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Abstract

More recently, there has been a surge of interest in employing machine learning1

approaches to expedite the drug discovery process where virtual screening for hit2

discovery and ADMET prediction for lead optimization play essential roles. One3

of the main obstacles to the wide success of machine learning approaches in these4

two tasks is that the number of compounds labeled with activities or ADMET5

properties is too small to build an effective predictive model. This paper seeks to6

remedy the problem by transferring the knowledge from previous assays, namely7

in-vivo experiments, by different laboratories and against various target proteins.8

To accommodate these wildly different assays and capture the similarity between9

assays, we propose a functional rationalized meta-learning algorithm FRML for10

such knowledge transfer. FRML constructs the predictive model with layers of11

neural sub-networks or so-called functional regions. Building on this, FRML12

shares an initialization for the weights of the predictive model across all assays,13

while customizes it to each assay with a region localization network choosing the14

pertinent regions. The compositionality of the model improves the capacity of15

generalization to various and even out-of-distribution tasks. Empirical results on16

both virtual screening and ADMET prediction validate the superiority of FRML17

over state-of-the-art baselines powered with interpretability in assay relationship.18

1 Introduction19

Drug discovery brings new candidate medications to billions of people, helping them live longer,20

healthier and more productive lives. One crux step in drug discovery is virtual screening, which21

is a fast and cost-effective method that computationally predicts the activity value of a compound22

against the target protein of a disease. As shown in Figure 1(a), the hits screened out of large drug23

libraries of compounds by a virtual screening algorithm are further empirically validated against their24

in-vivo activities, resulting in leads. After optimizing the ADMET properties (absorption, distribution,25

metabolism, excretion and toxicities) of the leads, we obtain the drug candidates.26

There have been both traditional machine learning [33] and deep learning approaches [4] devoted27

to virtual screening, while the prediction performance (i.e., the hit rate) is far from satisfactory.28

The crucial challenge lies in that the number of training compounds whose activities have been29

tested against the target protein of focus is severely limited. Though state-of-the-art deep learning30

algorithms typically rely on supervision in the form of thousands to millions of annotated data, it is31

highly expensive and almost impossible for in-vivo experiments to collect a sufficient set of drug32

compounds with activity labels. In fact, virtual screening as a computational pre-screening method is33

desired precisely because of the prohibitive costs of an in-vivo experiment (i.e., an assay). Fortunately,34

previous assays conducted by different laboratories around the world towards a wide variety of35

diseases with different biological target proteins together provide a rich repository for learning the36
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interactions between a protein and a compound. For example, as COVID-19 and SARS share high37

amino acid sequence identity, previous assays against SARS 3CLpro and PLpro proteases contribute38

a lot to learning a predictive model for COVID-19 [16].39
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Figure 1: (a): Workflow for discovery of drug can-
didates using virtual screening. (b): Distributions
of activity values for 10 randomly selected assays.

We are highly motivated to transfer the knowl-40

edge of interactions from this repository to ad-41

dress the scarcity of labeled compounds in the42

assay against the target protein of our focus,43

which we name as the target assay for conve-44

nience. The challenges of such knowledge trans-45

fer are two-fold: (1) how to share the transfer-46

able knowledge but meanwhile accommodate47

the wide variance between assays, and (2) how48

to adequately identify the nearest neighbor as-49

says to the target assay to reduce the risk of neg-50

ative transfer. Since assays are from different51

institutions and against various target proteins,52

the compounds tested and the distribution of activity values vary a lot from assay to assay. As53

evidenced in Figure 1(b), there exists a large discrepancy between distributions of activity values54

for 10 randomly selected assays. The prevalent fine-tuning strategy in transfer learning [21], trains55

a single model on previous assays and fine-tunes it to the target assay – it struggles in predicting56

accurately for each assay and confuses the most similar assays to the target with the others.57

Gradient-based meta-learning [7] has been a promising practice, which learns from previous assays an58

initialization for a shared predictive model and adapts the model from this initialization to each assay.59

while the initialization is learned so that the adapted model of each assay generalizes well on testing60

compounds, maintaining a shared initialization is still insufficient to handle wildly varying assays [37]61

and pinpoint the most similar assays. Recent efforts on heterogeneous meta-learning deal with this62

issue by modulating the shared initialization to different assays via task embedding [20, 35, 37].63

