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Abstract

Convolutional neural networks (CNNs), are currently the best computational meth-1

ods for the diagnosis of Alzheimer’s disease (AD) from neuroimaging. CNN’s2

are able to automatically learn a hierarchy of spatial features, but they are not3

optimized to incorporate domain knowledge.4

In this work we study the generation of attention maps based on a human expert5

gaze of the brain scans (domain knowledge) to guide the deep model to focus on6

the more relevant regions for AD diagnosis. Two strategies to generate the maps7

from eye-gaze were investigated; the use of average class maps and supervising8

a network to generate the attention maps. These approaches were compared with9

masking (hard attention) with regions of interest (ROI) and CNNs with traditional10

attention mechanisms.11

For our experiments, we used positron emission tomography (PET) scans from the12

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. For the task of13

normal control (NC) vs Alzheimer’s (AD), the best performing model was with14

insertion of regions of interest (ROI), which achieved 95.6% accuracy, 0.4% higher15

than the baseline CNN.16

1 Introduction17

Alzheimer’s Disease (AD) is a chronic brain disorder that accounts for 60% to 80% of dementia cases18

worldwide [1] and affects predominantly the elderly. Symptoms include forgetfulness, difficulty19

reasoning and mood changes like apathy, wandering, agitation and aggression. The brain presents20

atrophy due to death of neurons and lower metabolic activity. While there is still no cure for AD, its21

early detection is crucial, as an effective management of the disease may help prevent the progression22

to more severe stages. Clinical diagnosis is made by collecting medical and family history, asking23

relatives about changes in behaviour and conducting mental cognitive tests. Brain imaging, like24

magnetic resonance imaging (MRI) scans or positron emission tomography (PET) scans has also25

been recognized as a powerful biomarker, however their interpretation is difficult thus computer-aided26

diagnosis (CAD) has been requested by clinicians to amplify their diagnostic accuracy [2].27

Currently, the best performing algorithms for AD classification from neuroimaging are convolutional28

neural networks (CNNs). In these networks, the features are automatically extracted rather than29

handcrafted, however it is not easy to incorporate medical knowledge.30

A recent survey on deep models for medical image analysis concluded that integrating domain31

knowledge improved the performance of the networks in almost all tasks [3]. As an example, it32

states that the attention mechanism is a powerful technique to incorporate domain knowledge of33

radiologists, because the information about where medical doctors focus helped deep learning models34

yield better results [4] [5] [6] [7] [8] [9]. Inspired by these results, in this work we investigate35
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whether the generation of attention maps based on eye-tracking data (physician gaze) can improve36

the performance of AD diagnosis, by directing the classification model to focus on important regions37

(determined by domain knowledge). The maps that are obtained are multiplied with CNN feature38

maps, thus certain locations are highlighted while others are attenuated. Two approaches were39

investigated for attention map generation. In the first approach, average maps are computed from the40

doctor’s gaze maps for patients of the same class. In the second approach, the eye-gaze data is used to41

supervise a CNN trained to generate attention maps. The inferred maps, like in the first approach, are42

then multiplied with the feature maps of the CNN that does classification, and whose parameters are43

trained with the class labels only. Finally, this CNN was also trained with regions of interest (ROI) to44

compare intuitive domain knowledge with pre-defined relevant regions for classification.45

Therefore, the main contributions of this work are:46

• Introduction of domain knowledge from eye-gaze data from an expert physician into a47

state-of-the-art CNN model to perform AD classification.48

• Training a deep multiscale network network and a U-Net with physician eye-gaze data to49

predict attention maps.50

2 Related Work51

2.1 AD detection models52

In the last decade, there have been substantial developments in machine learning classification models53

for AD detection. CNNs are very effective for AD classification problems and ResNets are by far54

the most popular type of CNN applied [10] [11] [12] [13] [14] [15] [16]. Nonetheless, some authors55

used AlexNet [17], Inception [18] and VGG [19] [20] or applied an ensemble of methods [21]. Most56

studies train models with magnetic resonance imaging (MRI) scans [10] [11] [22] [12] [13] [14] [23]57

[20] [15] [16], although still a considerable number use other biomarkers, like PET scans [24] [17]58

