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Abstract

Conditional gradient methods (CGM) are widely used in modern machine learn-
ing. CGM’s overall running time usually consists of two parts: the number of
iterations and the cost of each iteration. Most efforts focus on reducing the num-
ber of iterations as a means to reduce the overall running time. In this work, we
focus on improving the per iteration cost of CGM. The bottleneck step in most
CGM is maximum inner product search (MaxIP), which requires a linear scan
over the parameters. In practice, approximate MaxIP data-structures are found to
be helpful heuristics. However, theoretically, nothing is known about the combi-
nation of approximate MaxIP data-structures and CGM. In this work, we answer
this question positively by providing a formal framework to combine the locality
sensitive hashing type approximate MaxIP data-structures with CGM algorithms.
As a result, we show the first sublinear time algorithm for many fundamental opti-
mization algorithms, e.g., Frank-Wolfe, Herding algorithm, and policy gradient.

1 Introduction

Conditional gradient methods (CGM), such as Frank-Wolfe and its variants, are well-known opti-
mization approaches that have been extensively used in modern machine learning. For example,
CGM has been applied to kernel methods [1, 2], structural learning [3] and online learning [4, 5, 6].

Running Time Acceleration in Optimization: Recent years have witnessed the success of large-
scale machine learning models trained on vast amounts of data. In this learning paradigm, the
computational overhead of most successful models is dominated by the optimization process [7,
8]. Therefore, reducing the running time of the optimization algorithm is of practical importance.
The total running time in optimization can be decomposed into two components: (1) the number
of iterations towards convergence, (2) the cost spent in each iteration. Reducing the number of
iterations requires a better understanding of the geometric proprieties of the problem at hand and
the invention of better potential functions to analyze the progress of the algorithm [9, 10, 11, 12, 13,
14, 15]. Reducing the cost spent per iteration usually condenses to design problem-specific discrete
data-structures. In the last few years, we have seen a remarkable growth of using data-structures to
reduce iteration cost [16, 17, 18, 19, 20, 21, 22, 23, 24].
MaxIP Data-structures for Iteration Cost Reduction: A well-known strategy in optimization,
with CGM, is to perform a greedy search over the weight vectors [9, 10, 13, 16, 25] or training sam-
ples [26, 27] in each iteration. In this situation, the cost spent in each iteration is linear in the number
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of parameters. In practical machine learning, recent works [28, 29, 30, 31, 32] formulate this lin-
ear cost in iterative algorithms as an approximate maximum inner product search problem (MaxIP)
and speed up the amortized cost per iteration via efficient data-structures from recent advances in
approximate MaxIP [33, 34, 35, 36, 37, 38, 39, 40, 41, 42]. In approximate MaxIP data-structures,
locality sensitive hashing (LSH) achieves promising performance with efficient random projection
based preprocessing strategies [33, 34, 35, 36]. Thus, it is widely used in practice for cost reduc-
tion in optimization. [28] proposes an LSH based gradient sampling approach that reduces the total
empirical running time of the adaptive gradient descent. [29] formulates the forward propagation of
deep neural network as a MaxIP problem and uses LSH to select a subset of neurons for backprop-
agation. Therefore, the total running time of neural network training could be reduced to sublinear
in the number of neurons. [31] extends this idea with system-level design for further acceleration,
and [30] modifies the LSH with learning and achieves promising acceleration in attention-based
language models. [32] formulates the greedy step in iterative machine teaching (IMT) as a MaxIP
problem and scale IMT to large datasets with LSH.
Challenges of Sublinear Iteration Cost CGM: Despite the practical success of cost-efficient
iterative algorithms with approximate MaxIP data-structure, the theoretical analysis of its combi-
nation with CGM is not well-understood. In this paper, we focus on this combination and target
answering the following questions: (1) how to transform the iteration step of CGM algorithms into
an approximate MaxIP problem? (2) how does the approximate error in MaxIP affect CGM in the
total number of iterations towards convergence? (3) how to adapt approximate MaxIP data structure
for iterative CGM algorithms?
Our Contributions: We propose a theoretical formulation for combining approximate MaxIP and
convergence guarantees of CGM. In particular, we start with the popular Frank-Wolfe algorithm over
the convex hull where the direction search in each iteration is a MaxIP problem. Next, we propose
a sublinear iteration cost Frank-Wolfe algorithm using LSH type MaxIP data-structures. We then
analyze the trade-off of approximate MaxIP and its effect on the number of iterations needed by
CGM to converge. We show that the approximation error caused by LSH only leads to a constant
multiplicative factor increase in the number of iterations. As a result, we retain the sub-linearly of
LSH, with respect to the number of parameters, and at the same time retain the same asymptotic
convergence as CGMs.