Instead of only differentiating initializations, motivated by compositionality and brain functional64

specialization in neuroscience [5, 26], we aim to push ahead with distinguishing neural sub-networks,65

or so-called functional regions, each of which consists of a disparate set of parameters. This66

advancement brings at least the following two benefits. First, the similarity between assays is more67

accurately measured in a divide-and-conquer manner – only modulation for the initialization weights68

in those overlapping regions between two assays are considered for comparison. Second, the reduced69

parameter space prevents the predictive model from overfitting to a limited set of training compounds.70

We name the resulting meta-learning algorithm as FRML. The predictive model of the FRML is71

dissected into a sequence of hierarchically organized functional regions. Provided with an assay,72

the contrastive assay representation network forwards the learned assay embedding to a region73

localization network. The region localization network locates the most relevant functional regions74

for the assay in a recurrent manner, to be consistent with the hierarchical organization of functional75

regions. In the stage of meta-training on previous assays, both the region localization network and the76

weights for initializations of all functional regions are jointly learned. When it comes to meta-testing,77

FRML quickly adapts to the target assay via easy assembly of the located regions.78

We summarize our major contributions as follows. (1) We propose a novel meta-learning algorithm79

FRML, which pushes a step forward from differentiating initializations to differentiating neural80

sub-networks between tasks; (2) We demonstrate the effectiveness of FRML on not only virtual81

screening but also the task of ADMET prediction. (3) FRML respects the key principle of machine82

learning models in healthcare – it is interpretable in the relationship between assays.83

2 Notations and Problem Definition84

In this section, we define some notations and discuss our problem. In drug prediction, we consider85

each task Ti as an assay which refers to an in-vivo experiment on a group of compounds, and all tasks86

are sampled from the distribution p(T ). Note that we use either task or assay alternatingly in the87

remainder of this paper. Assuming that we have N historical assays {Ti}Ni=1 as meta-training assays,88

we aim to generalize a meta-learner from these meta-training assays and quickly adapt it to unseen89

target assays {Tt}Nt
t=1 even with limited amount of annotated data. Here, we define the process of90
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learning well-generalized meta-knowledge from the meta-training assays as the meta-training phase91

and the adaption process on the target assays as the meta-testing phase.92

Concretely, for each task Ti, a support set of training samples Dsi = {Xs
i ,Y

s
i } = {(xs,ys)i,j}n

s
i
j=193

and a query set of testing samples Dqi = {Xq
i ,Y

q
i } = {(xq,yq)i,j}

n
q
i
j=1 are sampled from Ti, where94

nsi and nqi represent the number of support and query samples, respectively. Denote that the feature95

space is X and the label space is Y, a predictive model (a.k.a., base learner) f : x 7→ ŷ is defined to96

map a sample x ∈ X to its predicted value ŷ ∈ Y. For each task Ti, the base learner f is updated97

from the initialization θ0 by minimizing the expected empirical loss L on Dsi , i.e., minθ L(θ;Dsi ),98

resulting in the optimal parameters θi. Specifically, the loss function L is defined as mean square error99

(i.e.,
∑

(x,y)∈Ds
i
‖fθ(x)−y‖22) or cross-entropy loss (i.e., −

∑
(x,y)∈Ds

i
log p(y|x, fθ)) for regression100

and classification problems, respectively. In the meta-training phase, the query sets {Dqi }
N
i=1 of101

all meta-training assays are used to optimize the initialization of the base learner, so that the final102

initialization θ∗0 is well-generalized. θ∗0 can be further adapted to each meta-testing task Tt via the103

corresponding support set Dst . Formally, we define our problem as,104

Ŷq
t = arg max

Y
q
t

p(Yq
t |X

q
i ,D

s
t , fθ∗0 ). (1)

The well-generalized model initial weights θ∗0 encrypt the comprehensive knowledge learned from105

meta-training assays. We will detail how to learn θ∗0 in Section 3.106

3 Methodology107

In this section, we introduce the proposed framework FRML whose overview is illustrated in Figure 2.108

The goal of FRML is to improve the generalization ability for a wide range of and even out-of-109

distribution target assays with limited training samples via discriminating functional regions between110

assays. To achieve this goal, we dissect the base learner into a sequence of functional regions. Given111

a new assay, we propose a region localization network taking the learned assay representation as input112

to locate and assemble the most relevant functional regions. Subsequently, FRML can be quickly113

adapted to the novel assay on the assembled functional region set. In the following subsections, we114

will first discuss the predictive models for virtual screening and ADMET classification as the base115

learner and our meta-learning pipeline. Then we elaborate the details of three key components (i.e.,116

assay representation learning, localization strategy, and region localization network).
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Figure 2: Overview of the proposed FRML. In each assay Ti, the recurrent region localization
network, guided by its learned representation ti, locates the most relevant functional regions (darker
blocks) and assembles them (trace: input→ θ1

01 → θ2
02 → θ3

03 → θ4
01) in the dissected base learner fθ.

