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Abstract

Recently Transformer has been largely explored in tracking and shown state-of-1

the-art (SOTA) performance. However, existing efforts mainly focus on fusing2

and enhancing features generated by convolutional neural networks (CNNs). The3

potential of Transformer in representation learning remains under-explored. In this4

paper, we aim to further unleash the power of Transformer by proposing a simple5

yet efficient fully-attentional tracker, dubbed SwinTrack, within classic Siamese6

framework. In particular, both representation learning and feature fusion in Swin-7

Track leverage the Transformer architecture, enabling better feature interactions8

for tracking than pure CNN or hybrid CNN-Transformer frameworks. Besides, to9

further enhance robustness, we present a novel motion token that embeds historical10

target trajectory to improve tracking by providing temporal context. Our motion11

token is lightweight with negligible computation but brings clear gains. In our12

thorough experiments, SwinTrack exceeds existing approaches on multiple bench-13

marks. Particularly, on the challenging LaSOT, SwinTrack sets a new record with14

0.713 SUC score. It also achieves SOTA results on other benchmarks. We expect15

SwinTrack to serve as a solid baseline for Transformer tracking and facilitate future16

research. Our codes and results will be released.17

1 Introduction18
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Figure 1: Comparison on LaSOT [9]. Our tracker
(SwinTrack-B-384) sets a new record with 0.713
SUC score and still runs efficiently at around 45
fps. A lighter version (SwinTrack-T-224) achieves
0.672 SUC score and runs at around 96 fps, which
is on par with existing SOTAs in accuracy but
much faster. Best viewed in color for all figures.

Visual tracking has seen considerable progress19

since deep learning. In particular, the recent20

Transformer [30] has significantly pushed the21

state-of-the-art in tracking owing to its ability22

in modeling long-range dependencies. However,23

existing methods usually leverage Transformer24

for fusing and enhancing features generated25

from convolutional neural networks (CNNs),26

e.g., ResNet [14]. The potential of exploiting27

Transformer for feature representation learning28

is largely under-explored.29

Recently, Vision Transformer (ViT) [7] has ex-30

hibited great potential in robust feature represen-31

tation learning. Particularly, its extension Swin32

Transformer [23] has achieved state-of-the-art33

(SOTA) results on multiple tasks. Taking inspi-34

ration from this, we argue, besides the feature35

fusion, the representation learning in tracking36
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can also benefit from Transformer via attention.37

Thus motivated, we propose to develop a fully attentional tracking framework based on Siamese38

architecture. Specifically, both the feature representation learning and the feature fusion of template39

and search region are realized by Transformer. More concretely, we borrow the architecture of the40

powerful Swin Transformer [23] and adapt it to Siamese tracking. Note that, other Transformer archi-41

tectures can be used. For feature fusion, we introduce a simple homogeneous concatenation-based42

fusion architecture, without a query-based decoder.43

Moreover, taking into consideration that tracking is a temporal task, we propose a novel motion token44

to improve robustness. Inspired by that the target usually moves smoothly in a short period, the45

motion token is represented by the historical target trajectory within a local temporal window. We46

incorporate the (single) motion token in the decoder of feature fusion to leverage motion information47

during tracking. Despite being conceptually simple, our motion token can effectively boost tracking48

performance, with negligible computation.49

We name our framework SwinTrack. As a pure Transformer framework, SwinTrack enables better50

interactions inside the feature learning of template and search region and their fusion compared51

to pure CNN-based [1, 20] and hybrid CNN-Transformer [5, 32, 36] frameworks, leading to more52

robust performance (see Fig. 1). Fig. 2 demonstrates the architecture of SwinTrack. We conduct53

extensive experiments on five large-scale benchmarks to verify the effectiveness of SwinTrack,54

including LaSOT [9], LaSOText [8], TrackingNet [26], GOT-10k [15] and TNL2k [34]. On all55

benchmarks, SwinTrack achieves promising results and meanwhile runs fast at 45 fps. In particular,56

on the challenging LaSOT, SwinTrack sets a new record of 71.3 SUC score, surpassing the strongest57

prior tracker [36] (to date) by 3.1 absolute percentage points and crossing the 0.7 SUC threshold58

