
Functionally Regionalized Knowledge Transfer for Low-resource Drug Discovery

Anonymous Author(s)

Affiliation
Address
email

Abstract

1 More recently, there has been a surge of interest in employing machine learning
2 approaches to expedite the drug discovery process where virtual screening for hit
3 discovery and ADMET prediction for lead optimization play essential roles. One
4 of the main obstacles to the wide success of machine learning approaches in these
5 two tasks is that the number of compounds labeled with activities or ADMET
6 properties is too small to build an effective predictive model. This paper seeks to
7 remedy the problem by transferring the knowledge from previous assays, namely
8 in-vivo experiments, by different laboratories and against various target proteins.
9 To accommodate these wildly different assays and capture the similarity between
10 assays, we propose a functional rationalized meta-learning algorithm *FRML* for
11 such knowledge transfer. *FRML* constructs the predictive model with layers of
12 neural sub-networks or so-called functional regions. Building on this, *FRML*
13 shares an initialization for the weights of the predictive model across all assays,
14 while customizes it to each assay with a region localization network choosing the
15 pertinent regions. The compositionality of the model improves the capacity of
16 generalization to various and even out-of-distribution tasks. Empirical results on
17 both virtual screening and ADMET prediction validate the superiority of *FRML*
18 over state-of-the-art baselines powered with interpretability in assay relationship.

19

1 Introduction

20 Drug discovery brings new candidate medications to billions of people, helping them live longer,
21 healthier and more productive lives. One crux step in drug discovery is virtual screening, which
22 is a fast and cost-effective method that computationally predicts the activity value of a compound
23 against the target protein of a disease. As shown in Figure 1(a), the hits screened out of large drug
24 libraries of compounds by a virtual screening algorithm are further empirically validated against their
25 in-vivo activities, resulting in leads. After optimizing the ADMET properties (absorption, distribution,
26 metabolism, excretion and toxicities) of the leads, we obtain the drug candidates.

27 There have been both traditional machine learning [33] and deep learning approaches [4] devoted
28 to virtual screening, while the prediction performance (i.e., the hit rate) is far from satisfactory.
29 The crucial challenge lies in that the number of training compounds whose activities have been
30 tested against the target protein of focus is severely limited. Though state-of-the-art deep learning
31 algorithms typically rely on supervision in the form of thousands to millions of annotated data, it is
32 highly expensive and almost impossible for in-vivo experiments to collect a sufficient set of drug
33 compounds with activity labels. In fact, virtual screening as a computational pre-screening method is
34 desired precisely because of the prohibitive costs of an in-vivo experiment (i.e., an assay). Fortunately,
35 previous assays conducted by different laboratories around the world towards a wide variety of
36 diseases with different biological target proteins together provide a rich repository for learning the

37 interactions between a protein and a compound. For example, as COVID-19 and SARS share high
38 amino acid sequence identity, previous assays against SARS 3CLpro and PLpro proteases contribute
39 a lot to learning a predictive model for COVID-19 [16].

40 We are highly motivated to transfer the knowledge of interactions from this repository to address the scarcity of labeled compounds in the
41 assay against the target protein of our focus, which we name as the target assay for convenience. The challenges of such knowledge transfer are two-fold: (1) how to share the transferable knowledge but meanwhile accommodate the wide variance between assays, and (2) how to adequately identify the nearest neighbor assays to the target assay to reduce the risk of negative transfer. Since assays are from different institutions and against various target proteins, the compounds tested and the distribution of activity values vary a lot from assay to assay. As evidenced in Figure 1(b), there exists a large discrepancy between distributions of activity values for 10 randomly selected assays. The prevalent fine-tuning strategy in transfer learning [21], trains a single model on previous assays and fine-tunes it to the target assay – it struggles in predicting accurately for each assay and confuses the most similar assays to the target with the others.

50 Gradient-based meta-learning [7] has been a promising practice, which learns from previous assays an
51 initialization for a shared predictive model and adapts the model from this initialization to each assay.
52 while the initialization is learned so that the adapted model of each assay generalizes well on testing
53 compounds, maintaining a shared initialization is still insufficient to handle wildly varying assays [37]
54 and pinpoint the most similar assays. Recent efforts on heterogeneous meta-learning deal with this
55 issue by modulating the shared initialization to different assays via task embedding [20, 35, 37].
56 Instead of only differentiating initializations, motivated by compositionality and brain functional
57 specialization in neuroscience [5, 26], we aim to push ahead with distinguishing neural sub-networks,
58 or so-called *functional regions*, each of which consists of a disparate set of parameters. This
59 advancement brings at least the following two benefits. First, the similarity between assays is more
60 accurately measured in a divide-and-conquer manner – only modulation for the initialization weights
61 in those overlapping regions between two assays are considered for comparison. Second, the reduced
62 parameter space prevents the predictive model from overfitting to a limited set of training compounds.