We summarize our complete contributions as follows.

• We give the first theoretical CGM formulation that achieves provable sublinear time cost
per iteration. We also extend this result into Frank-Wolfe algorithm, Herding algorithm,
and policy gradient method.

• We propose a pair of efficient transformations that formulates the direction search in Frank-
Wolfe algorithm as a projected approximate MaxIP problem.

• We present the theoretical results that the proposed sublinear Frank-Wolfe algorithm
asymptotically preserves the same order in the number of iterations towards convergence.
Furthermore, we analyze the trade-offs between the saving in iteration cost and the increase
in the number of iterations to accelerate total running time.

• We identify the problems of LSH type approximate MaxIP for cost reduction in the popular
CGM methods and propose corresponding solutions.

The following sections are organized as below: Section 2 introduces the related works on data-
structures and optimization, Section 3 introduces our algorithm associated with the main statements
convergence, Section 4 provides the proof sketch of the main statements, Section 5 presents the
societal impact and Section 6 concludes the paper.

2 Related work
2.1 Maximum Inner Product Search for Machine Learning
Maximum Inner Product Search (MaxIP) is a fundamental problem with applications in machine
learning. Given a query x ∈ Rd and an n-vector dataset Y ⊂ Rd, MaxIP targets at searching for
y ∈ Y that maximizes the inner product x>y. The naive MaxIP solution takes O(dn) by comparing
x with each y ∈ Y . To accelerate this procedure, various algorithms are proposed to reduce the
running time of MaxIP [33, 34, 36, 35, 37, 38, 43, 44, 39, 45, 40, 41, 42]. We could categorize
the MaxIP approaches into two categories: reduction methods and non-reduction methods. The
reduction methods use transformations that transform approximate MaxIP into approximate nearest
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neighbor search (ANN) and solve it with ANN data-structures. One of the popular data-structure is
locality sensitive hashing [46, 47].

Definition 2.1 (Locality Sensitive Hashing). Let c > 1 denote a parameter. Let p1, p2 ∈ (0, 1)
denote two parameters and p1 > p2. We say a function family H is (r, c · r, p1, p2)-sensitive if and
only if, for any vectors x, y ∈ Rd, for any h chosen uniformly at random fromH, we have:

• if ‖x− y‖2 ≤ r, then Prh∼H[h(x) = h(y)] ≥ p1,

• if ‖x− y‖2 ≥ c · r, then Prh∼H[h(x) = h(y)] ≤ p2.

Here we define the LSH functions for euclidean distance. LSH functions could be used for search
in cosine [48, 49] or Jaccard similarity [50, 51]. [33] first shows that MaxIP could be solved by
`2 LSH and asymmetric transformations. After that, [34, 36, 35, 43] propose a series of methods
to solve MaxIP via LSH functions for other distance measures. Besides LSH, graph-based ANN
approaches [38] could also be used after reduction. On the other hand, the non-reduction method
directly builds data-structures for approximate MaxIP. [37, 42] use quantization to approximate the
inner product distance and build codebooks for efficient approximate MaxIP. [38, 44] propose a
greedy algorithm for approximate MaxIP under computation budgets. [39, 40, 41] directly construct
navigable graphs that achieve state-of-the-art empirical performance.

Recently, there is a remarkable growth in applying data-structures for machine learning [52, 53, 54].
Following the paradigm, approximate MaxIP data-structures have been applied to overcome the effi-
ciency bottleneck of various machine learning algorithms. [38] formulates the inference of a neural
network with a wide output layer as a MaxIP problem and uses a graph-based approach to reduce
the inference time. In the same inference task, [55] proposes a learnable LSH data-structure that
further improves the inference efficiency with less energy consumption. In neural network training,
[29, 30, 31] uses approximate MaxIP to retrieve interested neurons for backpropagation. In this
way, the computation overhead of gradient updates in neural networks could be reduced. In linear
regression and classification models, [28] uses approximate MaxIP data-structures to retrieve the
samples with large gradient norm and perform standard gradient descent, which improves the total
running time for stochastic gradient descent. [32] proposes a scalable machine teaching algorithm
that enables iterative teaching in large-scale datasets. In bandit problem, [56] proposes an LSH
based algorithm that solves linear bandits problem with sublinear time complexity.

