG",

}
"parameter": {
"name": "modifier",
"min_value": 0.1,
"max_value": 1000000.0,
"type": "DOUBLE",
"scale_type": "LOG",

}
"parameter": {
"name": "weight_init_std",
"min_value": 0.01,
"max_value": 2.0,
"type": "DOUBLE",

}
"parameter": {
"name": "optimizer",
"type": "CATEGORICAL",
"categories": "sgd",
"categories": "adam",
"categories": "rmsprop",

}
"goal": "MINIMIZE",
"max_num_trials": 500,
"metric": "",
"observation_noise": "HIGH",
"trial": {
"parameter": {

"learning_rate": 0.0001,
"modifier":

316.2277660168381,
"optimizer": "sgd",
"weight_init_std": 1.005,

}
"metric": {

"": -0.946908021738347,
}
}
"trial": {
"parameter": {

"learning_rate": 0.000504,
"modifier":

12.346786652749216,
"optimizer": "rmsprop",
"weight_init_std":

1.2192566347109868,
}
"metric": {

"": -1.5144472008077585,
}
}
...

"name": "SCHAFFERS_F7",
"algorithm": "gp",
"parameter": {
"name": "x0",
"type": "CATEGORICAL",
"categories": ["0.0", "5.0",

"-5.0"],
},
"parameter": {
"name": "x1",
"min_value": -5.0,
"max_value": 5.0,
"type": DOUBLE,
"scale_type": UNIT_LINEAR_SCALE,

},
"parameter": {
"name": "x2",
"min_value": -5.0,
"max_value": 5.0,
"type": DOUBLE,
"scale_type": UNIT_LINEAR_SCALE,

},
"parameter": {
"name": "x3",
"type": DISCRETE,
"values": [-5.0, 5.0],

},
"parameter": {
"name": "x4",
"type": CATEGORICAL,
"categories": ["5.0",

"-1.66666666667",
"-5.0",

"1.666666666667"],
},
"parameter": {
"name": "x5",
"min_value": -5.0,
"max_value": 5.0,
"type": DOUBLE,
"scale_type": UNIT_LINEAR_SCALE,

}
"metric": "",
"goal": MAXIMIZE,
"observation_noise": HIGH
"trial": {
"parameter": {

"x0": "0.0",
"x1": 0.0,
"x2": 0.0,
"x3": 5.0,
"x4": "-5.0",
"x5": 0.0,

}
"metric": {

"": -334.4782223514127,
}
}
"trial": {
"parameter": {

"x0": "5.0",
"x1": -1.9867479768748013,
"x2": -1.7665621302793095,
"x3": -5.0,
"x4": "1.666666666666667",
"x5": -1.7634306558106605,

}
"metric": {

"": -323.84900527589326,
}
}
...

"name": "5859_145853",
"algorithm": "GP UCB",
"parameter": {
"name": "minsplit",
"max_value": 60.0,
"type": "DOUBLE",
"scale_type": "LINEAR",

}
"parameter": {,
"name": "minsplit.na",
"max_value": 1.0,
"type": "DOUBLE",

}
"parameter": {
"name": "minbucket",
"min_value": 1.0,
"max_value": 60.0,
"type": "DOUBLE",
"scale_type": "LINEAR",

}
"parameter": {
"name": "cp",
"min_value": 0.000100788830221,
"max_value": 1.000092678873241,
"type": "DOUBLE",
"scale_type": "LOG",

}
"parameter": {
"name": "maxdepth",
"max_value": 29.0,
"type": "DOUBLE",
"scale_type": "LINEAR",

}
"parameter": {
"name": "maxdepth.na",
"max_value": 1.0,
"type": "DOUBLE",

}
"observation_noise": AUTOMATIC,
"metric": "objective_value",
"goal": "MAXIMIZE"
"trial": {
"parameter": {
"minsplit": 4.0,
"minsplit.na": 0.0,
"minbucket": 18.0,
"cp": 0.7342895964927976,
"maxdepth": 3.0,
"maxdepth.na": 0.0,

}
"metric": {
"objective_value": 0.500024080276,

}
}
"trial": {
"parameter": {
"minsplit": 8.0,
"minsplit.na": 0.0,
"minbucket": 32.0,
"cp": 0.30972302652187583,
"maxdepth": 4.0,
"maxdepth.na": 0.0,

