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Abstract

Explainable AI (XAI) methods are frequently applied to obtain qualitative insights1

about deep models’ predictions. However, such insights need to be interpreted2

by a human observer to be useful. In this paper, we aim to use explanations3

directly to make decisions without human observers. We adopt two gradient-based4

explanation methods, Integrated Gradients (IG) and backprop, for the task of5

3D object detection. Then, we propose a set of quantitative measures, named6

Explanation Concentration (XC) scores, that can be used for downstream tasks.7

These scores quantify the concentration of attributions within the boundaries of8

detected objects. We evaluate the effectiveness of XC scores via the task of9

distinguishing true positive (TP) and false positive (FP) detected objects in the10

KITTI and Waymo datasets. The results demonstrate improvement of more than11

100% on both datasets compared to other heuristics such as random guesses and12

number of LiDAR points in bounding box, raising confidence in XC’s potential13

for application in more use cases. Our results also indicate that computationally14

expensive XAI methods like IG may not be more valuable when used quantitatively15

compare to simpler methods.16

1 Introduction17

Figure 1: Overview of the XC calculation process:
PointPillars first process the input point cloud once,
then an XAI method computes feature attribution
map for specific predictions using the pseudo im-
age as input, and XC metrics are obtained.

Recent development in deep neural networks (DNNs)18

has led to the state of the art performance on 2D19

[7, 8, 15, 20, 21] and 3D [11, 26, 36] object detection20

tasks. However, despite of the improvement in model21

performance, the lack of model interpretability re-22

mains a significant drawback. This issue has sparked23

interest in explainable artificial intelligence (XAI).24

The primary goal of these XAI methods is to uncover25

the logic behind the models’ decisions [13].26

Several recent methods have been proposed to gener-27

ate interpretable visual explanations [27, 35, 29, 24,28

31]. They are usually analyzed by a human observer29

to understand the model’s reasoning for some partic-30

ular decisions. Hence, explanations are very useful31

for debugging and diagnosis. However, it would be32

impossible for a human to analyze each instances in33

a large dataset. To analyze explanations on a large34

scale, it is necessary to derive quantitative measures35

from the explanations. There have been a few works36
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in this direction [23, 5, 22], but the input data experimented on are 2D image, text, or tabular data.37

We have not found any experiments on explanations-related quantitative measures applied to LiDAR38

point cloud input or to the task of object detection. Our motivation is to fill in the gap by exploring39

quantitative usage of explanations for LiDAR-based object detection.40

We study explanations in the form of attribution maps for a 3D object detector named PointPillars [11]41

and use them for the problem of distinguishing true positive (TP) vs. false positive (FP) predictions.42

Attributions, in the context of XAI, denote the influence of input features on model output. We43

generate attribution maps using two XAI methods: 1) Integrated Gradients (IG) [31], selected for44

its axiomatic properties; 2) backpropagation [27], selected for its low computational cost. Our main45

contributions are 1:46

• We demonstrate that quantitative usage of explanation for 3D object detection is a promising47

direction for future research: We propose a set of quantitative metrics called Explanation48

Concentration (XC), which measures the concentration of attributions within each predicted49

object. XC can be used to classify the TP vs. FP predictions effectively, often achieving50

more than 100% improvement compared to simple heuristics such as number of LiDAR51

points withing a predicted box.52

• We discover that XC scores derived from backpropagation can perform better than those53

derived from IG.54

• We propose a new score that can identify TP vs. FP predictions better than the individual55

XC scores and object class score. This score is generated by combining the XC scores with56

object class score using a MLP.57

2 Related work58

Explanation methods A simple form of explanation is an input feature saliency map obtained via59

backpropagation: one computes the partial derivatives of the model output with respect to the input60

features [27]. These partial derivatives are a measure of importance (also called attributions) for61

the input features. Deconvolution [35] and Guided-backprop [29] are similar methods. Integrated62