for the first time (see Fig. 1 again). It also achieves 49.1 SUC, 84.0 SUC, 72.4 AO and 55.9 SUC59

scores on LaSOText, TrackingNet, GOT-10k and TNL2k respectively, which are better than or on par60

with state-of-the-arts (SoTAs). In addition, we provide a lighter version of SwinTrack that obtains61

comparable results to SoTAs but runs much faster in around 98 fps.62

In summary, our contributions are as follows: (i) We propose SwinTrack, a simple and strong baseline63

for fully attentional tracking; (ii) We present a simple yet effective motion token, enabling the64

integration of rich motion context during tracking, further boosting the robustness of SwinTrack,65

with negligible computation; (iii) Our proposed SwinTrack achieves state-of-the-art performance on66

multiple benchmarks. We believe SwinTrack further shows the potential of Transformer and expect it67

to serve as a baseline for future research.68

2 Related Work69

Siamese Tracking. The Siamese tracking methods formulate tracking as a matching problem and70

aim to offline learn a generic matching function for this task. The seminal method of [1] introduces71

a fully convolutional Siamese network for tracking and shows a good balance between accuracy72

and speed. To improve Siamese tracking in handling scale variation, the work of [20] incorporates73

the region proposal network (RPN) [27] into the Siamese network and proposes the anchor-based74

tracker, showing higher accuracy with faster speed. Later, numerous extensions have been presented75

to improve Siamese tracking, including deeper backbone [19], multi-stage architecture [10, 11],76

anchor-free Siamese trackers [40], deformable attention [37], to name a few.77

Transformer in Vision. Transformer [30] originates from natural language processing (NLP) for78

machine translation and has been introduced to vision recently and shows great potential. The79

work of [3] first uses Transformer for object detection and achieved promising results. To explore80

the capability of Transformer in representation learning, the work of [7] applies Transformer to81

construct backbone network, and the resulting Vision Transformer (ViT) attains excellent performance82

compared to convolutional networks while requiring fewer training resources, which encourages83

many extensions upon ViT[29, 4, 38, 33, 23]. Among them, the Swin Transformer [23] has received84

extensive attention. It proposes a simple shifted window strategy to replace the fixed-patch method in85

ViT, which significantly improves efficiency and meanwhile demonstrates state-of-the-art results on86

multiple image tasks. Our work is inspired by Swin Transformer, but differently, we focus on the87

video task of visual tracking.88

Transformer in Tracking. Inspired by the success in other fields, researchers have leveraged89

Transformer for tracking. The method of [5] applies Transformer to enhance and fuse features in90
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Figure 2: Architecture of SwinTrack, which contains three parts including Transformer-based feature
representation extraction, Transformer-based feature fusion and prediction head. Our SwinTrack
is a simple and neat tracking framework without complex designs such as multi-scale features or
temporal template updating, yet demonstrating state-of-the-art performance. Best viewed in color.

the Siamese tracking for improvement. The approach of [32] uses Transformer to exploit temporal91

features to improve tracking robustness. The work of [36] introduces a new transformer architecture92

dedicated to visual tracking, explores the Spatio-temporal Transformer by integrating the model93

updating operations into a Transformer module.94

Our SwinTrack is related to but significantly different from the above Transformer-based trackers.95

Specifically, the aforementioned methods mainly apply Transformer to fuse convolutional features and96

belong to the hybrid CNN-Transformer architecture. Unlike them, SwinTrack is a pure Transformer-97

based tracking architecture where both representation learning and feature fusion are realized with98

Transformer, enabling exploration of better features for robust tracking.99

3 Tracking via Vision-Motion Transformer100

We present SwinTrack, a vision-motion integrated Transformer for object tracking, in Fig. 2. The101

proposed framework contains three main components, i.e., the Swin-Transformer backbone for102

feature extraction, the encoder-decoder network for mixing vision-motion cues, and the head network103

for localizing targets. In the following sections, we first shortly describe the Swin backbone network,104

then elaborates on the proposed vision-motion encoder-decoder. Afterward, we give a discussion105

about our method and shortly describe the network head and training loss.106

3.1 Swin-Transformer for Feature Extraction107

The deep convolutional neural network has significantly improved the performance of trackers.108

Along with the advancement of trackers, the backbone network has evolved twice: AlexNet [17] and109