}
"metric": {
"objective_value": 0.50002408028,

}
}
...
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D.4 Inference796

At inference time, we choose the decoder input sequence length according to the maximum number of797

trials to run. E.g. to optimize a function with 18 parameters (highest possible dimension D over our798

test functions) over 105 trials, we set the input sequence length to be at least (18 + 3) ∗ 105 = 2205.799

We compute the (ymin, ymax) range for function value normalization in the tokenization process with800

the current minimal and maximum observations. We set c = 0.2, s = 0.6 so that all normalized801

observations fall in the range of y′norm ∈ [0.2, 0.8], and the model’s y value predicted distribution802

support, [0, 1], is sufficiently large.803

We also use a softmax temperature hyperparameter when predicting function values. We choose the804

temperature to maximize the log-likelihood of the validation split of each dataset seperately. On805

RealWorldData, the function prediction temperature is set as 1.1 and on HPO-B it is 1.5. The policy806

prediction temperature is always set to be 1.807
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E Additional experimental results808

We provide additional experimental results in this section. The most important result to note is when809

we compare different acquisition function choices in Appendix E.1 and observe that the augmented810

policy with EI outperforms all baselines on both RealWorldData and HPO-B benchmarks across811

all metrics.812

E.1 Ablation on acquisition functions: EI augmented policy outperforms all baselines813

We provide additional ablations on acquisition function choices on both the RealWorldData and HPO-814

B datasets, and show that the OPTFORMER augmented with Expected Improvement (EI) produces815

the best performance across the board, over all other OPTFORMER variants and baselines.816

In Fig. 6, we compare the Thompson Sampling (TS) used in the main body with Probability of Im-817

provement (PI), Expected Improvement (EI) and Upper Confidence Bound (UCB) with a confidence818

level of 0.9. We also include the best performing standalone baseline, Vizier, and transfer learning819

baseline, HyperBO, for reference. We observe that the prior policy is improved by all the acquisition820

functions. Particularly, OPTFORMER (EI) is the best among all acquisition functions and clearly821

outperforms all the baseline methods (HyperBO and Vizier) on both datasets across all trial steps.822
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Figure 6: Ablation on the choice of acquisition functions. The plot shows the best normalized
function values averaged over HPO-B test functions. Ablation curves are shown with© markers.
To further bolster this hypothesis, we also compare using other metrics such as performance profiles823

[64], which are widely used performance evaluation tools for comparing optimization methods. In our824

case, the y-axis is the fraction of tasks that each method succeeds in, for a given trial index (x-axis).825

The specific criteria of success depends on the problem itself, and we present natural performance826

profiles based on the following criterion: outperforming 90% of the best function value obtained827

by all methods at the 50th iteration. As this metric depends on the set of methods being compared,828

we include all baselines from the main body. As we can see, Fig. 7 demonstrates that augmented829

OPTFORMER policies, especially OPTFORMER (EI), produce superior performance compared to830

other baselines.831
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Figure 7: Ablation on the choice of acquisition functions. The plot shows the performance profile
metric with success threshold: median best function value at 50th iteration.
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E.2 Imitating HPO policies832
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Figure 8: Policy distribution p(x(d)40 |m,h39,x
(1:d−1)
40 ) for d = 1, 2 on a 2D GRIEWANK ROSEN-

BROCK function.
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Figure 9: Best normalized function value with std, averaged over 5 test functions each with 100 runs.
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Figure 10: Best normalized function value of LINEAR SLOPE with std, averaged over 100 runs.
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Figure 11: Best normalized function value of ROSENBROCK ROTATED with std, averaged over
100 runs.