Gradients (IG) [31] is another gradient-based explanation method that computes multiple inputs along63

a straight-line path from a baseline input to the original input through affine transformations. IG then64

combines gradients from all these inputs to get feature attributions. The baseline input is defined as an65

input which generates zero output. In the case of image input, the baseline is defined as a black image66

with pixel values all equals to zero. Sundararajan et al. [31] demonstrate that IG satisfies several67

axiomatic properties for explanations such as sensitivity (attribution values for nonzero features68

are nonzero, and attribution values for zero-valued features are zero) and completeness (sum of69

attributions equals to model output value).70

LiDAR-based object detection A popular technique for point cloud-based object detection is to71

first divide the 3D point cloud into grids called voxels, learn features for each voxel, then apply72

convolutional layers to the voxel-wise features to extract higher level features. Techniques used for73

2D object detection, such as region proposals and anchor boxes, can then be applied to the extracted74

feature maps. VoxelNet [36], SeCOND [34], and PointPillars [11] all partly adopted this strategy.75

PointPillars’ fast inference speed (62 Hz) makes it a desirable choice for deployment on embedded76

hardware, such as in autonomous vehicles.77

False positive detection Several studies have been conducted on identifying false positive (FP)78

predictions. Hendrycks and Gimpel [9] demonstrated that the softmax class probability could79

effectively distinguish true positive (TP) and false positive (FP) predictions in multiple datasets,80

with performance far exceeding random guess. Chen et al. [2] also used class score to filter out FP81

pedestrians predictions iteratively. Methods designed for identifying adversarial attacks or detecting82

out-of-distribution (OOD) samples may also be applied to detect FP samples. Some notable works83

are feature squeezing [33], LID [17], GraN [16], ODIN [14] and Lee et al. [12].84

1Our code is available at https://anonymous.4open.science/r/XC_eval_pcdet-FE72.

2

https://anonymous.4open.science/r/XC_eval_pcdet-FE72


Figure 2: Cropped IG attribution map visualization for a car prediction. The blue box in the point cloud is
the bounding box for the ground truth object. The red box in the attribution map is the 2D projection of the
car prediction bounding box. Positive attributions are indicated by green pixels and negative attributions are
indicated by red pixels; darker color means greater magnitude. Pixels with attribution values less than 0.1 are
filtered out and appear white. Note that the attribution map has the same resolution as the pseudo image.

3 Explanation in the form of attributions85

As mentioned before in Section 2, explanation can be presented in the form of input feature attri-86

butions, where the magnitude of the attributions corresponds to feature importance, and the sign of87

attributions indicates positive or negative influence on the model output. In our approach, attributions88

are generated by IG [31] and backprop [27] for PointPillars [11]. PointPillars has three parts as shown89

in Fig. 1: a pillar feature net which learns a 2D bird’s eye view (BEV) voxelized feature map called90

the psuedo image from the original point cloud, a backbone 2D CNN to extract more features from91

the psuedo image, and SSD [15] as detection head to generate 3D object predictions.92

IG’s effectiveness on image data is well-recognized. However, there are a fixed number of pixels at93

fixed locations in an image; whereas in a point cloud, both the quantity and location of the points can94

vary greatly. IG’s input transformations may not be meaningful for point cloud. Hence, we chose to95

generate attributions using the pseudo image as input, so that IG could be directly applied. Note that96

our pipeline in Fig. 1 is not limited to IG or backprop explanations only, any other XAI method that97

produces explanations in the form of feature attributions could be applied too.98