ResNet [14]. Swin-Transformer [23], in comparison to ResNet, can give a more compact feature110

representation and richer semantic information to assist succeeding networks in better localizing the111

target objects (demonstrate in the ablation study demonstrated in the ablation study), which is thus112

chosen for basic feature extraction in our model.113

Our tracker, following the scheme of Siamese tracker [1], requires a pair of image patches as inputs,114

i.e., template image z ∈ RHz×Wz×3 and search image x ∈ RHx×Wx×3. As in the typical Swin-115

Transformer procedure, template and search images are divided to unoverlapped patches and sent116

to the network, which generates template tokens (dubbed T-tokens) φ(z) ∈ R
Hz
s

Wz
s ×C and search117

tokens (dubbed S-tokens) φ(x) ∈ R
Hx
s

Wx
s ×C . s is the stride of the backbone network. Since there is118

no dimension projection in our model, C is also the hidden dimension of the whole model.119

3.2 Vision-Motion Representaion Learning120

The essential step for matching-based visual tracking is injecting the template information into121

the search image. In our framework, we adopt an encoder to fuse information from template and122
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search tokens, meanwhile, a decoder is arranged to achieve vision-motion representation learning, as123

illustrated in Fig. 2.124

Encoder for fusing template and search tokens. The encoder contains a sequence of Transformer125

blocks where each consists of a multi-head self-attention (MSA) module and a feed-forward network126

(FFN). FFN contains a two-layers multi-layer perceptron (MLP), GELU activation layer is inserted127

after the first linear layer. Layer normalization (LN) is always conducted before every module (MSA128

and FFN). Residual connection is applied to MSA and FFN modules.129

Before feeding the features into the encoder, the template and search tokens are concatenated along130

spatial dimensions to generate a mixing representation fm. For each block, the MSA module computes131

self-attention over mixing union representation, which equals to separately conducting self-attention132

on T-tokens/S-tokens and meanwhile performing cross-attention between T-tokens and S-tokens, but133

more efficient. FFN refines the features generated by MSA. When the tokens get out of the encoder,134

a de-concatenation operation is arranged to decouple the template and search tokens. The process of135

encoder can be expressed as:136

f1m = Concat(φ(z), φ(x))

. . .

f l
′

m = f lm +MSA(LN(f lm))

f l+1
m = f l

′

m + FFN(LN(f l
′

m))

. . .

fLz , f
L
x = DeConcat(fL),

(1)

where l denotes the l-th layer and L the number of blocks.137

Decoder for fusing vision and motion information. Before describing the architecture of decoder,138

we first detail how to generate a motion token (dubbed M-token). Motion token is the embedding of139

the historical trajectory of the target object. The object trajectory is represented as a set of target object140

box coordinates, T = {o0,o1, ...,ot, ...}, where t represents the frame index, o is the bounding box141

of target object. o is defined by the top-left and bottom-right corners of the target object, denotes as142

ot = (ox1
t , oy1

t , ox2
t , oy2

t ). For flexible modeling, a sampling process is required to ensure the follow-143

ing properties: 1) fixed length, 2) focusing on the latest trajectories and 3) reducing redundancy.144

In our method, we samples object trajectory as: Ttraj = {oc−n×∆,oc−(n−1)×∆, ...,oc−∆}, where145

n is the number of sampled object trajectories, ∆ is the fixed sampling interval. For the Siamese146

tracker, the search region is cropped from the input image. We apply the same transformation on the147

sampled object trajectory to make the object trajectory invariant to the cropping. Then, to embed148

the transformed object trajectory into the network, we adopt four embedding matrices to embed149

the elements in box coordinates separately. We denotes the embedding matrix as W ∈ R(l+1)×d,150

l controls the encoding granularity of the object trajectory, d is the size of each embedding vector.151

The first entry of the embedding matrix is used as the padding vector, indicating an invalid state,152

like object absence or out of the search region. Thus, we normalize the sampled target object box153

coordinates in the range [2, l + 1], and quantize to integers to get the index of embedding vector154