[25] [21] [18] [26] [27] [19], largely from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)59

clinical datasets.60

A recent in-depth study [28] about deep learning applications in AD diagnosis research analyzed61

about 100 published papers since 2019. Besides identifying many trending technologies, the study62

recognized the importance of the attention mechanism (AM) and suggested it should be further63

explored. The idea behind the attention mechanism comes from human visual attention, which64

illustrates that human vision typically does not scan the entire scene at once, but rather focuses65

on selective parts of the whole visual field sequentially, according to the person’s needs. The AM66

therefore can be interpreted as weighted values that represent the importance of each specific part67

of the image for classification. In CNN models there can be many types of attention, like spatial68

attention, channel attention, self-attention and layer attention, all of which were employed in the69

analyzed papers. As for examples of models, Dan J. et al. [11] trained a 3D ResNet with one layer of70

spatial attention (convolution and rectified linear unit (ReLU)), which led to an increase of 2% in71

accuracy. Ullanant et al. [12] inserted a residual attention block [29] to a vanilla ResNet. Liang S et72

al.[13] used one layer of channel attention per stage. Each attention block has global max-pooling for73

each channel, a convolution with 1x1 kernel, ReLU and dense layers. Zhang Y. et al.[15], created74

an attention mechanism inspired by the Squeeze-and-Excitation block [30] (channel attention) and75

got an increase of about 2% in accuracy. Regarding the location of the attention mechanism in76

the network, most studies place it in the middle of the network or throughout every residual block.77

However, one author [31] concluded the AM was better placed at the head of the network.78

All of the experiments mentioned that used AM were made with MRI scans. No studies that applied79

attention mechanisms to PET scans were found. Nonetheless, PET scans were chosen for this work,80

because they can show brain alterations before anatomical changes are observed in MRI scans, which81

is important for early diagnosis [32].82

2.2 Supervised attention83

Since there were no studies on the effect of supervising attention mechanisms with human gaze84

(domain knowledge) for Alzheimer’s disease, we looked at works in other fields.85
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Table 1: Clinical profile of the subjects in three categories (AD, MCI, NC) categories. Age and
MMSE are average values with the standard deviation in parenthesis. MMSE refers to the Mini-
Mental State Exam, a mental cognitive status assessment that evaluates memory, thinking and simple
problem-solving abilities, where the maximum (best) score is 30.

Group AD MCI NC All

No. of subjects 95 207 104 406
Age 76.6 (7.1) 76.0 (7.3) 77.0 (4.8) 76.4 (6.7)
Sex (% M) 59.9 65.8 63.8 64.1
MMSE 21.1 (4.1) 26.7 (2.8) 29.1 (1.2) 26.1 (2.9)

Yu et al. [33] showed that spatial attention guided by human eye-tracking data can, in fact, enhance86

performance, in their case, the performance of generating short text information about brief video87

clips. They created an AM block that predicts a gaze map per frame of the input video. the inclusion88

of this AM block improved the results by 3.2% for one language metric.89

Li et al. [4] proposed a CNN for glaucoma detection with an attention mechanism supervised90

by human attention, called AG-CNN. The human-generated attention maps were used to train the91

attention prediction subnet of their AG-CNN, which is comprised of a CNN with concatenated features92

of different layers passed through a deconvolution block at the end. Li’s model has considerably93

better performance than other state-of-the-art methods in his field and increased accuracy by 3.4%94

when compared to the same model without attention.95

Chong Ma et al. [34] proposed a vision transformer for the diagnosis of breast diseases. They infuse96

the human expert’s prior knowledge to guide the network to focus on the patches with potential97

pathology. This design leads to higher performance (increased accuracy by almost 1% compared to a98

standard ResNet50). Moreover, the EG-ViT only introduces the mask operation and an additional99

residual connection to a vanilla vision transformer. This model has the limitation that it needs to be100

pre-trained with hundreds of millions of data samples in order to show better results than CNN. This101

is especially troublesome for 3D images.102

Sheng Wang et al. [35] designed a supervised network to assess knee X-ray images for osteoarthritis.103

This model, called GA-Net, is composed of a ResNet classification network and the supervised104

attention consistency block. This last component is a CAM visualization/localization module [36].105