Despite the promising empirical results, there is little theoretical analysis on approximate MaxIP
for machine learning. We summarize the major reasons as: (1) Besides LSH, the other approximate
MaxIP data-structures do not provide theoretical guarantees on time and space complexity. (2)
Current approaches treat data-structures and learning dynamics separately. There is no joint analysis
on the effect of approximate MaxIP for machine learning.

2.2 Projection-free Optimization

Frank-Wolfe algorithm [25] is a projection-free optimization method with wide applications in con-
vex [9, 10] and non-convex optimizations [11, 12]. The procedure of Frank-Wolfe algorithm could
be summarized as two steps: (1) given the gradient, find a vector in the feasible domain that has the
maximum inner product, (2) update the current weight with the retrieved vector. Formally, given
a function g : Rd → R over a convex set S, starting from an initial weight w0, the Frank-Wolfe
algorithm updates the weight with learning rate η follows:

st ← arg min
s∈S
〈s,∇g(wt)〉

wt+1 ← (1− ηt) · wt + ηt · st.

Previous literature focuses on reducing the number of iterations for Frank-Wolfe algorithm over
specific domains such as `p balls [9, 10, 13, 14]. There exists less work discussing the reduction
of iteration cost in the iterative procedure of Frank-Wolfe algorithm. In this work, we focus on
the Frank-Wolfe algorithm over the convex hull of a finite feasible set. This formulation is more
general and it includes recent Frank-Wolfe applications in probabilistic modeling [1, 2], structural
learning [3] and policy optimization [5].
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3 Our Sublinear Iteration Cost Algorithm

In this section, we formally present our results on the sublinear iteration cost CGM algorithms. We
start with the preliminary definitions of the objective function. Then, we present the guarantees on
the number of iteration and cost per iterations for our sublinear CGM algorithms to converge.

3.1 Preliminaries

We provide the notations and settings for this paper. We start with basic notations for this paper.
For a positive integer n, we use [n] to denote the set {1, 2, · · · , n}. For a vector x, we use ‖x‖2 :=
(
∑n
i=1 x

2
i )

1/2 to denote its `2 norm.

We say a function is convex if

L(x) ≥ L(y) + 〈∇L(y), x− y〉.

We say a function is β-smooth if

L(y) ≤ L(x) + 〈∇L(x), y − x〉+
β

2
‖y − x‖22.

Given a set A = {xi}i∈[n] ⊂ Rd, we say its convex hull B(A) is the collection of all finite linear
combinations y that satisfies y =

∑
i∈[n] ai · xi, where ai ∈ [0, 1] for all i ∈ [n] and

∑
i∈[n] ai = 1.

Let Dmax denote the maximum diameter of B(A) so that ‖x− y‖2 ≤ Dmax for all (x, y) ∈ B(A).
We present the detailed definitions in Appendix A.

Next, we present the settings of our work. Let S ⊂ RD denote a n-point finite set. Given a convex
and β-smooth function g : Rd → R defined over the convex hull B(S), our goal is to find a
w ∈ B(S) that minimizes g(w). Given large n in the higher dimension, the dominant complexity of
iteration cost lies in finding the MaxIP of ∇g(w) with respect to S. In this setting, the fast learning
rate of Frank-Wolfe in `p balls [9, 13, 16] can not be achieved. We present the detailed problem
setting of the Frank-Wolfe algorithm in Appendix C.

3.2 Our Results

We present our main results with comparison to the original algorithm in Table 2. From the table,
we show that with near-linear preprocessing time, our algorithms maintain the same number of
iterations towards convergence while reducing the cost spent in each iteration to be sublinear in the
number of possible parameters.