T̂traj , index 1 is reserved for the target object which is in an invalid state. Finally, the motion token is155

given by a concatenation of all box coordinate embedding of the sampled object trajectory. FLOPs is156

negligible because the construction of motion token is just a composition of embedding lookups and157

token concatenation.158

The decoder consists of a multi-head cross-attention(MCA) module and a feed-forward network(FFN).159

The decoder takes the outputs from the encoder and the motion token as input, generating the final160

vision-motion representation fvm ∈ R
Hx
s ×Wx

s ×C of by computing cross-attention over fLx and161

Concat(Tmotion, f
L
z , f

L
x ). The decoder is akin to a layer in the encoder, except that the correlation162

between the template tokens and the search tokens is chopped off since we do not need to update the163

features from the template image in the last layer. The process of the decoder is formulated as:164

fDm = Concat(Tmotion, f
L
z , f

L
x )

f ′vm = fLx +MCA(LN(fLx ),LN(fDm ))

fvm = f ′vm + FFN(LN(f ′vm)).

(2)
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fvm will feed to the head network to generate a classification response map and a bounding box165

regression map.166

Positional encoding. Transformer requires a positional encoding to identify the position of the current167

processing token[30] because the self-attention module is permutation-invariance. We adopt the168

untied positional encoding [16] as our positional encoding method. The untied positional encoding169

enhances the expressiveness of the model through untie the positional embeddings from token170

embeddings with an isolated positional embedding matrix. It also has the consideration in the case of171

the special tokens, like the motion token in this paper. We generalize the untied positional encoding172

to multi-dimensions multi-sources data to comply with concatenated-based fusion in our tracker. See173

the appendix for the details.174

3.3 Discussion175

Why concatenated attention? To simplify the description, we call the method described above176

concatenation-based fusion. To fuse and process features from multiple branches, it is intuitive to177

perform self-attention on the features in each branch separately and then compute cross-attention178

across features from different branches. We call this method cross-attention-based fusion. Consid-179

ering that the Transformer is a sequence-to-sequence model, the Transformer can naturally accept180

multi-modal data as input. In comparison to cross-attention-based fusion, concatenation-based fusion181

can save computation cost through operation combination and reduce model parameters through182

weight sharing. And also, from the perspective of metric learning, weight sharing is an essential183

design to ensure the metric between two branches of data is symmetric. Thanks to the multi-modal184

friendly nature of the sequence to sequence model architecture, we can implement this property in185

the feature fusion stage of Siamese tracker as well compared with other network architecture.186

Why not window-based self/cross-attention? Since we select stage 3 of the Swin-Transformer as187

the output, the total number of tokens is significantly reduced, the window-based attention cannot188

save too many FLOPs. Furthermore, considering the extra latency introduced by the window partition189

and window reverse operations, window-based attention may even be the slower one.190

Why not a query-based decoder? Derivated from vanilla Transformer decoder, many transformer-191

based models in vision tasks leverage a learnable query to extract the desired objective features192

from the encoder, like object queries in [3], target query in [36]. In our experiment, a query-based193

decoder suffers from a slow rate of convergence and also has an inferior performance. Most Siamese194

trackers [20, 35, 13] formulate tracking as a foreground-background classification problem, which195

can better exploit the background information. The vanilla Transformer decoder is a generative196

model, the generative approaches are considered not suitable for the classification tasks. In another197

aspect, learning a general target query for any kind of object might cause a bottleneck. In terms of198

vanilla Transformer encoder-decoder architecture, SwinTrack is an "encoder" only model. And also,199

we have more long-term accumulated domain knowledge on a classic Siamese tracker to improve the200

performance, like introducing the smooth movement assumption by applying the Hanning penalty201

window on the response map.202

3.4 Head and Loss203

Head. The head network is split into two branches: classification and bounding box regression. Each204

of them is a three-layer perceptron. And both of them receives the feature map from the decoder as205

input to predict the classification response map rcls ∈ R(Hx×Wx)×1 and bounding box regression206

map rreg ∈ R(Hx×Wx)×4, respectively.207

Classification loss. In classification branch, we employ the IoU-aware classification score as the208

training target and the varifocal loss [39] as the training loss function. IoU-aware design has been very209

popular recently, but most works consider IoU prediction as an auxiliary branch to assist classification210

or bounding box regression [40, 2, 35]. To remove the gap between different prediction branches,211