63 We name the resulting meta-learning algorithm as FRML. The predictive model of the FRML is
64 dissected into a sequence of hierarchically organized functional regions. Provided with an assay,
65 the contrastive assay representation network forwards the learned assay embedding to a region
66 localization network. The region localization network locates the most relevant functional regions
67 for the assay in a recurrent manner, to be consistent with the hierarchical organization of functional
68 regions. In the stage of meta-training on previous assays, both the region localization network and the
69 weights for initializations of all functional regions are jointly learned. When it comes to meta-testing,
70 FRML quickly adapts to the target assay via easy assembly of the located regions.

71 We summarize our major contributions as follows. (1) We propose a novel meta-learning algorithm
72 FRML, which pushes a step forward from differentiating initializations to differentiating neural
73 sub-networks between tasks; (2) We demonstrate the effectiveness of FRML on not only virtual
74 screening but also the task of ADMET prediction. (3) FRML respects the key principle of machine
75 learning models in healthcare – it is interpretable in the relationship between assays.

84 2 Notations and Problem Definition

85 In this section, we define some notations and discuss our problem. In drug prediction, we consider
86 each task \mathcal{T}_i as an assay which refers to an in-vivo experiment on a group of compounds, and all tasks
87 are sampled from the distribution $p(\mathcal{T})$. Note that we use either task or assay alternatingly in the
88 remainder of this paper. Assuming that we have N historical assays $\{\mathcal{T}_i\}_{i=1}^N$ as meta-training assays,
89 we aim to generalize a meta-learner from these meta-training assays and quickly adapt it to unseen
90 target assays $\{\mathcal{T}_t\}_{t=1}^{N_t}$ even with limited amount of annotated data. Here, we define the process of

Figure 1: (a): Workflow for discovery of drug candidates using virtual screening. (b): Distributions of activity values for 10 randomly selected assays.

50 As evidenced in Figure 1(b), there exists a large discrepancy between distributions of activity values
51 for 10 randomly selected assays. The prevalent fine-tuning strategy in transfer learning [21], trains
52 a single model on previous assays and fine-tunes it to the target assay – it struggles in predicting
53 accurately for each assay and confuses the most similar assays to the target with the others.

54 Gradient-based meta-learning [7] has been a promising practice, which learns from previous assays an
55 initialization for a shared predictive model and adapts the model from this initialization to each assay.
56 while the initialization is learned so that the adapted model of each assay generalizes well on testing
57 compounds, maintaining a shared initialization is still insufficient to handle wildly varying assays [37]
58 and pinpoint the most similar assays. Recent efforts on heterogeneous meta-learning deal with this
59 issue by modulating the shared initialization to different assays via task embedding [20, 35, 37].
60 Instead of only differentiating initializations, motivated by compositionality and brain functional
61 specialization in neuroscience [5, 26], we aim to push ahead with distinguishing neural sub-networks,
62 or so-called *functional regions*, each of which consists of a disparate set of parameters. This
63 advancement brings at least the following two benefits. First, the similarity between assays is more
64 accurately measured in a divide-and-conquer manner – only modulation for the initialization weights
65 in those overlapping regions between two assays are considered for comparison. Second, the reduced
66 parameter space prevents the predictive model from overfitting to a limited set of training compounds.

67 We name the resulting meta-learning algorithm as FRML. The predictive model of the FRML is
68 dissected into a sequence of hierarchically organized functional regions. Provided with an assay,
69 the contrastive assay representation network forwards the learned assay embedding to a region
70 localization network. The region localization network locates the most relevant functional regions
71 for the assay in a recurrent manner, to be consistent with the hierarchical organization of functional
72 regions. In the stage of meta-training on previous assays, both the region localization network and the
73 weights for initializations of all functional regions are jointly learned. When it comes to meta-testing,
74 FRML quickly adapts to the target assay via easy assembly of the located regions.

75 We summarize our major contributions as follows. (1) We propose a novel meta-learning algorithm
76 FRML, which pushes a step forward from differentiating initializations to differentiating neural
77 sub-networks between tasks; (2) We demonstrate the effectiveness of FRML on not only virtual
78 screening but also the task of ADMET prediction. (3) FRML respects the key principle of machine
79 learning models in healthcare – it is interpretable in the relationship between assays.

91 learning well-generalized meta-knowledge from the meta-training assays as the *meta-training phase*
92 and the adaption process on the target assays as the *meta-testing phase*.