Statement Preprocess #Iters Cost per iter
Frank-Wolfe [9] 0 O(βD2

max/ε) O(dn+ Tg)
Ours Theorem 3.1 dn1+o(1) O(βD2

max/ε) O(dnρ + Tg)
Herding [1] 0 O(D2

max/ε) O(dn)

Ours Theorem 3.2 dn1+o(1) O(D2
max/ε) O(dnρ)

Policy gradient [5] 0 O(
βD2

max

ε2(1−γ)3µ2
min

) O(dn+ TQ)

Ours Theorem 3.3 dn1+o(1) O(
βD2

max

ε2(1−γ)3µ2
min

) O(dnρ + TQ)

Table 1: Comparison between classical algorithm and our sublinear time algorithm. We compare our
algorithm with Frank-Wolfe in: (1) “Frank-Wolfe” denotes Frank-Wolfe algorithm [9] for convex
functions over a convex hull. Let Tg denote the time for evaluating the gradient for any parameter.
(2) “Herding” denotes kernel Herding algorithm [1] (3) “Policy gradient” denotes the projection
free policy gradient method [5]. Let TQ denote the time for evaluating the policy gradient for any
parameter. Let γ ∈ (0, 1) denote the discount factor. Let µmin denote the minimum probability
density of a state. Note that n is the number of possible parameters. no(1) is smaller than nc for
any constant c > 0. Let ρ ∈ (0, 1) denote a fixed parameter determined by LSH data-structure. The
failure probability of our algorithm is 1/ poly(n). β is the smoothness factor. Dmax denotes the
maximum diameter of the convex hull.
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Next, we introduce the statement of our sublinear iteration cost algorithms. We start by introducing
our result for improving the running time of Frank-Wolfe.
Theorem 3.1 (Sublinear time Frank-Wolfe, informal of Theorem D.1). Let g : Rd → R denote
a convex and β-smooth function. Let the complexity of calculating ∇g(x) to be Tg . Let S ⊂ Rd
denote a set of n points. Let B ⊂ Rd denote the convex hull of S with maximum diameter Dmax.
Let ρ ∈ (0, 1) denote a fixed parameter. For any parameters ε, δ, there is an iterative algorithm
(Algorithm 2) that takes O(dn1+o(1)) time in pre-processing, takes T = O(βD2

max/ε) iterations
and O(dnρ + Tg) cost per iteration, starts from a random w0 from B as its initialization point,and
outputs wT ∈ Rd from B such that

g(wT )−min
w∈B

g(w) ≤ ε,

holds with probability at least 1− 1/ poly(n).

Next, we show our main result for the Herding algorithm. Herding algorithm is widely applied
in kernel methods [57]. [1] shows that the Herding algorithm is equivalent to a conditional gradi-
ent method with the least-squares loss function. Therefore, we extend our results and obtain the
following statement.
Theorem 3.2 (Sublinear time Herding algorithm, informal version of Theorem E.3). Let X ⊂ Rd
denote a feature set and Φ : Rd → Rk denote a mapping. Let Dmax denote the maximum diameter
of Φ(X ) and B be the convex hull of Φ(X ). Given a distribution p(x) over X , we denote µ =
Ex∼p(x)[Φ(x)]. Let ρ ∈ (0, 1) denote a fixed parameter. For any parameters ε, δ, there is an iterative
algorithm (Algorithm 3) that takes O(dn1+o(1)) time in pre-processing, takes T = O(D2

max/ε)
iterations and O(dnρ) cost per iteration, starts from a random w0 from B as its initialization point,
and outputs wT ∈ Rk from B such that

1

2
‖wT − µ‖22 −min

w∈B

1

2
‖w − µ‖22 ≤ ε,

holds with probability at least 1− 1/poly(n).

Finally, we present our result for policy gradient. Policy gradient [58] is a popular algorithm with
wide applications in robotics [59] and recommendation [60]. [5] proposes a provable Frank-Wolfe
method that maximizes the reward functions with policy gradient. However, the optimization re-
quires a linear scan over all possible actions, which is unscalable in complex environments. We
propose an efficient Frank-Wolfe algorithm with per iteration cost sublinear in the number of ac-
tions. Our statement is presented below.
Theorem 3.3 (Sublinear time policy gradient, informal version of Theorem F.3). Let TQ denote the
time for computing the policy graident. LetDmax denote the maximum diameter of action space and
β is a constant. Let γ ∈ (0, 1). Let ρ ∈ (0, 1) denote a fixed parameter. Let µmin denote the minimal
density of states in S. There is an iterative algorithm (Algorithm 5) that spends O(dn1+o(1)) time in
preprocessing, takes O(

βD2
max

ε2(1−γ)3µ2
min

) iterations and O(dnρ + TQ) cost per iterations, starts from a

random point π0
θ as its initial point, and outputs πTθ that has the average gap

√∑
s∈S gT (s)2 < ε

holds with probability at least 1− 1/poly(n), where gT (s) is defined in Eq. (6).