Comparing the ResNet18 with ResNet18+Gaze, the accuracy increased by 2% to 62.8%.106

3 Data107

ADNI is a landmark partnership with the purpose of creating a longitudinal study intended to collect108

biomarkers of AD. From this database, we retrieved fludeoxyglucose (FDG) PET scans, which109

show the glucose metabolism in the brain, from participants with baseline and 6, 12 and 24-month110

follow-ups. 1393 scans from 209 subjects were used, 95 were from AD subjects, 207 were from mild111

cognitive impairment (MCI) subjects and 104 were normal controls (NC). Tab 1 presents demographic112

and clinical information of the study subjects. All FDG-PET had been normalized, averaged and113

co-registered by ADNI, and were also further normalized to the [0,1] range.114

Additionally, several PET scan images in this dataset have been complemented with records of the115

gaze of a medical doctor while performing a diagnosis, thus collecting areas of interest (domain116

knowledge). This was performed by Bicacro et al. [37], using a Tobii™ device. For their study, the117

gaze (a total of 4261 fixation points) for scans of 177 subjects (59 of each category - AD, MCI, NC)118

was collected. Tab. 2 presents the proportion of each type of scan within the overall dataset. It is119

noteworthy that the amount of scans with fixations is only 12.6% of the total scans available. Even120

though these eye-gaze data have been applied before in [37] and [38], it was never employed in deep121

learning models. They were used for selecting and extracting features that were then fed to a support122

vector machine classifier.123

For each scan, the eye-tracker provides discrete fixation points. However, the physician does not look124

at a particular pixel, but instead looks at a region centered in the fixation point and symmetrically125
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Table 2: PET scans in various categories. Several different scans correspond to the same patients in
different periods of the ADNI’s longitudinal study, therefore there are more scans than subjects.

Group AD MCI NC All

No. of scans 314 714 365 1393
Proportion of total (%) 22.5 51.2 26.3 100
Proportion of scans with fixations (%) 4.2 4.2 4.2 12.6

spread out by the visual angle. Therefore, we convolve the fixation map f(x) (image with the points126

where the doctor focused) with an isotropic bi-dimensional Gaussian function Gσ(x), creating an127

attention map S(x), like in Fig. 1 ((a), (b), (c)) (image where the regions people’s eyes focus are128

highlighted). The circular region is modeled by the isotropic Gaussian filter and the visual angle by129

the standard deviation (σ = 3). Some examples of the resulting maps are shown in Fig. 1, where130

average maps are also shown ((d), (e), (f)), given the variability in attention maps.131
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Figure 1: Examples of axial cut 25. The first row shows attention maps obtained by Gaussian filtering
of the fixation points for three random patients, with NC (a), MCI (b) and AD (c). The second row
shows average attention maps for NC (d), MCI (e) and AD (f).

The same expert physician has manually identified 12 regions of interest (ROI), as displayed in132

Fig. 2. These regions include the lateral and mesial temporal, inferior frontal gyrus/orbitofrontal,133

inferior and superior anterior cingulate, dorsolateral parietal, posterior cingulate, and precuneus.134

These anatomical regions of the brain are considered by the doctor to be the most relevant for the task135

of AD diagnosis. If we compare the regions of interest with the regions where the doctor looked at,136

we discover that only 36.2% of fixations fall inside the ROI. This might be concerning since it seems137

there is little coherence between the regions identified by the doctor and the regions where he focuses138

his gaze.139

4 Method140

In this section, the different models studied are detailed. First, we present the two models investigated141

for attention mechanism supervision, then we present our approaches that use constant attention142

maps, either based on average eye-gaze data or from ROIs. Finally, we present our baselines which143

include a standard ResNet18 and the ResNet18 with attention mechanisms (either CBAM or Residual144

Attention).145
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(a) (b) (c)

Figure 2: Examples of three axial slices with regions of interest (ROI) defined by the expert physician.
(a) Red - Inferior frontal gyrus/Orbitofrontal; Dark and light blue - Lateral temporal; Light green
and orange - Mesial temporal; (b) Dark and light blue - Lateral temporal; Red - Inferior and superiro
anterior cingulate ; (c) Light red - Inferior and superior anterior cingulate ; Yellow and orange -
Dorsolateral parietal; Dark red - Posterior cingulate and precuneus. Some slices do not contain any
anatomical ROI.