[39] and [21] replace the hard classification target from the ground-truth value, (i.e., 1 for positive212

samples, 0 for negative samples), to the IoU between the predicted bounding box and the ground-truth213

one, which is named the IoU-aware classification score (IACS). IACS can help the model select214

a more accurate bounding box prediction candidate from the pool by trying to predict the quality215

of the bounding box prediction in another branch at the same position. Along with the IACS, the216

varifocal loss was proposed in [39] to help the IACS approach outperform other IoU-aware designs.217

5



The classification loss can be formulated as:218

Lcls = LVFL(p, IoU(b, b̂)), (3)

where p denotes the predicted IACS, b denotes the predicted bounding box, and b̂ denotes the219

ground-truth bounding box.220

Regression loss. For bounding box regression, we employ the generalized IoU loss[28]. The221

regression loss function can be formulated as:222

Lreg =
∑
j

1{IoU(bj ,b̂)>0}[pLGIoU(bj , b̂)]. (4)

The GIoU loss is weighted by p to emphasize the high classification score samples. The training223

signals from the negative samples are ignored.224

4 Experiments225

4.1 Implementation226

Model. We design two variants of SwinTrack with different configurations as follows:227

• SwinTrack-T-224.228

Backbone: Swin Transformer-Tiny [23];229

Template size: [112× 112]; Search region size: [224× 224]; C = 384; N = 4;230

• SwinTrack-B-384.231

Backbone: Swin Transformer-Base [23];232

Template size: [192× 192]; Search region size: [384× 384]; C = 512; N = 8;233

where C and N are the channel number of the hidden layers in the first stage of Swin Transformer234

and the number of encoder blocks in feature fusion, respectively. In all variants, we use the output235

after the third stage of Swin Transformer for feature extraction. Thus, the backbone stride s is 16.236

For motion token, the number of sampled object trajectory n is set to 16, the fixed sampling interval237

∆ is set to 15. If the frame rate of the video sequence is available, the sampling interval is adjusted238

according to the frame rate. Suppose the frame rate is f , the new sampling interval is getting by ∆
30f ,239

30 fps is the standard frame rate. l, which controls the encoding granularity is set to the same size of240

the search region feature map, like 14 for SwinTrack-T-224, 24 for SwinTrack-B-384. For the model241

for GOT-10k sequences, n is set to 8, ∆ is set to 8, and no frame rate adjustment is applied.242

Training. We train SwinTrack using the training splits of LaSOT [9], TrackingNet [26], GOT-10k [15]243

(1,000 videos are removed following [36] for fair comparison) and COCO 2017 [22]. In addition,244

we report the results of SwinTrack-T-224 and SwinTrack-B-384 with GOT-10k training split only to245

follow the protocol described in [15].246

The model is optimized with AdamW [24], with a learning rate of 5e-4, and a weight decay of 1e-4.247

The learning rate of the backbone is set to 5e-5. We train the network on 8 NVIDIA V100 GPUs248

for 300 epochs with 131,072 samples per epoch. The learning rate is dropped by a factor of 10 after249

210 epochs. A 3-epoch linear warmup is applied to stabilize the training process. DropPath [18] is250

applied in the latter half of the optimization process on the backbone and the encoder with a rate251

of 0.1. For the models trained for GOT-10k evaluation protocol, to prevent over-fitting, the training252

epoch is set to 150, and the learning rate is dropped after 120 epochs.253

For the motion token, the object trajectory for the Siamese training pair is generated with the method254

described above. The frames that object annotated as absent or out of the video sequence are255

marked as invalid, the corresponding box coordinates set to −∞. Since the coarse granularity of256

the embedding matrix in our setting is already can be seen as an augmentation of historical object257

trajectory, no additional data augmentation is applied.258

Inference. We follow the common procedures for Siamese network-based tracking [1]. The template259

image is cropped from the first frame of the video sequence. The target object is in the center260

of the image with a background area factor of 2. The search region is cropped from the current261

tracking frame, and the image center is the target center position predicted in the previous frame. The262

background area factor for the search region is 4.263
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Table 1: Experiments and comparisons on five benchmarks: LaSOT, LaSOText, TrackingNet, GOT-
10k and TNL2k.