0 20 40 60 80 100
Trial

7.5

5.0

2.5

0.0

2.5

Be
st

 n
or

m
al

ize
d 

fu
nc

tio
n

Grid Search

Target policy
OptFormer

0 20 40 60 80 100
Trial

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Be
st

 n
or

m
al

ize
d 

fu
nc

tio
n

Shuffled Grid Search

Target policy
OptFormer

0 20 40 60 80 100
Trial

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Be
st

 n
or

m
al

ize
d 

fu
nc

tio
n

Random Search

Target policy
OptFormer

0 20 40 60 80 100
Trial

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Be
st

 n
or

m
al

ize
d 

fu
nc

tio
n

Eagle Strategy

Target policy
OptFormer

0 20 40 60 80 100
Trial

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Be
st

 n
or

m
al

ize
d 

fu
nc

tio
n

Regularized Evolution

Target policy
OptFormer

0 20 40 60 80 100
Trial

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Be
st

 n
or

m
al

ize
d 

fu
nc

tio
n

Hill-Climbing

Target policy
OptFormer

0 20 40 60 80 100
Trial

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Be
st

 n
or

m
al

ize
d 

fu
nc

tio
n

Vizier

Target policy
OptFormer

Figure 12: Best normalized function value of SUM OF POWERS with std, averaged over 100 runs.
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Figure 13: Best normalized function value of GRIEWANK ROSENBROCK with std, averaged over
100 runs.
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Figure 14: Best normalized function value for LUNACEK with std, averaged over 100 runs.
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E.3 Learning priors for hyperparameter response functions833

We apply the same goodness-of-fit analysis on function prediction from Section 6.2 to the test split of834

HPO-B. The results are shown in Fig. 15.835
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Figure 15: Fitness of predicted CDF(y) on HPO-B test set.

The ECE metric is defined for a classification model. To obtain a similar measurement for a continuous836

regression model, we convert the continuous regression problem into a multi-class classification837

problem by discretizing the range [ymin, ymax] for each study into 100 equal intervals. Then, we838

follow the definition of ECE in [27] and estimate the metric using 10 confidence bins.839

E.4 Augmenting a prior policy with function prediction840

Transfer learning results on HPO-B Fig. 4 showed the best normalized function values observed841

so far at each trial. Though HyperBO uses a smaller NN for feature extraction, HyperBO has a842

flexible mean function, which captures important information that benefits BO in beginning trials.843

While we implemented a bare-bone FSBO, its performance is still better than ABLR in part thanks to844

FSBO’s use of a squared exponential kernel instead of a dot-product one. Comparing to a dot-product845

kernel with a finite feature space, a squared exponential kernel introduces infinite features.846

In Fig. 16 and Fig. 17, we show the performance profiles of all compared methods over 2 different847

metrics: outperforming 90% of the best function value obtained by all methods at the 50th iteration,848

and outperforming the median of the best function values obtained by each method at the 50th849

iteration.850

Despite the relatively better performance of HyperBO, FSBO and ABLR especially during earlier851

trials, shown by Fig. 4, these methods do not achieve a high percentage success rate on the 86 HPO-B852

test functions as reflected by Fig. 17. As pointed out by Wang et al. [53], ABLR, FSBO can be viewed853

as special cases of HyperBO with specific settings of kernel and mean functions. These methods854

have guarantees only if each function (corresponding to each task) is an i.i.d. sample from the same855

GP. However, for some search spaces in HPO-B, there exist surrogate functions that return constant856

values. The constant surrogate function is unlikely to be an i.i.d. sample from the same GP as other857

surrogates in the same search space. This means, ABLR, FSBO and HyperBO can be sensitive to858

how the data is generated and outliers in the training data.859

Summarizing the results in Fig. 4, Fig. 16 and Fig. 17, HyperBO was able to achieve very good860

overall performance on a subset of all search spaces, which led to a better averaged best normalized861

function values. It is likely that these search spaces have surrogate functions that meet the i.i.d862

function sample assumption from Wang et al. [53]. However, if we only look at the fraction of tasks863

each method surpasses a success metric, HyperBO may not be a method with superior performance864

that is comparable to the OPTFORMER. This reveals another benefit of the OPTFORMER: robustness865

to function outliers.866
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Figure 16: Performance profile on RealWorldData and HPO-B test functions with success threshold:
90% best function value at 50th iteration.
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Figure 17: Performance profile on RealWorldData and HPO-B test functions with success threshold:
median best function value at 50th iteration.

HPO-B plotting We further compare the augmented policies from Section 6.3 to the provided867

baselines for HPO-B in [5], using the same plotting format from [5] for fair comparison.868

Figure 18: (Lower is better) Aggregated comparisons of normalized regret and mean ranks across all
search spaces on the continuous search spaces of HPO-B-v3.
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