There could be many predictions in the same pseudo image. To explain the different predictions99

separately, each attribution map is generated for a specific predicted box and its class label. In Fig. 2,100

the IG attributions generated for a car prediction is shown. For this particular example, the positive101

attributions highlight features that increase the model’s belief that the object is a car, whereas the102

negative attributions reduce this belief.103

4 Explanation concentration (XC)104

We propose a new set of scores called Explanation Concentration (XC) which measures the concen-105

tration of attributions within a given predicted object’s boundaries. As shown in Fig. 2, many pixels106

outside of the object have noticeable attributions too, indicating that context features can influence107

model output as well. The XC scores are partly motivated by previous studies which demonstrate108

that overly-relying on context can hurt model performance for both image classification [25] and 3D109

object detection [26].110

The process of computing the XC scores is as follows. First, denote the ith predicted box in a pseudo111

image as Predi. Then denote the sum of positive attributions across all channels in the pixel at112

location (x, y) of the attribution map as a+(x,y). The idea is to avoid having positive and negative113

channel values cancelling each other out at a specific pixel.114

Using thresholds to eliminate noisy signals is common practice in computer vision. For example,115

in the Canny edge detection algorithm [1], thresholds are used to mask out weak edges. We apply116

the same idea to the attribution values. Denote a pixel-wise threshold as athresh, and use it to filter117
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out insignificant attributions (in other words, the sum a+(x,y) can be called significant if it exceeds118

athresh). An indicator function I+(x,y) is defined such that it equals to 1 if a+(x,y) >= athresh, 0119

otherwise. One way to quantify the concentration of attributions within the predicted box Predi is120

by summing. Two new variables are defined for each Predi in a pseudo image:121

s+i =
∑

a+(x,y) × I
+
(x,y), ∀(x, y) in Predi (1)

122

S+
i =

∑
a+(x,y) × I

+
(x,y), ∀(x, y) in pseudo image (2)

Now the stage is set for defining an XC score by summing:123

XC_s+i = s+i /S
+
i (3)

XC_s+i is thus the proportion of the positive attributions which lie within Predi.124

The other way to quantify the concentration of attributions for Predi is by counting. For this125

purpose, we count the number of pixels in the pseudo image having significant attributions, rather126

than summing them:127

c+i =
∑

I+(x,y), ∀(x, y) in Predi (4)
128

C+
i =

∑
I+(x,y), ∀(x, y) in pseudoimage (5)

129

XC_c+i = c+i /C
+
i (6)

Computing XC by counting might be helpful, because often there are a few outlier pixels with high130

magnitude attribution values outside of the bounding bounding box (see Fig. 3 for example). When131

XC is computed by counting, these outliers will not have a big effect; but when XC is computed by132

summing, the values of these outlier pixels can skew the resulting XC value towards the lower end.133

One may also compute a similar set of scores by considering the negative attributions only: call them134

XC_s−i and XC_c−i for a certain box Predi.135

We observed that pixels located at object boundaries often get labelled as “outside of the box”. Hence,136

when calculating any XC scores, the predicted boxes are enlarged by a small margin m on all sides,137

so that pixels at object boundaries are labeled as inside the predicted box.138

5 Results and discussions139

5.1 Evaluation metrics and implementation details140

Figure 3: Negative attribution map for a
TP pedestrian prediction (the red box). The
patch of outlier attributions is pointed out by
the arrow.

The objective of our experiment is to evaluate XC’s per-141

formance on a meta classification task: classifying pre-142

dictions as either FP or TP. The predicted objects are cat-143

egorized as TP or FP based on KITTI’s conventions [6].144

To evaluate the performance of a specific score, we could145

simply apply a score threshold: if the score is above the146

threshold then the corresponding prediction is TP, other-147

wise it’s FP. Then we can evaluate the resulting detection148

accuracy. However, the resulting accuracy is a function149

of the threshold. To remove the effect of threshold selec-150

tion and evaluate the performance of different XC scores151

more fairly, we compute area under the precision recall152

curve (AUPR) [18] and area under the receiver operating153

characteristics curve (AUROC) [3], both are threshold-154

independent performance measures for binary classifica-155

tion.156

In binary classification tasks, typically one class is treated as the “positive” class, whereas the other157