Tracker LaSOT [9] LaSOText [8] TrackingNet [26] GOT-10k [15] TNL2k [34]
SUC P SUC P SUC P AO SR0.5 SR0.75 SUC P

C-RPN [10] 45.5 44.3 27.5 32.0 66.9 61.9 - - - - -
SiamPRN++ [19] 49.6 49.1 34.0 39.6 73.3 69.4 51.7 61.6 32.5 41.3 41.2

Ocean [40] 56.0 56.6 - - - - 61.1 72.1 47.3 38.4 37.7
DiMP [2] 56.9 56.7 39.2 45.1 74.0 68.7 61.1 71.7 49.2 44.7 43.4

LTMU [6] 57.2 57.2 41.4 47.3 - - - - - 48.5 47.3
SiamR-CNN [31] 64.8 - - - 81.2 80.0 64.9 72.8 59.7 52.3 52.8

STMTrack [12] 60.6 63.3 - - 80.3 76.7 64.2 73.7 57.5 - -
AutoMatch [41] 58.3 59.9 37.6 43.0 76.0 72.6 65.2 76.6 54.3 - -

TrDiMP [32] 63.9 61.4 - - 78.4 73.1 67.1 77.7 58.3 - -
TransT [5] 64.9 69.0 - - 81.4 80.3 67.1 76.8 60.9 51.0 -

STARK [36] 67.1 - - - 82.0 - 68.8 78.1 64.1 - -
KeepTrack [25] 67.1 70.2 48.2 - - - - - - - -

SwinTrack-T-224 67.2 70.8 47.6 53.9 81.1 78.4 71.3 81.9 64.5 53.0 53.2
SwinTrack-B-384 71.3 76.5 49.1 55.6 84.0 82.8 72.4 80.5 67.8 55.9 57.1

Our SwinTrack takes the template image and search region as inputs and output classification map264

rcls and regression map rreg. To utilize positional prior in tracking, we apply hanning window265

penalty on rcls, and the final classification map r′cls is obtained via r′cls = (1− γ)× rcls + γ × h,266

where γ is the weight parameter and h is the Hanning window with the same size as rcls. The target267

position is determined by the largest value in r′cls and scale is estimated based on the corresponding268

regression results in rreg .269

For the motion token, the predicted confidence score and bounding box are collected on the fly. A270

confidence threshold θconf is applied, if the confidence score given by the classification branch of the271

head is lower than the threshold, the target object in the current frame is marked as lost by setting the272

collected bounding box to −∞. θconf is set to 0.4 for LaSOT, the rests are set to 0.3.273

4.2 Comparisons to State-of-the-arts274

We conduct experiments and compare SwinTrack with SoTA trackers on five benchmarks.275

LaSOT. LaSOT [9] consists of 280 videos for test. Tab. 1 shows the results and comparisons with276

SoTAs. From Tab. 1, we can observe that SwinTrack-T-224 with light architecture reaches SoTA277

performance with 0.672 SUC and 0.708 PRE scores, which is competitive compared with other278

Transformer-based trackers, including STARK-ST101 (0.671 SUC score) and TransT (0.649 SUC),279

and other trackers using complicated designs such as KeepTrack (0.671 SUC) and SiamR-CNN280

(0.648 SUC score). With a larger backbone and input size, our strongest variant SwinTrack-B-384281

sets a new record with 0.713 SUC score, surpassing START-ST101 and KeepTrack by 4.2 absolute282

percentage points.283

LaSOText. The recent LaSOText [8] is an extension of LaSOT by adding 150 extra videos. These284

new sequences are challenging as many similar distractors cause difficulties for tracking. The results285

of our tracker related to this dataset are an average of three times. KeepTrack uses a complex286

association technique to handle distractors and achieves a promising 0.482 SUC score as in Tab. 1.287

Compared with complicated KeepTrack, SwinTrack-T-224 is simple and neat, yet shows comparable288

performance with 0.476 SUC score. In addition, due to complicated design, KeepTrack runs at less289

than 20 fps, while SwinTrack-T-224 runs in 98 fps, 5× faster than KeepTrack. When using a larger290

model, SwinTrack-B-384 shows the best performance with 0.491 SUC score.291

TrackingNet. We evaluate different trackers on the test set of TrackingNet [26]. From Tab. 1, we292

observe that our SwinTrack-T-224 achieves a comparable result with 0.811 SUC score. Using a larger293

model and input size, SwinTrack-B-384 obtains the best performance with 0.840 SUC score, better294

than STARK-ST101 with 0.820 SUC score and TransT with 0.814 SUC score.295

GOT-10k. GOT-10k [15] offers 180 videos for test and it requires trackers to be trained using296

GOT-10k train split only. From Tab. 1, we see that SwinTrack-B-384 achieves the best mAO of 0.724,297

7



Table 2: Comparison on running speed and # parameters with other Transformer-based trackers.