93 Concretely, for each task \mathcal{T}_i , a support set of training samples $\mathcal{D}_i^s = \{\mathbf{X}_i^s, \mathbf{Y}_i^s\} = \{(\mathbf{x}^s, \mathbf{y}^s)_{i,j}\}_{j=1}^{n_i^s}$
94 and a query set of testing samples $\mathcal{D}_i^q = \{\mathbf{X}_i^q, \mathbf{Y}_i^q\} = \{(\mathbf{x}^q, \mathbf{y}^q)_{i,j}\}_{j=1}^{n_i^q}$ are sampled from \mathcal{T}_i , where
95 n_i^s and n_i^q represent the number of support and query samples, respectively. Denote that the feature
96 space is \mathcal{X} and the label space is \mathcal{Y} , a predictive model (a.k.a., base learner) $f: \mathbf{x} \mapsto \hat{\mathbf{y}}$ is defined to
97 map a sample $\mathbf{x} \in \mathcal{X}$ to its predicted value $\hat{\mathbf{y}} \in \mathcal{Y}$. For each task \mathcal{T}_i , the base learner f is updated
98 from the initialization θ_0 by minimizing the expected empirical loss \mathcal{L} on \mathcal{D}_i^s , i.e., $\min_{\theta} \mathcal{L}(\theta; \mathcal{D}_i^s)$,
99 resulting in the optimal parameters θ_i . Specifically, the loss function \mathcal{L} is defined as mean square error
100 (i.e., $\sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}_i^s} \|f_{\theta}(\mathbf{x}) - \mathbf{y}\|_2^2$) or cross-entropy loss (i.e., $-\sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}_i^s} \log p(\mathbf{y}|\mathbf{x}, f_{\theta})$) for regression
101 and classification problems, respectively. In the meta-training phase, the query sets $\{\mathcal{D}_i^q\}_{i=1}^N$ of
102 all meta-training assays are used to optimize the initialization of the base learner, so that the final
103 initialization θ_0^* is well-generalized. θ_0^* can be further adapted to each meta-testing task \mathcal{T}_t via the
104 corresponding support set \mathcal{D}_t^s . Formally, we define our problem as,

$$\hat{\mathbf{Y}}_t^q = \arg \max_{\mathbf{Y}_t^q} p(\mathbf{Y}_t^q | \mathbf{X}_i^q, \mathcal{D}_t^s, f_{\theta_0^*}). \quad (1)$$

105 The well-generalized model initial weights θ_0^* encrypt the comprehensive knowledge learned from
106 meta-training assays. We will detail how to learn θ_0^* in Section 3.

107 3 Methodology

108 In this section, we introduce the proposed framework FRML whose overview is illustrated in Figure 2.
109 The goal of FRML is to improve the generalization ability for a wide range of and even out-of-
110 distribution target assays with limited training samples via discriminating functional regions between
111 assays. To achieve this goal, we dissect the base learner into a sequence of functional regions. Given
112 a new assay, we propose a region localization network taking the learned assay representation as input
113 to locate and assemble the most relevant functional regions. Subsequently, FRML can be quickly
114 adapted to the novel assay on the assembled functional region set. In the following subsections, we
115 will first discuss the predictive models for virtual screening and ADMET classification as the base
116 learner and our meta-learning pipeline. Then we elaborate the details of three key components (i.e.,
assay representation learning, localization strategy, and region localization network).

Figure 2: Overview of the proposed FRML. In each assay \mathcal{T}_i , the recurrent region localization network, guided by its learned representation t_i , locates the most relevant functional regions (darker blocks) and assembles them (trace: input $\rightarrow \theta_{01}^1 \rightarrow \theta_{02}^2 \rightarrow \theta_{03}^3 \rightarrow \theta_{01}^4$) in the dissected base learner f_{θ} .

117

118 3.1 Predictive Models for Drug Discovery and Gradient-based Meta-Learning

119 We build predictive models for virtual screening and ADMET prediction, both of which are crucial
120 for drug discovery. The input to the predictive models is a drug compound represented by 1024
121 dimensional Morgan fingerprints [28], i.e., $\mathbf{x} \in \mathbb{R}^{1024}$. For virtual screening, the output is the activity
122 value of the compound against the target protein in this assay, i.e., $y \in \mathbb{R}$, while the output for
123 ADMET prediction could be a discrete category or a real value. In our empirical study, we only
124 consider those ADMET prediction tasks of classification, i.e., $y \in \mathcal{C}$, where \mathcal{C} denotes the set
125 of property categories. Building on these, we construct a neural network consisting of two fully

126 connected layers as the predictive model, which also serves as the base learner f . We denote the
 127 weights for the base learner f to be θ .