117

3.1 Predictive Models for Drug Discovery and Gradient-based Meta-Learning118

We build predictive models for virtual screening and ADMET prediction, both of which are crucial119

for drug discovery. The input to the predictive models is a drug compound represented by 1024120

dimensional Morgan fingerprints [28], i.e., x ∈ R1024. For virtual screening, the output is the activity121

value of the compound against the target protein in this assay, i.e., y ∈ R, while the output for122

ADMET prediction could be a discrete category or a real value. In our empirical study, we only123

consider those ADMET prediction tasks of classification, i.e., y ∈ C, where C denotes the set124

of property categories. Building on these, we construct a neural network consisting of two fully125
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connected layers as the predictive model, which also serves as the base learner f . We denote the126

weights for the base learner f to be θ.127

With the base learner f , we introduce gradient-based meta-learning as the backbone meta-learning128

framework, which regards the initialization θ0 for the base learner as the transferable knowledge.129

Apparently, it enjoys the advantage of being independent of problem types. Specifically, here we130

illustrate the gradient-based meta-learning by using model-agnostic meta-learning (MAML) [6] as an131

example. In the meta-training phase, MAML obtains the assay-specific model for each assay Ti by132

updating the parameters θ via the support set Dsi in a few gradient steps starting from θ0, i.e.,133

θi = θ0 − α∇θL(θ;Dsi ). (2)

Here α denotes the learning rate for assay adaptation. Though only one gradient step is presented as134

exemplary in Eqn. (2), it is easy to extend to several gradient steps. The crux is to evaluate the adapted135

assay-specific model θi on the query set Dqi and leverage the result as a feedback to meta-update the136

initializations θ0 as,137

θ0 ← θ0 − β
1

N

∑
Ti∈p(T )

L(θi;Dqi ), (3)

where β is the learning rate for meta-updating. As a result of the meta-training phase, we get the138

well-generalized initialization θ∗0 for the base learner. In the meta-testing phase, the specific model θt139

for each target assay Tt with the support set Dst is achieved by a few gradient steps starting from the140

learned initialization θ∗0 , i.e., θt = θ∗0 − α∇θL(θ∗0 ;Dst ). Finally, the performance is evaluated on the141

query set Dqt of the target assay Tt. Without loss of generality, we again take MAML as the backbone142

meta-learning framework of FRML and detail each component in the following.143

3.2 Contrastive Assay Representation Learning144

Learning the representation of assay Ti is a prerequisite to determining the functional regions that are145

specific to the assay. Following previous works [35, 37], we represent the assay with a representation146

vector ti ∈ Rd by aggregating all training samples of the support set Dsi ={(xs,ys)ji}
ns
i
j=1, where an147

aggregator AGG is involved. The aggregator consists of a mapping function denoted as MF (e.g.,148

recurrent network, convolutional network) that first encodes each individual sample into a dense149

representation vector, and a sample-level mean pooling layer to summarize all samples to generate150

the assay representation ti. Note that the pooling guarantees the assay representation to be invariant151

of the permutation of samples. Formally, we define the aggregation process as,152

ti = AGG(Dsi ) =
1

nsi

ns
i∑

j=1

MF(F(xji )⊕ yji ), (4)

where F(·) is an embedding function that transforms the input features into a low-dimensional vector.153

Both the embedded input features and the label are concatenated by the operator ⊕. We will provide154

more details on the definitions of F(·) and MF(·) later in Section 4.155

The loss function to train the parameters F(·) and MF(·) could be Eqn. (3) only. Unfortunately, it is far156

from enough to learn a robust assay representation: first, the gradients back-propagated through the157

base learner and the region localization network tend to be too small for training to work effectively;158

second, the assay representation and the region localization are interleaving, so that the objective in159

Eqn. (3) takes them as a whole regardless of the accuracy for each of them. To overcome this limitation,160

we are motivated to impose another loss function on the assay representation network directly. The161

key intuition is that each set of samples in an assay provides a partial view of the assay, and the assay162

representation is expected to be consistent across views. This motivates the constrastive objective163