Tracker Speed (fps) MACs1 (G) Params (M)
TrDiMP [32] 26 - -

TransT [5] 50 - 23
STARK-ST50 [36] 42 10.9 24

STARK-ST101 [36] 32 18.5 42
SwinTrack-T-224 98 6.4 23
SwinTrack-B-384 45 69.7 91

Table 3: Ablation experiments of SwinTrack on four benchmarks. The experiments are conducted
on SwinTrack-T-224 without the motion token. ❶: baseline method, i.e., SwinTrack-T-224 without
motion token; ❷: replacing Transformer backbone in the baseline method with ResNet-50; ❸:
replacing our feature fusion with cross attention-based fusion in the baseline method; ❹: replacing
the decoder in baseline with a target query-based; ❺: replacing united positional encoding with
absolute sine position encoding in the baseline method; ❻: replacing the IoU-aware classification loss
with the plain binary cross entropy loss; ❼: removing the Hanning penalty window in the baseline
method inference.

LaSOT
SUC (%)

LaSOText

SUC (%)
TrackingNet

SUC (%)
GOT-10k2

mAO (%)
Speed

fps
Params

M
❶ 66.7 46.9 80.8 70.9 98 22.7
❷ 64.2 41.8 79.5 68.2 121 20.0
❸ 66.6 45.4 80.2 69.3 72 34.6
❹ 66.6 43.2 79.6 69.0 91 25.3
❺ 65.7 45.0 80.0 70.0 103 21.6
❻ 66.2 46.7 79.4 68.2 98 22.7
❼ 65.7 46.0 80.0 69.6 98 22.7

and SwinTrack-T-224 obtains a mAO of 0.713. Both models outperform other Transformer-based298

counterparts significantly, including START-ST101 (0.688 mAO), TransT (0.671 mAO) and TrDiMP299

(0.671 mAO).300

TNL2k. TNL2k [34] is a newly released tracking dataset with 700 videos for test. As reported in301

Tab. 1, both models surpass the others. SwinTrack-B-384 set a new state-of-the-art with 0.559 SUC302

score.303

Efficiency comparison. We report the comparisons of SwinTrack with other Transformer-based304

trackers in terms of efficiency and complexity. As displayed in Tab. 2, SwinTrack-T-224 with a305

small model runs the fastest with a speed of 98 fps. Especially, compared with STARK-ST101 and306

STARK-ST50 with 32 fps and 42 fps, SwinTrack-T-224 is 3× and 2× faster. Despite using a larger307

model, our SwinTrack-B-384 is still faster than STARK-ST101 and STARK-ST50.308

4.3 Ablation Experiment309

Comparison with ResNet backbone. We compare the Swin-Transformer backbone with popular310

ResNet-50 [14]. As shown in Tab. 3 (❶ vs. ❷). The Swin Transformer backbone significantly boosts311

the performance by 2.5% SUC score in LaSOT, 5.1% SUC score in LaSOText. The result shows that312

the strong appearance modeling capability provided by the Swin Transformer plays a crucial role.313

Feature fusion. As displayed in Tab. 3 (❶ vs. ❸), compared with the concatenation-based fusion,314

the cross attention-based fusion runs at a slower speed, occupies much more memory, and also has315

an inferior performance on all datasets. Slower speed can be due to the latency brought by the extra316

operations, a self-attention over the concatenated token sequence is equal to conducting self-attention317

over two branches separately and performing cross-attention between them. Also, the parameter318

sharing strategy between two branches of modules not only just reduces the number of parameters319

but also benefits the metric learning.320

1Multiply–accumulate operation
2The GOT-10k results in this column are trained with full training datasets.
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Table 4: Ablation experiments on our proposed motion token on the tracking performance on
four benchmarks. The experiments are conducted on SwinTrack-T-224. ❶: SwinTrack-T-224; ❷:
SwinTrack-B-384; ❸: SwinTrack-T-224 without motion token; ❹: SwinTrack-B-384 without motion
token; ❺: replacing the motion token in SwinTrack-T-224 with a learnable embedding token.