class is treated as the “negative” class. We may choose to treat either the TP boxes or the FP boxes as158

the positive class. The AUROC metric treats both classes equally and can reflect the score’s (e.g., one159

of the XC scores) ability in correctly identifying both the positive and negative classes. On the other160

hand, the AUPR metric puts more emphasis on the score’s ability to correctly identify the positive161

class. For both AURP and AUROC, higher values indicate better performance.162
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We evaluate the XC scores on three PointPillars [11] models trained on the KITTI dataset [6] and on163

one PointPillars model trained on the Waymo dataset [30]. We use OpenPCDet’s [32] implementation164

of PointPillars for our experiments and adapt their default settings for training. The first three models165

are trained for 80 epochs on the KITTI dataset, with 3712 frames for training and 3769 frames for166

validation. Due to time and resource constraints, we obtain only one more model trained for 30167

epochs on 20% of the Waymo dataset, with 31616 frames for training and 7997 frames for validation.168

To obtain attribution values, we use Captum [28], a model interpretability library developed for169

PyTorch [19]. We explore both IG [31] and backprop [27] as explanation methods.170

For KITTI, the XC scores are obtained on the predicted objects from the 3769 validation frames.171

There are on average 67k predicted objects produced by each model. One pixel in the pseudo image172

encodes point features in a 0.16m ×0.16m ×4.00m pillar. For Waymo, we comptue XC scores for173

94k predicted boxes sampled from 800 validation frames. One pixel in the pseudo image represents174

point features in a 0.33m ×0.33m ×6.00m pillar. For both datasets, we apply m = 0.2m to the175

predicted boxes and apply athresh = 0.1 to the attribution maps.176

Figure 4: Distribution of XC_c+ values obtained by IG (upper row) and backprop (lower row) attributions
for TP and FP predicted boxes in each of the object class of the KITTI validation set. “KS” means the
Kolmogorov-Smirnov statistic [4].

5.2 Distribution of XC values177

The distribution of XC_c+ values obtained from one of the models trained on KITTI [6] is shown178

in Fig. 4. Both the histograms and the empirical cumulative distribution function plots demonstrate179

that the XC values of TP instances tend to be greater than those of the FP instances. Another notable180

observation is that XC values derived from IG are well-dispersed within the range of [0, 1] for both181

the TP and FP instances, whereas XC values derived from backprop are mostly below 0.5, with182

almost all FP instances having XC values below 0.2.183

5.3 Using XC to identify TP and FP predictions184

The results for TP vs. FP box classification using the XC scores on the KITTI dataset [6] are shown in185

Table 1. Each specific metric in this table is averaged over three models. The four XC scores derived186

from IG and backprop are evaluated, along with four other box-wise features (random guess, distance187
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of the predicted box to LiDAR sensor, the number of points inside the predicted box, and the highest188

class score for the predicted box) serving as baselines for comparison. Each of the aforementioned189

features are evaluated by three metrics on different object classes, making up twelve metrics in total.190

Note that the object classes in Table 1 (as well as those in other tables in later sections) represent191

the predicted labels, not the ground truth labels. Also, in OpenPCDet’s [32] implementation of192

PointPillars [11], the class scores are not softmax scores. Rather, they are class-wise sigmoid scores:193

a pair of “class vs. not class” scores for each object class.194

When computing AUROC and AUPR, the TP boxes are treated as the positive instances, but AUPR_op195

refers to the AUPR value obtained by treating the FP predicted boxes as positive instances. In essence,196

AUPR reflects TP detection performance, whereas AUPR_op reflects FP detection performance. The197

expected AUROC value for a random score is 0.5, and the expected AUPR value is the proportion of198

the positive instances.199

Table 1: Comparison of the XC scores’ ability to classify TP and FP predictions for different object types in the
KITTI dataset. The subscripts “IG” and “B” indicate whether the corresponding XC score is derived from IG or
backprop attributions. For each evaluation metric, the XC scores performing worse than number of points are
highlighted by underscore and the best performing feature other than the top class score is highlighted in bold.