4 Proof Overview

We present the overview of proofs in this section. We start with introducing the efficient MaxIP data-
structures. Next, we show how to transform the direction search in a conditional gradient approach
into a MaxIP problem. Finally, we provide proof sketches for each main statement in Section 3. The
detailed proofs are presented in the supplement material.

4.1 Approximate MaxIP Data-structures

We present the LSH data-structures for approximate MaxIP in this section. The detailed description
is presented in Appendix A. We use the reduction-based approximate MaxIP method with LSH
data-structure to achieve sublinear iteration cost. Note that we choose this method due to its clear

5



theoretical guarantee on the retrieval results. It is well-known that an LSH data-structures is used for
approximate nearest neighbor problem. The following definition of approximate nearest neighbor
search is very standard in literature [61, 46, 47, 62, 63, 64, 65, 66, 67, 68, 69].
Definition 4.1 (Approximate Nearest Neighbor (ANN)). Let c > 1 and r ∈ (0, 2) denote two pa-
rameters. Given an n-vector set Y ⊂ Sd−1 on a unit sphere, the objective of the (c, r)-Approximate
Nearest Neighbor (ANN) is to construct a data structure that, for any query x ∈ Sd−1 such that
miny∈Y ‖y − x‖2 ≤ r, it returns a vector z from Y that satisfies ‖z − x‖2 ≤ c · r.

In the iterative-type optimization algorithm, the cost per iteration could be dominated by the Ap-
proximate MaxIP problem (Definition 4.2), which is the dual problem of the (c, r)-ANN.
Definition 4.2 (Approximate MaxIP). Let c ∈ (0, 1) and τ ∈ (0, 1) denote two parameters. Given
an n-vector dataset Y ⊂ Sd−1 on a unit sphere, the objective of the (c, τ)-MaxIP is to construct a
data structure that, given a query x ∈ Sd−1 such that maxy∈Y 〈x, y〉 ≥ τ , it retrieves a vector z
from Y that satisfies 〈x, z〉 ≥ c ·maxy∈Y 〈x, y〉.

Next, we present the the primal-dual connection between ANN and approximate MaxIP. Given to
unit vectors x, y ∈ Rd with both norm equal to 1, ‖x − y‖22 = 2 − 2〈x, y〉. Therefore, we could
maximizing 〈x, y〉 by minimizing ‖x − y‖22. Based on this connection, we present how to solve
(c, τ)-MaxIP using (c, r)-ANN. We start with showing how to solve (c, r)-ANN with LSH.
Theorem 4.3 (Andoni, Laarhoven, Razenshteyn and Waingarten [66]). Let c > 1 and r ∈ (0, 2)
denote two parameters. One can solve (c, r)-ANN on a unit sphere in query time O(d · nρ) using
preprocessing time O(dn1+o(1)) and space O(n1+o(1) + dn), where ρ = 2

c2
− 1

c4
+ o(1).

Next, we solve (c, τ)-MaxIP by solving (c, r)-ANN using Theorem 4.3. We have
Corollary 4.4 (An informal statement of Corollary B.1). Let c ∈ (0, 1) and τ ∈ (0, 1) denote two
parameters. One can solve (c, τ)-MaxIP on a unit sphere Sd−1 in query time O(d · nρ), where
ρ ∈ (0, 1), using LSH with both preprocessing time and space in O(dn1+o(1)).

In our work, we consider a generalized form of approximate MaxIP, denoted as projected approxi-
mate MaxIP.
Definition 4.5 (Projected approximate MaxIP). Let φ, ψ : Rd → Rk denote two transforms. Given
an n-vector dataset Y ⊂ Rd so that ψ(Y ) ⊂ Sk−1, the goal of the (c, φ, ψ, τ)-MaxIP is to construct
a data structure that, given a query x ∈ Rd and φ(x) ∈ Sk−1 such that maxy∈Y 〈φ(x), ψ(y)〉 ≥ τ ,
it retrieves a vector z ∈ Y that satisfies 〈φ(x), ψ(z)〉 ≥ c · (φ, ψ)-MaxIP(x, Y ).