– different views of the same assay have similar task representations, while the representations of164

views from different assays should be different. Specifically, we create different views of assay Ti by165

randomly splitting Dsi into nc sets of size nsi/nc. By defining cu := ((u− 1)nsi/nc, · · · , unsi/nc), we166

obtain nc subsets of equal size, i.e., Dsi = ∪nc
u=1O

cu
i . We can now formulate the contrastive learning167

objective as follows:168

Lcl =

N∑
i=1

∑
1≤u≤v≤nc

[
log

exp
(
Φ
(
AGG(Ocvi ),AGG(Ocui )

))∑N
e=1 exp

(
Φ
(
AGG(Ocvi ),AGG(Ocue )

))], (5)

where Φ is a similarity measure function. In our experiments, we adopt the dot product, i.e.,169

Φ(a, b) = aT b. This contrastive loss function pushes the representations of different assays apart and170

meantime stabilizes the assay representation.171
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3.3 Localization Strategy172

The assays are measured by different experimenters on different equipment, so that they are expected173

to have widely distributed assay representations. Given an assay with its representation, in this174

section, the localization strategy sets out to locate and assemble the functional regions that are175

specific to this assay. Before detailing the localization strategy, we first dissect the initialization θ0176

of the base learner into K functional regions. These functional regions are dissected in a layer-wise177

manner to maintain the hierarchical structure of the neural network. For each layer l, we denote178

its corresponding functional regions as θl0 = {θl0ml}M
l

ml=0, where M l represents the total number of179

functional regions in the l-th layer and
∑
lM

l = K.180

Following the hierarchical representation in neural networks, we locate and assemble these functional181

regions in a hierarchical manner – each functional region at layer l + 1 receives signals from the182

functional regions at layer l. For each assay Ti, denoting the representation of functional region ml in183

layer l as hm
l

i , we define the representation of functional region ml+1 in layer l + 1 to be:184

hm
l+1

i = fm
l+1

(

Ml∑
ml=1

pm
l→ml+1

i hm
l

i ),

Ml∑
ml=1

pm
l→ml+1

i = 1, (6)

where fm
l+1

(·) represents the mapping function for functional region ml+1. pm
l→ml+1

i defined as185

the probability of functional region ml being assembled to ml+1 is crucial; a value of pm
l→ml+1

i = 1186

suggests that functional region ml should be included for assay Ti. Obviously, the probability187

pm
l→ml+1

i varies from assay to assay, so that we model it as a function of the representation ti, i.e.,188

pm
l→ml+1

i = RG(ti), (7)
where RG(·) represents the region localization network we detail in the next subsection.189

3.4 Region Localization Network190 Algorithm 1 Meta-training Process of FRML

Require: {M1, . . . ,ML}: # of functional regions of each
layer; α, β: learning rates; λ1, λ2: item factors in loss

1: Randomly initialize Θ
2: while not done do
3: Sample a batch of assays from p(T )
4: for all Ti do
5: Sample Dsi , Dqi from Ti
6: Get assay representation ti in Eqn. (4) and the re-

construction loss Lcl via Eqn. (5)
7: Use Eqn. (8) to compute {r̃1

i , . . . , r̃
L
i }

8: Calculate {p1
i , . . . ,p

L
i } by Eqn. (9) and get the as-

sembled trace across functional regions
9: Use gradient descent to update parameters based on

the learned trace: θi=θ0−α∇θL(θ;Dsi )
10: end for
11: Update Θ ← Θ − β 1

N
∇Θ

∑
Ti∈p(T ) L(θi;Dqi ) +

λLcl(Dsi )
12: end while

An ideal region localization network191

is expected to satisfy two criteria, in-192

cluding high representational capac-193

ity and consistency with the hierar-194

chical structure behind functional re-195

gions. To meet the criteria, we pro-196

pose a recurrent region localization197

network, where a recurrent neural net-198

work (GRU as exemplary) is used.199

The input to the recurrent neural net-200

work at step l + 1 is the combination201

of assay representation ti and the as-202

sembly probabilistic set pli of layer203

l, where pli = {pm
l−1→ml

i |ml−1 ∈204

[1,M l−1],ml ∈ [1,M l]}. Conse-205

quently, the hidden representation at206

step l + 1 is,207

r̃l+1
i = GRU(ti⊕pli; rli)Wf+bf , (8)

where Wf ∈ Rd
′×MlMl+1

and bf ∈ R1×MlMl+1

are learnable parameters and r̃l+1
i =208

{r̃m
l→ml+1

i |ml ∈ [1,M l],ml+1 ∈ [1,M l+1]} ∈ R1×MlMl+1

. The hidden representations at step209

l + 1, in return, determine the assembly probability at layer l + 1. Note that the assembly probability210