Metrics Random Distance Points XC_s+IG XC_c+IG XC_s−IG XC_c−IG XC_s+B XC_c+B XC_s−B XC_c−B Top Class Score

AUROC
All 0.5 0.669 0.720 0.843 0.868 0.827 0.869 0.823 0.903 0.822 0.908 0.971
Car 0.5 0.770 0.779 0.837 0.857 0.822 0.857 0.708 0.861 0.698 0.869 0.964

Pedestrian 0.5 0.779 0.832 0.648 0.699 0.671 0.754 0.864 0.888 0.882 0.894 0.958
Cyclist 0.5 0.635 0.780 0.810 0.797 0.806 0.824 0.808 0.843 0.819 0.855 0.965

AUPR
All 0.232 0.372 0.464 0.585 0.653 0.551 0.635 0.597 0.786 0.577 0.794 0.926
Car 0.391 0.636 0.666 0.713 0.749 0.697 0.747 0.621 0.830 0.597 0.836 0.948

Pedestrian 0.071 0.215 0.250 0.116 0.153 0.136 0.190 0.518 0.557 0.541 0.572 0.759
Cyclist 0.083 0.167 0.203 0.225 0.237 0.239 0.270 0.425 0.534 0.450 0.554 0.829

AUPR_op
All 0.768 0.859 0.878 0.941 0.950 0.937 0.952 0.936 0.965 0.937 0.967 0.989
Car 0.609 0.829 0.839 0.894 0.903 0.885 0.905 0.761 0.888 0.761 0.897 0.974

Pedestrian 0.929 0.976 0.984 0.959 0.967 0.962 0.973 0.986 0.989 0.988 0.990 0.996
Cyclist 0.917 0.939 0.976 0.977 0.975 0.978 0.980 0.975 0.979 0.977 0.982 0.992

Referring to Table 1, it is clear that the top class score beats all other features in every evaluation200

metric. However, the improvement brought by XC is certainly non-trivial. One can observe that for201

all features evaluated, the second best performing feature is most often XC_c−B . Although distance202

to sensor and number of points in predicted box beat the XC scores generated by IG on the three203

pedestrian class metrics, they are unable to beat any of the XC scores generated by backprop on the204

pedestrian class.205

A very notable case is the AUPR for pedestrian predictions: XC_c−B achieves 129% improvement206

compared to number of points and 706% improvement compare to random guess. The other three XC207

scores derived from backprop also achieve more than 100% on AUPR for pedestrian compared to the208

number of points. Improvements of similar magnitude are also achieved by the backprop XC scores209

on AUPR for the cyclist class. These observations indicate that the backprop XC scores are much210

better at correctly identifying the TP predictions for the pedestrian and cyclist classes than simple211

heuristics such as number of points. Another interesting observation is that the XC scores derived212

by counting usually outperforms those derived by summing. Such improvement might be due to the213

outlier attenuation effect mentioned in the second last paragraph of Section 4.214

To ensure that the advantages offered by XC are not specific to the KITTI dataset [6], we also present215

results from Waymo dataset [30] in Table 2. Again, for most evaluation metrics, one of the XC216

scores is the second best performing feature besides the top class score. In addition, the XC scores217

obtained from backprop often show 100% or more improvement on AUPR for pedestrian and cyclist218

predictions compared to the number of points. And again, XC_c−B is the best performing feature in219

most cases. Hence, we believe that the advantages of XC are not limited to the KITTI dataset only.220

5.4 Why backprop outperforms IG?221

IG [31] is designed to reflect feature importance more precisely than other simpler XAI methods such222

as backprop. Thus, it would be interesting to know why IG-based XC scores underperform backprop-223

based XC scores in the task of classifying TP vs. FP predictions, especially for the pedestrian and224
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Table 2: Comparison of the XC scores’ ability to classify TP and FP predictions for different object types in
the Waymo dataset. For each evaluation metric, the XC scores performing worse than number of points are
highlighted by underscore and the best performing feature other than the top class score is highlighted in bold.