4.1 Supervised attention mechanism146

In this method, the model is composed of two sub-networks. The first network is used to predict the147

attention maps, and is supervised by the doctor’s fixation maps. The second network is a standard148

ResNet18, where the created attention mechanism maps are inserted. Two alternatives for generating149

the attention maps from the doctors’ eye-gaze were investigated. The first alternative is the deep150

multiscale network (Fig. 3), which is similar to the glaucoma paper’s [4] attention prediction subnet,151

but adapted for 3D images and with resizing performed with average pooling and upsampling instead152

of bilinear interpolation. The encoder portion is a typical CNN, where the input passes through153

several residual blocks to extract hierarchical features. The decoder portion takes features from154

distinct basic blocks, normalizes them to the same dimensions, and concatenates them to perform155

convolutions four times, before applying convolution transpose twice.156

The second alternative is a U-Net (Fig. 4), which is also an encoder-decoder network. The encoder part157

performs feature extraction and learns abstract representations of the input image with convolutions.158

Here, the spatial dimensions decrease with max pooling operations. Furthermore, the network has159

two skip connections between the encoder and decoder part, that concatenates two arrays, to be used160

in the next decoder stage. This helps to provide additional information to the decoder and assists in161

the flow of the gradient while backpropagating, since it is a shortcut. The decoder section takes the162

representations to generate the mask. It increases the size through upsampling.163

4.2 Constant average maps and ROI164

In this approach, the attention maps are not created by layers with learned weights. Instead, the165

doctor’s constant average attention map for each class (based on the eye-tracking data) and the ROI166

maps (hard attention) are introduced into the network, without learning. These maps are inserted in167

the ResNet18 in the same place as the CBAM module.168

4.3 Baseline CNNs169

The simplest baseline is a vanilla 3D ResNet18. This is an appropriate model since residual networks170

are considered state-of-the-art and have been widely applied for AD classification. In fact, 38% of the171

74 papers that used CNNs for AD diagnosis analyzed by Khojaste-Sarakhsi et al. used ResNets [28].172

Although this network does not include attention, we can visualize the regions of the input scans that173

the model considers more important with guided back-propagation [39] or Grad-CAM [40].174

Two additional baselines were tested, which integrated attention mechanisms into the ResNet, but that175

do not incorporate domain knowledge. One attention mechanism is CBAM [41], a commonly used176

attention module that can be integrated into any CNN. CBAM sequentially infers attention maps along177

two separate dimensions, channel and spatial, which are multiplied by the input of the respective layer178

creating a refined feature map. For this study, CBAM was adapted for three dimensions, the same as179

the scans. To better understand the importance of the spatial attention component, the experiments180

were also done with the spatial attention sub-module only. The CBAM block was inserted in three181
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Figure 3: Representation of deep multiscale network that was chosen to learn the attention maps.
BRC means batch normalization, ReLU and convolution layers.
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Figure 4: Representation of a 3D U-Net, the second network investigated for AM generation with
eye-gaze supervision.

different locations (one per trial): at the start of the network before any operation, in the middle basic182

block, and throughout the basic blocks of the ResNet.183

Another attention mechanism tested is residual attention [29]. This is another type of spatial and184

channel attention. It uses a bottom-up top-down structure to learn the mask. It collects global185

information and later guides input features in each position.186

4.4 Experimental setup187

The baseline CNN, the ResNets with CBAM and residual attention and the networks with constant188

maps/ROI were trained with categorical cross-entropy as the loss function, which was minimized with189

stochastic gradient descent optimizer for a maximum of 50 epochs. The learning rate was 1× 10−2.190

Train and testing were done using stratified 5-fold cross-validation. Since we have multiple scans of191

the same subject at different times, the subjects, and not the images, were separated into five folds.192

This methodology guarantees that brain scans from the same subject are not present in different sets,193

thus avoiding data leakage. About 15% of the available samples for training in each fold were used194

for validation. The model of the epoch with the lowest validation loss was selected as the best model195

to be tested. The supervised attention mechanism networks (deep multiscale network and U-Net)196

were trained like the aforementioned models but with Dice coefficient as loss. All models were197

created with the keras/Tensorflow package on Google Colab notebooks. The main components can be198
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Table 3: Results of 5 fold cross validation for the task NC vs AD. Format: Mean (standard deviation),
best result in bold. The lower section consists of models with domain knowledge, while the upper
section does not. All the models are composed of a ResNet18 and the AM module specified in the
first column.