is expected to be as close to the bounds of its range (0, 1) as possible, so that only the most pertinent211

functional regions are located. To this end, we apply the Gumbel-softmax estimator [10, 18] which212

models the categorical distribution to r̃i, i.e.,213

pm
l→ml+1

i =
exp((r̃m

l→ml+1

i + qm
l→ml+1

i )/τ)∑Ml

sl=1 exp((r̃s
l→ml+1

i + qs
l→ml+1

i )/τ)
, (9)

where τ is the temperature and qm
l→ml+1

i is sampled from the Gumbel distribution, i.e., qm
l→ml+1

i ∼214

Gumbel(0, 1).215
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Combining the meta-learning loss in Eqn. (3) and the contrastive loss in Eqn. (5), we arrive at the216

overall objective function of FRML defined as:217

min
Θ
Lall = min

Θ

∑
Ti∈p(T )

L+ λLcl, (10)

where the hyperparameter λ balances between two losses and Θ represents all learnable parameters.218

For better understanding of our framework, we show the meta-training process in Algorithm 1 and219

the meta-testing process in Appendix A.220

4 Experiments221

In this section, we empirically evaluate the effectiveness of FRML on two diverse drug discovery222

tasks: drug activity prediction and ADMET property prediction. We consider comparison of the223

proposed FRML with three categories of baselines. The first category simply using base learner224

without assay adaptation, including FC-Individual and FC-All. The second category is knowledge225

transfer with assay adaptation: Fine-tuning, MAML [6], ANIL [24], ANIL++ [3]. The last category is226

heterogeneous meta-learning methods, including MMAML [35], HSML [37], ARML [38]. Detailed227

descriptions of all baselines are provided in Appendix B and the detailed hyperparameters for both228

applications are listed in Appendix D.229

4.1 Drug Activity Prediction230

Dataset Description. For drug activity prediction, we use the dose-response activity assays from231

ChEMBL[1], where 4,276 assays are selected in this problem. Here, we randomly sample 100 assays232

as the meta-testing set, 76 assays as the meta-validation set, and the rest of assays for meta-training.233

The random splitting is repeated four times to construct four assay groups, named Assay Group234

I, II, III, IV, respectively. A few support and query drug compounds are available for each assay.235

In terms of the features for each drug compound, we use 1,024-dimensional Moragn fingerprint236

implemented in RDKit [12]. For each assay Ti, we calculated the coefficient of determination (R2)237

between the predicted value Ŷq
i and the ground truth value Yq

i . The median and mean R2 values of238

all meta-testing assays are reported. We adopt another widely used metric for evaluating whether a239

virtual screening model is usable in practice, i.e., the number of assays with R2 > 0.3. More detailed240

information and data statistics are summarized in Appendix C.1.241

Table 1: Performance of drug activity prediction (Measured by meanR2, medianR2 and #R2 > 0.3).

Model Assay Group I Assay Group II Assay Group III Assay Group IV
Mean Med. R2 >0.3 Mean Med. R2 >0.3 Mean Med. R2 >0.3 Mean Med. R2 >0.3

FC-Individual 0.141 0.064 16 0.114 0.060 10 0.112 0.046 10 0.118 0.047 10
FC-All 0.228 0.131 30 0.187 0.103 23 0.199 0.103 28 0.252 0.160 35

Fine-tuning 0.251 0.166 37 0.197 0.124 24 0.219 0.121 31 0.266 0.194 37
MAML 0.291 0.182 38 0.232 0.158 29 0.265 0.191 36 0.302 0.256 46
ANIL 0.299 0.184 41 0.226 0.143 30 0.268 0.199 37 0.304 0.282 48
ANIL++ 0.367 0.299 50 0.315 0.252 43 0.335 0.289 48 0.362 0.324 51

MMAML-ANIL 0.292 0.205 42 0.231 0.154 31 0.276 0.187 37 0.308 0.260 46
HSML-ANIL 0.295 0.192 41 0.234 0.145 34 0.277 0.196 35 0.306 0.254 47
ARML-ANIL 0.299 0.204 43 0.233 0.159 32 0.270 0.191 39 0.311 0.267 46

FRML-ANIL (ours) 0.310 0.226 44 0.237 0.162 35 0.285 0.207 40 0.322 0.287 49
FRML-ANIL++ (ours) 0.375 0.328 52 0.327 0.311 51 0.345 0.315 51 0.372 0.349 56

Table 2: Ablation study on drug activity prediction.