Metrics Random Distance Points XC_s+IG XC_c+IG XC_s−IG XC_c−IG XC_s+B XC_c+B XC_s−B XC_c−B Top Class Score

AUROC
All 0.5 0.609 0.701 0.714 0.758 0.738 0.766 0.729 0.788 0.721 0.793 0.965

Vehicle 0.5 0.703 0.809 0.799 0.821 0.806 0.823 0.754 0.860 0.725 0.860 0.982
Pedestrian 0.5 0.528 0.614 0.529 0.529 0.529 0.545 0.605 0.638 0.646 0.651 0.927

Cyclist 0.5 0.627 0.738 0.766 0.725 0.673 0.689 0.794 0.823 0.799 0.823 0.979

AUPR
All 0.276 0.343 0.476 0.460 0.535 0.483 0.540 0.569 0.700 0.542 0.699 0.936

Vehicle 0.377 0.595 0.721 0.626 0.659 0.624 0.654 0.678 0.827 0.648 0.824 0.973
Pedestrian 0.176 0.121 0.147 0.183 0.184 0.181 0.192 0.284 0.323 0.326 0.340 0.829

Cyclist 0.051 0.072 0.113 0.111 0.096 0.078 0.082 0.279 0.377 0.283 0.394 0.791

AUPR_op
All 0.724 0.811 0.862 0.863 0.881 0.874 0.884 0.850 0.876 0.857 0.882 0.983

Vehicle 0.623 0.784 0.873 0.878 0.891 0.883 0.892 0.809 0.891 0.786 0.893 0.987
Pedestrian 0.824 0.897 0.925 0.841 0.839 0.842 0.846 0.866 0.882 0.889 0.888 0.979

Cyclist 0.950 0.967 0.984 0.984 0.980 0.976 0.978 0.984 0.986 0.985 0.986 0.999

cyclist predictions (see AUPR in Table 1 and Table 2). We suspect that this is due to the difference225

in XC distribution. In Fig. 4, we present the KS statistic [4] between the distributions of XC values226

in the TP and FP instances of each object class. The KS statistic is a measure for goodness of fit227

between two distributions: greater value indicates greater difference between the two distributions.228

Note that the backprop-based XC scores are able to produce much KS statistic between TP and FP229

distributions in the pedestrian and cyclist class than the IG-based scores.230

Table 3: Average XC performance on distin-
guishing TP vs. FP predictions for the KITTI
dataset. The highest value in each row is high-
lighted in bold.