LaSOT
SUC (%)

LaSOText
SUC (%)

TrackingNet
SUC (%)

GOT-10k
mAO (%)

Speed
fps

❶ 67.2 47.6 81.1 71.3 96
❷ 71.3 49.1 84.0 72.4 45
❸ 66.7 47.0 80.8 70.0 98
❹ 70.2 48.5 84.0 70.7 45
❺ 66.3 45.2 81.2 70.0 96

Comparison with the query-based decoder. Queries is commonly adopted in the decoder of321

Transformer network in vision tasks, e.g. object query [3] and target query [36]. Nevertheless, our322

empirical results in Tab. 3 (❶ vs. ❹) show that a target query-based decoder degrades the tracking323

performance on all benchmarks, even with 2× training pairs. As discussed, one possible reason is the324

generative model is not suitable for classification. Besides, learning a general target query for any325

kind of object may also be difficult.326

Position encoding. We compare the united positional encoding used in SwinTrack and the original327

absolute position encoding in Transformer [30]. Notice, We make a little modification to the original328

absolute position encoding: Except for the 2D embedding, the index of token source (e.g. 1 for the329

tokens from the template patch, 2 for the tokens from the search region patch) is also embedded. As330

shown in Tab. 3 (❶ vs. ❺), our method with united positional encoding obtains improvements with331

0.8-1.9 absolute percentage points on the benchmarks with negligible loss in speed (98 vs. 103).332

Loss function. From Tab. 3 (❶ vs. ❻), we observe that the model trained with varifocal loss333

significantly outperforms the one with binary cross entropy (BCE) loss without loss of efficiency.334

This result indicates that the varifocal loss can assist the classification branch of the head to generate335

an IoU-aware response map, and thus help the tracker to improve the tracking performance.336

Post processing. One may wonder with highly discriminative Transformer architecture and IoU-337

aware classification loss does the hanning penalty window is still functional, which introduces a338

strong smooth movement assumption. In the experiments, we remove the hanning penalty window in339

post-processing, as shown in Tab. 3 (❶ vs. ❼), the performance is dropped by 1.0 SUC for LaSOT,340

1.3 AO for GOT-10k in absolute percentage, and less than 1% in the SUC metric of other datasets.341

This suggests that the strong smooth movement assumption is still applicable for our tracker. But342

compared with the former Transformer-based tracker[5], the performance gap between applying343

window penalty and no additional post-processing is narrowing.344

Effectiveness of motion token. We study the effectiveness of the motion token by conducting345

comparison experiments. As shown in Tab. 4 (❶ vs. ❸ and ❷ vs. ❹), the models with motion token346

outperforms the models without motion token on all datasets, especially on LaSOText and GOT-10k.347

The results indicate that the motion token can assist the tracker to handle hard similar distractors348

in LaSOText and stabilize the short-term tracking like the sequences in GOT-10k test set. We also349

study whether the effectiveness of the motion token is simply from the extra embedding vector. We350

set up an experiment as in Tab. 4 (❺), which replaces the motion token with a learnable embedding351

token. The result indicates that the extra embedding vector has negative impacts, and therefore the352

performance-boosting given by the motion token should be from the embedding of object trajectory.353

5 Conclusion354

In this work, we present SwinTrack, a simple and strong baseline for Transformer tracking. In355

SwinTrack, both representation learning and feature fusion are implemented with the attention356

mechanism. Extensive experiments demonstrate the effectiveness of such architecture. Besides,357

we propose the motion token to enhance the robustness of the tracker by providing the historical358

object trajectory, showing the flexibility of the Transformer model in architectural design. With the359

power of sequence-to-sequence model architecture, a context-rich tracker is possible, more contextual360

information can be incorporated. Finally, We hope this work can inspire and facilitate future research.361
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