Models AM Location ACC (%) SEN (%) SPE (%) F1-score (%)

Standard ResNet18 - 95.2 (1.7) 95.0 (2.4) 95.3 (2.4) 94.8 (1.9)

CBAM middle 94.9 (2.0) 94.7 (2.7) 95.3 (2.7) 94.6 (2.4)

CBAM spatial module middle 95.0 (1.7) 94.8 (3.1) 95.2 (3.4) 94.6 (2.4)

Residual attention throughout 95.5 (2.2) 94.7 (3.8) 96.2 (2.3) 94.8 (2.4)

Constant average map middle 94.8 (1.5) 93.7 (3.4) 95.9 (2.4) 94.4 (1.5)

ROI start 95.6 (2.6) 95.1 (2.5) 96.1 (2.8) 95.2 (2.7)

Deep multiscale network start 94.0 (1.9) 92.9 (4.0) 94.9 (2.4) 93.4 (2.8)

U-Net middle 95.2 (2.1) 94.7 (4.0) 95.6 (2.2) 94.6 (2.1)

found in this link: https://tinyurl.com/GitHubPaperCode. The classification tasks performed199

were NC vs AD and NC vs MCI vs AD.200

5 Results and discussion201

The results (accuracy, sensitivity, specificity and F1-score) for the task NC vs AD and NC vs MCI vs202

AD are displayed in Tab. 3 and Tab. 4, respectively. All the models include a ResNet18. The tables203

only show the results for the best location of the attention mechanism (start, middle or throughout the204

network), as specified in the ’AM Location’ column. The statistical significance of the differences205

between the results of each AM strategy and the baseline Resnet were evaluated with paired t-test206

Wilcoxon tests.207

For NC vs AD, the model with the highest accuracy was ResNet18 with ROI inserted in the start,208

achieving 95.6% accuracy. This was a 0.4% rise compared to the standard ResNet18, which is209

statistically significant (p-value<0.05), and the best performing model with domain knowledge.210

Fig. 5 displays a brain scan overlapped with heatmaps generated by guided backpropagation (a) and211

Grad-CAM (b) techniques of the standard ResNet18, as well as a scan with fixation points and ROI212

(c) for comparison. The red areas mean these regions are more important for the classification task.213

The most important regions for the guided backpropagation mode are slightly different than the ones214

activated by the Grad-CAM method, except for the center of the brain, which has some red regions215

for both types of images. The Grad-CAM maps are more similar to the doctor fixations than to the216

ROI. Nonetheless, from these types of images, no indisputable pattern stands out as a determinate217

location of the disease.218

Examples of the generated attention maps are presented in Fig. 6. We computed the Pearson219

correlation between these maps and the original fixation maps (results not shown) and concluded220

that the deep multiscale Net created maps more similar to the original than the U-Net. Despite221

this, the U-net obtained slightly better performance and was the best method that incorporated the222

doctor’s attention. Nevertheless, it was not able to obtain better performance than the baselines223

(p-values<0.05). Some reasons can be hypothesized: the eye-gaze dataset was too small, specially for224

deep learning which needs a lot of data; the methods of incorporating the eye-gaze were not the most225

suitable (other approaches were suggested, for example, a supervised CAM module [35] or a vision226

transformer with domain data [34]); the assumption that the doctor relies only on the intensity of the227

voxels to make decisions may be very simplistic, perhaps the doctor is comparing different regions’228

average intensity, performing basic computations or the mental process of information is different229

according to the region being analyzed.230
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(a) (b) (c)

Figure 5: Examples of localization maps using Guided Backpropagation (a) and Grad-CAM (b)
techniques for the standard ResNet18 for the task NC vs AD. Each of the maps presented is an
average of the generated guided backpropagation and Grad-CAM output for all AD scans available.
These maps highlight the regions of the brain image more activated in the network to make the
prediction. (c) ROI and fixation points are displayed for comparison.