Metrics XCIG Modified XCIG XCB

AUROC
All 0.852 0.861 0.864

Vehicle 0.843 0.795 0.784
Pedestrian 0.693 0.848 0.882

Cyclist 0.809 0.812 0.831
AUPR

All 0.606 0.657 0.689
Vehicle 0.726 0.707 0.721

Pedestrian 0.149 0.321 0.547
Cyclist 0.243 0.282 0.490

AUPR_op
All 0.945 0.952 0.951

Vehicle 0.897 0.848 0.827
Pedestrian 0.965 0.986 0.988

Cyclist 0.977 0.978 0.978

To alter the distribution of IG-based XC scores, we231

remove the last step in computing IG attributions. As232

mentioned before in Section 2, IG zeros out attribu-233

tions for input features with zero value. This is often234

achieved by multiplying the computed attributions at235

each input location i by (xi − x′i), where x is the input236

and x′ is the baseline, which is by default set to zero.237

We remove this process and re-calculate IG-derived238

XC scores on the KITTI dataset [6]. Then we evaluate239

the new XC scores on the binary classification task for240

TP vs. FP predictions. The average results of all four241

IG-derived XC scores, all four backprop-derived XC242

scores (these are averaged over the values presented243

in Table 1), and of the four modified IG-derived XC244

scores are presented in Table 3. Note that the results are245

also averaged over all three models trained on KITTI.246

The modified IG XC scores resulted in 115% improve-247

ment in AUPR for pedestrian predictions and in 16%248

improvement in AUPR for cyclist predictions compared249

to the original IG XC scores. Improvement can also be250

observed in AUROC and AUPR_op for the pedestrian251

and cyclist classes.252

The improvements on pedestrian and cyclist objects also coincide with a shift in the distribution of253

XC values. As shown in Fig. 5, the distribution of XC values now appears very similar to that of254

backprop-based XC values, but very different from that of IG-based XC values. By making feature255

attributions proportional to input feature magnitude, IG is able to generate attribution maps that256

capture salient features in the input, which is one reason why IG attribution maps makes more sense257

to a human observer compared to a blurry backprop attribution map (interested readers may visit258

Sundararajan et al. [31] for more attribution map examples). As a result, IG zeros out most of the259

attributions outside of the bounding box (because the space outside of object bounding boxes are260

mostly empty, leading to zero input feature values at such locations), and the remaining attributions261

are mostly concentrated within the bounding box or at its close proximity (see Fig. 2). Thus, IG is262

unable to produce mostly very low (< 0.1) XC values for the FP predictions, leading to significant263

overlap in the values for TP prediction XC scores and FP predictions XC scores, making classification264

using XC scores difficult.265
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Figure 5: Distribution of XC_c+ values obtained by modified IG (without multiplying attributions by input)
attributions for TP and FP predicted boxes in the KITTI validation set.

These observations echo with Erion et al.’s [5] claim that IG’s choice of a zero-valued baseline is266

problematic. Take an image of a digit for example, if the background is white but the digit itself267

is black (i.e., zero), then the zero-valued pixels in fact contains the key features of this image and268

should not get zero attributions. Similarly for point cloud inputs, not just the presence of points, but269

also the absence of points in certain locations can help the model classify the object. For instance,270

pedestrian objects are usually filled with points, whereas car objects have points on its boundaries but271

are mostly hollow in the middle.272

Note that even without multiplying by input values, IG-derived XC scores still cannot beat backprop-273

derived XC scores on the pedestrian and cyclist classes (see Table 3). Hence, a more expensive274

method such as IG may produce more visually appealing attribution map, but a less expensive method275

may have more potential when used quantitatively.276

5.5 Combining XC scores with the top class score277

In Section 5.3 we demonstrate that the top class score is the best performing box-wise feature in278

classifying TP vs. FP predictions. In this subsection, we aim to improve its performance by combining279

it with XC scores generated from backprop attributions. We train classifiers for different object280

classes in KITTI [6] and perform an ablation study on the box-wise features.281

To conduct the ablation study, we build a new dataset Df from five features (the top classs score and282

the four XC scores computed based on backprop attributions) for each predicted box produced by283

one PointPillars [11] model on the KITTI validation set [6]. Since we have three models trained on284

KITTI, we obtain three Df datasets. For each Df , we first group the samples by the predicted object285

label, then by the number of LiDAR points: those with less than 100 points forms one set, the rest286

forms another set. Thus, from one Df , we generate six small datasets df , two for each of the three287

object classes.288

We then build a 2-layer multilayer perceptron (MLP) with PyTorch [19] as a classifier to be trained289

on df . Layer 1 is of size (d× 3) and layer 2 is of size (3× 1), where d represents the number of input290

features per instance. ReLU activation is applied after the first layer, and the sigmoid function is291

applied after the second layer to obtain an output score. We train the MLP to classify a predicted box292

as TP or FP, using binary cross entropy as the loss function. All input features are normalized based293

on the following equation prior to being fed into the MLP: z = (x− µ)/s, where x is the original294

feature value, µ is feature mean value, and s is the standard deviation for that feature. We use the295