For details of space-time trade-offs, please refer to Appendix B. The following sections show how
to use projected approximate MaxIP to accelerate the optimization algorithm by reducing the cost
per iteration.

4.2 Efficient Transformations

We have learned from Section 4.1 that (c, τ)-MaxIP on a unit sphere Sd−1 using LSH for ANN.
Therefore, the next step is to transform the direction search procedure in iterative optimization al-
gorithm into a MaxIP on a unit sphere. To achieve this, we formulate the direction search as a
projected approximate MaxIP (see Definition A.5). We start with presenting a pair of transforma-
tion φ0, ψ0 : Rd → Rd+1 such that, given a function g : Rd → R, for any x, y in a convex set K, we
have

φ0(x) :=[∇g(x)>, x>∇g(x)]>, ψ0(y) := [−y>, 1]>. (1)

In this way, we show that

〈y − x,∇g(x)〉 = − 〈φ0(x), ψ0(y)〉,
arg min

y∈Y
〈y − x,∇g(x)〉 = arg max

y∈Y
〈φ0(x), ψ0(y)〉 (2)

Therefore, we could transform the direction search problem into a MaxIP problem.
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Next, we present a standard transformations [36] that connects the MaxIP to ANN in unit sphere.
For any x, y ∈ Rd, we propose transformation φ1, ψ1 : Rd → Rd+2 such that

φ1(x) =
[
(D−1x x)> 0

√
1− ‖xD−1x ‖22

]>
ψ1(y) =

[
(D−1y y)>

√
1− ‖yD−1y ‖22 0

]>
(3)

Here Dx, Dy are some constant that make sure both x/Dx and y/Dy have norms less than 1.
Under these transformations, both φ1(x) and ψ1(y) have norm 1 and arg maxy∈Y 〈φ1(x), ψ1(y)〉 =
arg maxy∈Y 〈x, y〉.

Combining transformations in Eq. (1) and Eq. (3), we obtain query transform φ : Rd → Rd+3 with
form φ(x) = φ1(φ0(x)) and data transform φ : Rd → Rd+3 with form ψ(y) = ψ1(ψ0(y)). Using
φ and ψ, we transform the direction search problem in optimization into a MaxIP in unit sphere.
Moreover, given a set Y ⊂ Rd and a query x ∈ Rd, the solution z of (c, φ, ψ, τ)-MaxIP over (x, Y )
has the propriety that 〈z − x,∇g(x)〉 ≤ c · miny∈Y 〈y − x,∇g(x)〉. Thus, we could approximate
the direction search with LSH based MaxIP data-structure.

Note that only MaxIP problem with positive inner product values could be solved by LSH. We found
the direction search problem naturally satisfies this condition. We show that if g is convex, given a
set S ⊂ Rd, we have mins∈S〈∇g(x), s − x〉 ≤ 0 for any x ∈ B(S), where B is the convex hull of
S. Thus, maxy∈Y 〈φ0(x), ψ0(y)〉 is non-negative following Eq. (2).

4.3 Proof of Theorem 3.1

We present the proof sketch for Theorem 3.1 in this section. We refer the readers to Appendix D for
the detailed proofs.

Let g : Rd → R denote a convex and β-smooth function. Let the complexity of calculating ∇g(x)
to be Tg . Let S ⊂ Rd denote a set of n points, and B ⊂ Rd be the convex hull of S with max-
imum diameter Dmax. Let φ, ψ : Rd → Rd+3 denote the tranformations defined in Section 4.2.
Starting from a random vector w0 ∈ B(S). Our sublinear Frank-Wolfe algorithm follows the update
following rule that each step

st ← (c, φ, ψ, τ)-MaxIP of wt with respect to S

wt+1 ← wt + η · (st − wt)

We start with the upper bounding 〈st − wt,∇g(wt)〉. Because st is the (c, φ, ψ, τ)-MaxIP of wt
with respect to S, we have

〈st − wt,∇g(wt)〉 ≤ cmin
s∈S
〈s− wt,∇g(wt) ≤ c〈w∗ − wt,∇g(wt)〉 (4)