Model Assay Group I Assay Group II Assay Group III Assay Group IV
Mean Med. R2 >0.3 Mean Med. R2 >0.3 Mean Med. R2 >0.3 Mean Med. R2 >0.3

ANIL++ 0.367 0.299 50 0.315 0.252 43 0.335 0.289 48 0.362 0.324 51
Ablation I (w/o cl) 0.371 0.315 51 0.318 0.263 45 0.338 0.305 49 0.368 0.338 54
Ablation III (w/o localization) 0.369 0.301 50 0.317 0.263 47 0.336 0.291 49 0.368 0.329 53
Ablation II (RNN -> FC) 0.372 0.303 52 0.326 0.299 50 0.341 0.306 50 0.367 0.333 53

FRML-ANIL++ (ours) 0.375 0.328 52 0.327 0.311 51 0.345 0.315 51 0.372 0.349 56

Overall Performance. The performance of FRML and the baselines are reported in Table 1. In this242

experiment, FRML incorporates ANIL and ANIL++, while all other heterogeneous meta-learning243
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algorithms (e.g., MMAML) incorporate ANIL. Note that ANIL++ is modified from ANIL to improve244

stability. From the results in Table 1, we obtain the key observations: (1) The performance of245

FC-Individual is inferior to that of other methods, indicates that involving the data from source assays246

benefits the performance; (2) Gradient-based meta-learning methods (MAML, ANIL, ANIL++,247

heterogeneous methods, and FRML) achieve significantly better performance than Fine-tuning,248

corrugating our motivation that Fine-tuning may confuse the most similar assays to the target with the249

others; (3) In most cases, heterogeneous methods (MMAML-ANIL, HSML-ANIL, ARML-ANIL,250

FRML-ANIL) achieve better performance than homogeneous meta-learning models, showing the251

effectiveness of integrating assay-specific knowledge transfer; (4) Our proposed FRML-ANIL++252

achieves the best performance in all four assay groups. This possibly results from that differentiating253

neural sub-networks reduces the parameter space, which improves the generalization capability and254

further benefits the performance. Besides, integrating FRML with ANIL also achieves consistent255

improvements, showing its compatibility with different backbone meta-learning models.256

Ablation Study. To further show the effectiveness of the proposed modules in FRML, we conduct257

comprehensive ablation studies by comparing FRML with three ablation models described as follows.258

First, we consider an ablation model (Ablation I (w/o cl)) with the contrastive loss removed. Sec-259

ond, we design Ablation II (w/o localization) to show that the improvements of FRML is caused260

by knowledge localization rather than increasing the capacity of baseline. Third, we change the261

recurrent structure to a plain localization network and propose Ablation III (RNN->FC), where262

fully connected layers with softmax are utilized to learn the assembly probability set {p1
i , . . . ,p

L
i }.263

We evaluate the ablation models on all four assay groups and report the performance in Table 2. Note264

that FRML is also included in comparison. From the results in the table, we have the following three265

findings: (1) removing the contrastive loss hurts the performance, which indicates the effectiveness of266

the contrastive loss in learning well-differentiated assay representations; (2) the superiority of FRML267

over abalation II demonstrates that the improvements stem from efficient knowledge structuring268

rather than larger model capacity; (3) compared to the plain localization network, the performance269

gain of recurrent region localization network demonstrates its superiority by predicting the assembly270

probability in a hierarchical way.271
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Figure 3: (a): Num. of functional regions w.r.t. the
mean R2 on Assay Group I, II, III, IV. (b): Perfor-
mance w.r.t. support set ratio on Assay Group I.

Effect of the Number of Functional Re-272

gions. We analyze the effect of the number273

of functional regions and illustrate the results274

in Figure 3(a). In this figure, we observe that275

(1) if the number of functional regions is too276

small (e.g. 1), it may be insufficient to cap-277

ture the structures across assays. (2) when we278

continually increase the number of functional279

regions, the results keep stable or even slightly280

decrease, which are consistent with our find-281

ings that the gains of FRML arise out of the282

effective knowledge structuring instead of the283

increase of the model capacity.284

Effect of the Ratio of the Support set. In order to show the superiority of FRML under different285

ratios of the support set, we analyze the performance w.r.t. the support set ratio and show the results in286

Figure 3(b). When we down-sample the support set to contain 5%, 25%, and 50% of all compounds287

in an assay, FRML consistently achieves better performance than the most competitive baseline288

ANIL++. This marks the capability of FRML in handling the data scarcity problem in healthcare.289