(a) (b) (c)

(d) (e) (f)

Figure 6: Examples of generated attention maps for axial cut 25 (first row - AD; second row - MCI).
The doctor fixation maps are on the left, the deep multiscale network generated attention maps are in
the middle and the U-Net maps on the right.

For the task NC vs MCI vs AD, the best performing model is the ResNet18 with a constant average231

duration map in the middle, with 87.4% accuracy (+0.3% than standard ResNet18 and p-value<0.05).232

This means a different conclusion than for the task NC vs AD, for which the best performing model233

was with ROI. Therefore, perhaps the ROIs are optimized for AD regions and do not take into account234

MCI, while the eye-gaze was retrieved when the doctor was performing a classification task that235

included MCI (NC vs MCI vs AD), thus the constant average maps include this information.236

The accuracy results of incorporating the CBAM spatial model and residual attention were not237

statistically different from those in the baseline ResNet for the binary task, but were statistically238

significant for the ternary task.239

Fig. 7 shows the accuracy of our models (in green) juxtaposed with the state-of-the-art networks240

for better comparison (in gray and blue). This figure shows that our deep models outperformed the241

studies found in the literature. Yet, these comparisons need to be taken lightly because different242

models were trained, with different biomarkers and with a different number of scans. The figure also243

highlights that incorporating domain knowledge helped increase accuracy with ROI for the binary244

task and constant average maps for the multiclass task.245

Our methods also performed better than most expert physicians in NC vs AD classification, who246

correctly predict 85.7% of scans on average [42]247
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Table 4: Results of 5 fold cross validation for the task NC vs MCI vs AD. Format: Mean (standard
deviation), best result in bold. All the models are composed of a ResNet18 and the AM module
specified in the first column.

Models AM Location ACC (%) F1-score (%)

Standard ResNet18 - 87.1 (1.6) 86.0 (1.8)

CBAM middle 85.9 (1.6) 84.2 (3.0)

CBAM spatial module middle 86.9 (2.0) 86.8 (2.3)

Residual attention throughout 85.5 (0.9) 82.0 (3.8)

Constant average map middle 87.4 (1.5) 85.4 (3.4)

ROI start 86.2 (1.4) 86.6 (1.4)

Deep multiscale network start 86.6 (2.3) 85.8 (1.6)

U-Net middle 86.0 (2.3) 85.2 (1.6)

PET MRI without 
 AM
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 AM

Supervised 
 AM

ROI

Category

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0
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cu
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 / 
%

literature models
literature mean
our models

Figure 7: Comparison with state-of-the-art, for the task NC vs AD. Accuracy of our models (in
green) contrasted with the models reviewed (in gray) and with the average value of the state-of-the-art
models (in blue). ’PET’ denotes models trained with PET scans only; ’MRI’ denotes models trained
with MRI scans only; ’without AM’ denotes models without attention mechanism; ’with AM’ denotes
models that use attention mechanism; ’Supervised AM’ refers to our models with supervised attention
mechanism (there are no other state-of-the-art models in this category). Finally, on the right, the
model with ROI, which was the best performing model.

6 Conclusion248

In this work we investigated methods to integrate physician attention patterns obtained from eye-249

tracking data into CNNs for Alzheimer’s Disease diagnosis. We explored the use of average gaze-maps250

and the supervision of a CNN to predict attention maps. We also compared these approaches with the251

use of ROI hard attention maps.252

Our methods performed better than most CAD systems for AD working with FDG-PET images found253

in the literature. The ResNet18 with the ROI yielded the best results for NC vs AD, with an accuracy254

of 95.6% and the ResNet18 with constant average maps (Gaussian filtered eye gaze) achieved 87.4%255

for NC vs MCI vs AD task. These outcomes motivate further work like the creation of a bigger256

dataset, with more gaze data, following other approaches of introducing domain knowledge, like the257

visual transformer [34] or a CAM module [35] and extracting more information from the data besides258

just the voxel intensity of the "looked at" regions.259
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