For convenient of the proof, for each t, we define ht = g(wt)− g(w∗). Next, we upper bound ht+1

as

ht+1 ≤ g(wt) + ηt〈st − wt,∇g(wt)〉+
β

2
η2t ‖st − wt‖22 − g(w∗)

≤ g(wt) + cηt〈w∗ − wt,∇g(wt)〉+
β

2
η2t ‖st − wt‖22 − g(w∗)

≤ g(wt) + cηt〈w∗ − wt,∇g(wt)〉+
βD2

max

2
η2t − g(w∗)

≤ (1− ηt)g(wt) + cηtg(w∗) +
βD2

max

2
η2t − g(w∗)

= (1− cηt)ht +
βD2

max

2
η2t

(5)

where the first step follows from the definition of β-smoothness, the second step follows from
Eq. (4), the third step follows from the definition of Dmax, the forth step follows from the con-
vexity of g.
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Let η = 2
c(t+2) and At = t(t+1)

2 . Combining them with Eq.(5), we show that

At+1ht+1 −Atht = c−2
t+ 1

t+ 2
βD2

max

< c−2βD2
max

Using induction from 1 to t, we show that

Atht < c−2tβD2
max

Taken At = t(t+1)
2 into consideration, we have

ht <
2βD2

max

c2(t+ 1)

Given constant approximation ratio c, t should be in O(
βD2

max

ε ) so that ht ≤ ε. Thus, we complete
the proof.

Cost Per Iteration After we take O(dn1+o(1)) preprocessing time, the cost per iteration consists
three pairs: (1) it takes Tg to compute ∇g(wt), (2) it takes O(d) to perform transform φ and ψ, (3)
it takes O(dnρ) to retrieve st from LSH. Thus, the final cost per iteration would be O(dnρ + Tg).

Next, we show how to extend the proof to Herding problem. Following [1], we start with defining
function g = 1

2‖w
T − µ‖22. We show that this function g is a convex and 1-smooth function.

Therefore, the Herding algorithm is equivalent to the Frank-Wolfe Algorithm over function g. Using
the proof of Theorem 3.1 with β = 1, we show that it takes T = O(D2

max/ε) iterations and O(dnρ)
cost per iteration to reach the ε-optimal solution. Similar to Theorem 3.1, we show that the cost per
iteration would be O(dnρ) as it takes O(d) to compute∇g(wt).

4.4 Proof of Theorem 3.3

We present the proof sketch for Theorem 3.3 in this section. We refer the readers to Appendix F for
the detailed proofs.

In this paper, we focus on the action-constrained Markov Decision Process (ACMDP). In this setting,
we are provided with a state S ∈ Rk and action space A ∈ Rd. However, at each step t ∈ N, we
could only access a finite n-vector set of actions C(s) ⊂ A. Let us assume the C(s) remains the
same in each step. Let us denote Dmax as the maximum diameter of A.

When you play with this ACMDP, the policy you choose is defined as πθ(s) : S → Awith parameter
θ. Meanwhile, there exists a reward function r : S × A ∈ [0, 1]. Then, we define the Q function as
below,

Q(s, a|πθ) = E
[ ∞∑
t=0

γtr(st, at)|s0 = s, a0 = a, πθ

]
.

where γ ∈ (0, 1) is a discount factor.

Given a state distribution µ, the objective of policy gradient is to maximize J(µ, πθ) =
Es∼µ,a∼πθ [Q(s, a|πθ)] via policy gradient [58] denoted as:

∇θJ(µ, πθ) = E
s∼dπµ

[
∇θπθ(s)∇aQ(s, πθ(s)|πθ)|

]
.

[5] propose an iterative algorithm that perform MaxIP at each iteration k over actions to find

gk(s) = max
a∈C(s)

〈aks − πkθ (s),∇aQ(s, πkθ (s)|πkθ ))〉. (6)

In this work, we approximate Eq. (6) using (c, φ, ψ, τ)-MaxIP. Here define φ : S × Rd → Rd+1

and ψ : Rd → Rd+1 as follows:

φ(s, πkθ ) := [∇aQ(s, πkθ (s)|πkθ )>, (πkθ )>Q(s, πkθ (s)|πkθ )]>, ψ(a) := [a>,−1]>.
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Then, we have gk(s) = 〈φ(s, πkθ ), ψ(a)〉. Note that we still require transformations in Eq. (3) to
generate unit vectors.