Analysis of Localization Strategy. We further analyze the localization strategy, where the assembled290

traces of six randomly selected meta-testing assays from Group II are illustrated in Figure 4(a)-(f) and291

their corresponding biological properties are reported in the right table of Figure 4. Here, we observe292

that the six assays are mainly located in three different traces. Besides, assays 1640791, 701282,293

1639959, 302952 activate the same trace 1→21. The trace groups are consistent with their biological294

properties reported in the table. First, assays 1640791 and 701282 are both cell-based functional295

assays targeting GPCRs by evaluating the antagonistic activity of compounds to their downstream296

cAMP pathway. 1639959 and 302952 are both cell-based functional assay of membrane transporters.297

All four assays are targeting membrane proteins (receptors or transporters). Thus, they share the first298

layer but select different traces in the second layer. Second, different from the above four assays,299
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Assay ID Assay Type Target Target Group Organism

1640791 Cell-based functional G-protein coupled receptor 6 GPCR Homo sapiens

701282 Cell-based functional Prostanoid DP receptor GPCR Homo sapiens

1639959 Cell-based functional Ferroportin Membrane transporter Homo sapiens

302952 Cell-based functional Peptide transporter 1 Membrane transporter Homo sapiens

147797 Single protein Orexin receptor 2 GPCR Homo sapiens

1520 Single protein Serotonin 1a (5-HT1a) receptor GPCR Homo sapiens

Figure 4: Left Figure (a)-(f) show the located traces from six meta-testing assays of Group II, where
their corresponding biological information are reported in the right table. Darker blocks and blue
links represent located functional regions and assembled links, respectively.

assays 147797 and 1520 choose a completely different path since they are single protein assays that300

directly evaluate the effect of compounds to their protein targets. The consistency of localization301

results and biological properties further verify the effectiveness of FRML for distinguishing different302

domains via localization strategy.

Table 3: Performance of ADEMT property prediction (averaged accuracy with 95% confidence
interval are reported).

Model SIDER Tox21 MUV ToxCast

FC-Individual 52.12± 0.81% 51.25± 0.37% 52.91± 0.67% 62.75± 1.27%
FC-All 67.13± 0.89% 68.63± 0.84% 55.04± 1.06% 70.82± 1.61%

Fine-tuning 67.60± 0.89% 68.84± 0.84% 55.41± 1.05% 71.04± 1.59%
MAML 67.69± 0.81% 69.12± 0.84% 56.66± 1.09% 72.53± 1.64%
ANIL 67.92± 0.89% 69.81± 0.85% 55.13± 1.22% 72.09± 1.78%
ANIL++ 68.04± 0.86% 68.94± 0.92% 56.95± 1.13% 72.66± 1.67%

MMAML-ANIL 68.57± 0.82% 69.86± 0.90% 58.06± 1.21% 72.10± 1.55%
HSML-ANIL 69.15± 0.87% 69.98± 0.88% 57.94± 1.18% 71.73± 1.46%
ARML-ANIL 68.94± 0.84% 70.07± 0.91% 58.99± 1.16% 72.08± 1.56%

FRML-ANIL (ours) 69.89± 0.87% 70.85± 0.85% 59.94± 1.00% 73.56± 1.58%
FRML-ANIL++ (ours) 70.01± 0.86% 71.07± 0.91% 60.66± 1.09% 74.02± 1.57%

303

4.2 ADMET Property Prediction304

Dataset Description & Evaluation Metric. Besides the drug activity prediction, we further evaluate305

FRML on ADMET property prediction. The AMDET Prediction problem is constructed by combining306

4 benchmark datasets from the MoleculeNet [36] with biophysiology and physiology targets. The 4307

datasets are MUV [29], SIDER [11], Tox21 and ToxCast [27]. Each property prediction is a binary308

classification task. All the properties from MUV, SIDER, Tox21, and 22 properties form ToxCast are309

involved in the experiment, resulting in 68 tasks. We randomly sample 42 tasks for meta-training310

and use the remaining 26 tasks for meta-testing. Considering the data balance, for each tasks, we311

randomly sample only partial instances from the majority category to match the size of minority312

data, together with all the minority data, to form the task dataset. In this experiment, following313

the conventional few-shot learning protocol [7], we apply 2-way classification with 5-shot support314

samples for each task. The details of the dataset descriptions are available in Appendix C.2. As for315

the model performance, it is measured by averaged classification accuracy.316

Results. We report the performance of FRML and the baselines in Table 3. Similar findings to that of317

drug activity prediction experiments are observed. Therefore, we again confirm the effectiveness and318

importance of integrating task-specific knowledge transfer in the proposed FRML. A specific finding319

is that: all heterogeneous meta-learning models and FRML obtain higher gain of performance on320