Adam optimizer [10] with learning rate set to 0.001.296

For each experiment, we first shuffle df and then augment it by duplicating the instances four297

times. Next we apply 5-fold cross validation to the augmented df , obtaining 5 different 80%/20%298

train/validation split. For the training instances, we also add a small uniformly distributed noise299

U(−0.05,+0.05) to each feature to help the MLP generalize better. For each different split, we train300

the MLP for 12 epochs with batch size = 16 and record three evaluation metrics (AUROC, AUPR,301

and AUPR_op) of the output score on the validation instances. We repeat the 5-fold cross validation302

5 times, obtaining 5× 5 = 25 different values for each of the metrics, and record the average. Note303
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that the above process is repeated for each df in the three Df we have, each evaluation metric is304

averaged over the three Df and shown in Table 4.305

In Table 4, when the top class score is the only input feature, we evaluate its performance directly and306

use it as baseline for comparison; when more than one features are used, we evaluate the performance307

of the MLP output score. The most notable observation is that for predictions containing less than308

100 points, combining the XC scores with top class score can often result in better performance in309

distinguishing TP vs. FP predictions, especially among the pedestrian predictions. The AUPR for310

pedestrian increased by (0.540 - 0.492) / 0.492 = 9.8% after combining the 4 XC scores with top class311

score. The improvement in AUROC for pedestrian predictions and in AUPR for cyclist predictions312

also exceed 1%. Among the predictions with more than 100 points, the benefit of incorporating the313

XC scores is less observable. Note that the top class score alone is already performing very well for314

these predictions with more points. This might be why it is more difficult to get additional benefit315

from the XC scores on these predictions.316

Table 4: Ablation study on the features used to help classify TP vs. FP predictions on KITTI.

Object Class Features Used Points < 100 Points >= 100
Top class score XC_c− XC_c+ XC_s− XC_s+ AUROC AUPR AUPR_op AUROC AUPR AUPR_op

Car
X 0.958 0.926 0.977 0.956 0.980 0.914
X X 0.958 0.927 0.977 0.950 0.978 0.903
X X X X X 0.960 0.927 0.979 0.957 0.980 0.918

Pedestrian
X 0.932 0.492 0.997 0.969 0.911 0.989
X X 0.938 0.527 0.997 0.973 0.919 0.991
X X X X X 0.944 0.540 0.997 0.973 0.920 0.992

Cyclist
X 0.958 0.765 0.996 0.982 0.947 0.995
X X 0.958 0.777 0.996 0.972 0.931 0.993
X X X X X 0.958 0.779 0.996 0.980 0.946 0.994

6 Conclusion and future work317

To use the explanations quantitatively, we proposed four XC scores to measure the concentration of318

the attribution values generated for individual predictions. Applying the four XC scores on the task319

of classifying TP vs. FP predictions led to over 100% improvement in AUPR on the pedestrian class320

on both the KITTI and the Waymo datasets compared to simple heuristics such as distance to sensor321

and number of LiDAR points in bounding box. Although the XC scores alone could not outperform322

class score in the TP vs. FP classification task, combining class score with the XC scores using an323

MLP led to significant improvement compared to using class score alone. Thus, it is worthwhile to324

explore the XC scores further for more use cases such as using it in loss functions to improve model325

performance, or use it as a tool for adversarial or out-of-distribution sample detection.326

We also discovered that the XC metrics derived from backprop attributions often outperform those327

derived from IG attributions on TP vs. FP classification for the pedestrian and cyclist objects. This328

indicates that explanations that are more understandable to a human observer, such as IG, may329

not offer superior value when analyzed quantitatively and researchers should not discard simpler330

explanation methods when exploring quantitative use cases for XAI.331

We would like an extended version of the submission to be considered for publication in a332

journal special issue.333
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