Next, we show that if we retrieve an action âks using (c, φ, ψ, τ)-MaxIP, the gap ĝk(s) would be
lower bounded by

ĝk(s) = 〈âks − πkθ (s),∇aQ(s, πkθ (s)|πkθ ))〉
≥ cgk(s) (7)

Combining Eq. (7) the standard induction in [5], we upper bound
∑
s∈S gT (s)2 as

∑
s∈S

gT (s)2 ≤ 1

T + 1

2βD2
max

c2(1− γ)3µ2
min

. (8)

where µmin denotes the minimal density of sates in S and β is the smoothness factor.

In this way, given a constant factor c, if we would like to minimize the gap
∑
s∈S gT (s)2 < ε2, T

should be O(
βD2

max

ε2(1−γ)3µ2
min

).

Cost Per Iteration After we take O(dn1+o(1)) preprocessing time, the cost per iteration consists
three pairs: (1) it takes TQ to compute policy gradient, (2) it takes O(d) to perform transform φ
and ψ, (3) it takes O(dnρ) to retrieve actions from LSH. Thus, the final cost per iteration would be
O(dnρ + TQ).

4.5 Quantization for Adaptive Queries

In optimization, the gradient computed in every iteration is not independent of each other. This
would generate a problem for MaxIP data-structures. If we use a vector containing the gradients
as a query for MaxIP data-structures, the query failure probability in each iteration is not inde-
pendent. Therefore, the total failure probability could not be union bounded. As previous MaxIP
data-structures focus on the assumptions that queries are independent, the original failure analysis
could not be directly applied.

This work uses a standard query quantization method to handle the adaptive query sequence in
optimization. Given the known query space, we quantize it by lattices [70]. This quantization is
close to the Voronoi diagrams. In this way, each query is located into a cell with a center vector.
Next, we perform a query using the center vector in the cell. Therefore, the failure probability of
the MaxIP query sequence is equivalent to the probability that any center vector in the cell fails to
retrieve its approximate MaxIP solution. As the centers of cells are independent, we could union
bound this probability. On the other hand, as the maximum diameter of the cell is λ, this query
quantization would introduce a λ additive error in the inner product retrieved. We refer the readers
to Appendix G for the detailed quantization approach.

4.6 Optimizing Accuracy-Efficiency Trade-off

In this work, we show that by LSH based MaxIP data-structure, the cost for direction search is
O(dnρ), where ρ ∈ (0, 1). In Section D.2 of the supplementary material, we show that ρ is a
function of constant c and parameter τ in approximate MaxIP (see Definition 4.2). Moreover, we
also show in Section D.2 that LSH results in only a constant multiplicative factor increase in the
number of iterations. Considering the cost per iteration and the number of iterations, we show that
when our algorithms stop at the ε-optimal solution, LSH could achieve acceleration in the overall
running time. Therefore, we could set c and τ parameters to balance the accuracy-efficiency trade-
off of CGM to achieve the desired running time.

5 Potential Negative Societal Impact

This paper discusses the theoretical foundation of data-structures for conditional gradient methods.
We believe that this paper does not have negative societal impact in the environment, privacy, and
other domains.
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6 Concluding Remarks

In this work, we present the first Frank-Wolfe algorithms that achieve sublinear linear time cost per
iteration. We also extend this result into Herding algorithm and policy gradient methods. We for-
mulate the direction search in Frank-Wolfe algorithm as a projected approximate maximum inner
product search problem with a pair of efficient transformations. Then, we use locality sensitive hash-
ing data-structure to reduce the iteration cost into sublinear over the number of possible parameters.
Our theoretical analysis shows that the sublinear iteration cost Frank-Wolfe algorithm preserves the
same order in the number of iterations towards convergence. Moreover, we analyze and optimize
the trade-offs between saving iteration cost and increasing the number of iterations to achieve sub-
linear total running time. Furthermore, we identify the problems of existing MaxIP data-structures
for cost reduction in iterative optimization algorithms and propose the corresponding solutions. We
hope this work can be the starting point of future study on sublinear iteration cost algorithms for
optimization.
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