MUV than on the three datasets. In particular, FRML achieves significant performance improvement321

on MUV dataset. This may be caused by the category difference of MUV from the other three322

datasets which we will detail in the next subsection. Besides, we conduct similar ablation studies to323

those for drug activity prediction and report the results in Appendix E. Similar results are observed,324

again demostrating the effectiveness of FRML in differentiating different properties.325
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Figure 5: (a)-(d) show the assembled traces (blue
links) among located regions (darker blocks) from
four meta-testing tasks sampled from SIDER, Tox21,
MUV, ToxCast, respectively.

Analysis of Localization Strategy. In this326

part, we analyze the localization strategy for327

ADMET prediction. In Figure 5, we show328

the assembled traces of four meta-testing329

tasks sampled from different sub-datasets.330

In these figures, tasks from different sub-331

domains are located in different trace groups332

(i.e., the three datasets SIDER, Tox21, Tox-333

cast select 1→21→32→4 while MUV selects334

1→22→31→4, respectively). Compared to335

SIDER, Tox21, Toxcast, we notice that MUV336

selects a different trace, which matches the natural difference between MUV and the other three337

datasets. The category of the MUV dataset is a biophysics while that of the other three are physiology.338

Besides, MUV is designed for validation of virtual screening techniques, while the other three are339

designed for measuring different targets.340

5 Related Work341

The goal for meta-learning is to learn a set of meta-knowledge that facilitates the learning process of342

new tasks. There are two mainstream categories of meta-learning approaches. The first category of343

algorithms, called gradient-based meta-learning algorithms, regards the meta-knowledge as initial-344

izations for the base learner [7–9, 13, 14, 19, 25, 30]. As for the second category, i.e., metric-based345

meta-learning algorithms, the aim is to learn a transferable metric space for the meta-learner as well346

as a lazy learner [15, 31, 32, 34, 39]. However, metric-based algorithms only handle classification347

problems. In light of this, we consider gradient-based algorithms which are flexible and general348

enough to be independent of problem types. The majority of gradient-based meta-learning algorithms349

focus on maintaining a shared set of meta-knowledge (i.e., the initializations for the weights) learned350

from meta-training tasks. To enhance the ability of generalization to more complicated heterogeneous351

tasks (e.g., tasks sampled from various distributions), recent studies customize the shared model352

weight initializations to different tasks modulating the globally-shared weight initializations to be353

task-specific [20, 35, 37, 38]. However, our proposed FRML goes further than customization of354

weight initializations – it also differentiates neural sub-networks and enhances the generalization355

capability for significantly different (and even out-of-distribution) tasks.356

Up to now, only a few studies have explored the application of meta-learning to address the problem357

of limited labeled data in healthcare. The two representative metric-based meta-learning algorithms,358

i.e., MatchingNet [34] and ProtoNet [31], have been used for protein binding prediction [2] and359

dematological disease diagnosis [22]. As we mentioned above, metric-based meta-learning algorithms360

do not work for the regression of activity values we focus on in this work. On the other hand, Zhang361

et al. [40], Qiu et al. [23], and Luo et al. [17] applied the widely used model agnostic meta-learning362

(MAML) algorithm [7] to the problems of clinical risk prediction, genomic survival analysis, and363

protein binding, respectively. Yet, the proposed FRML accommodates a wide range of assays364

effectively by tailoring sub-networks for each assay.365

6 Conclusion366

In this paper, we aim to tackle the challenge of data insufficiency in drug discovery by transferring the367

knowledge from historical assays. Specifically, we propose a novel meta-learning framework, FRML,368

to effectively learn the transferable knowledge and meantime adapt to various assays. FRML dissects369

the base learner into hierarchically organized functional regions. The representation of a target assay370

is forwarded to the recurrent region localization network to locate and assemble the assay-specific371

functional regions. The experiments on virtual screening and ADMET prediction demonstrate the372

effectiveness of FRML, and the analyses onThe the localization strategy further verify its sound373

interpretability in capturing the similarity between assays.374

The limitation of this work is that we have not investigated the robustness of the proposed FRML. If375

the proposed framework is easy to be attacked, it may cause negative social impacts. For example, if376

the framework suggests misleading results, it will delay even harm drug discovery progress. We will377

investigate the problem in the future.378
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