128 With the base learner f , we introduce gradient-based meta-learning as the backbone meta-learning
 129 framework, which regards the initialization θ_0 for the base learner as the transferable knowledge.
 130 Apparently, it enjoys the advantage of being independent of problem types. Specifically, here we
 131 illustrate the gradient-based meta-learning by using model-agnostic meta-learning (MAML) [6] as an
 132 example. In the meta-training phase, MAML obtains the assay-specific model for each assay \mathcal{T}_i by
 133 updating the parameters θ via the support set \mathcal{D}_i^s in a few gradient steps starting from θ_0 , i.e.,

$$\theta_i = \theta_0 - \alpha \nabla_{\theta} \mathcal{L}(\theta; \mathcal{D}_i^s). \quad (2)$$

134 Here α denotes the learning rate for assay adaptation. Though only one gradient step is presented as
 135 exemplary in Eqn. (2), it is easy to extend to several gradient steps. The crux is to evaluate the adapted
 136 assay-specific model θ_i on the query set \mathcal{D}_i^q and leverage the result as a feedback to meta-update the
 137 initializations θ_0 as,

$$\theta_0 \leftarrow \theta_0 - \beta \frac{1}{N} \sum_{\mathcal{T}_i \in P(\mathcal{T})} \mathcal{L}(\theta_i; \mathcal{D}_i^q), \quad (3)$$

138 where β is the learning rate for meta-updating. As a result of the meta-training phase, we get the
 139 well-generalized initialization θ_0^* for the base learner. In the meta-testing phase, the specific model θ_t
 140 for each target assay \mathcal{T}_t with the support set \mathcal{D}_t^s is achieved by a few gradient steps starting from the
 141 learned initialization θ_0^* , i.e., $\theta_t = \theta_0^* - \alpha \nabla_{\theta} \mathcal{L}(\theta_0^*; \mathcal{D}_t^s)$. Finally, the performance is evaluated on the
 142 query set \mathcal{D}_t^q of the target assay \mathcal{T}_t . Without loss of generality, we again take MAML as the backbone
 143 meta-learning framework of FRML and detail each component in the following.

144 3.2 Contrastive Assay Representation Learning

145 Learning the representation of assay \mathcal{T}_i is a prerequisite to determining the functional regions that are
 146 specific to the assay. Following previous works [35, 37], we represent the assay with a representation
 147 vector $\mathbf{t}_i \in \mathbb{R}^d$ by aggregating all training samples of the support set $\mathcal{D}_i^s = \{(\mathbf{x}_i^s, \mathbf{y}_i^s)_i^j\}_{j=1}^{n_i^s}$, where an
 148 aggregator AGG is involved. The aggregator consists of a mapping function denoted as MF (e.g.,
 149 recurrent network, convolutional network) that first encodes each individual sample into a dense
 150 representation vector, and a sample-level mean pooling layer to summarize all samples to generate
 151 the assay representation \mathbf{t}_i . Note that the pooling guarantees the assay representation to be invariant
 152 of the permutation of samples. Formally, we define the aggregation process as,

$$\mathbf{t}_i = \text{AGG}(\mathcal{D}_i^s) = \frac{1}{n_i^s} \sum_{j=1}^{n_i^s} \text{MF}(\mathcal{F}(\mathbf{x}_i^j) \oplus \mathbf{y}_i^j), \quad (4)$$

153 where $\mathcal{F}(\cdot)$ is an embedding function that transforms the input features into a low-dimensional vector.
 154 Both the embedded input features and the label are concatenated by the operator \oplus . We will provide
 155 more details on the definitions of $\mathcal{F}(\cdot)$ and $\text{MF}(\cdot)$ later in Section 4.

156 The loss function to train the parameters $\mathcal{F}(\cdot)$ and $\text{MF}(\cdot)$ could be Eqn. (3) only. Unfortunately, it is far
 157 from enough to learn a robust assay representation: first, the gradients back-propagated through the
 158 base learner and the region localization network tend to be too small for training to work effectively;
 159 second, the assay representation and the region localization are interleaving, so that the objective in
 160 Eqn. (3) takes them as a whole regardless of the accuracy for each of them. To overcome this limitation,
 161 we are motivated to impose another loss function on the assay representation network directly. The
 162 key intuition is that each set of samples in an assay provides a partial view of the assay, and the assay
 163 representation is expected to be consistent across views. This motivates the contrastive objective
 164 – different views of the same assay have similar task representations, while the representations of
 165 views from different assays should be different. Specifically, we create different views of assay \mathcal{T}_i by
 166 randomly splitting \mathcal{D}_i^s into n_c sets of size n_i^s/n_c . By defining $c_u := ((u-1)n_i^s/n_c, \dots, un_i^s/n_c)$, we
 167 obtain n_c subsets of equal size, i.e., $\mathcal{D}_i^s = \bigcup_{u=1}^{n_c} \mathcal{O}_i^{c_u}$. We can now formulate the contrastive learning
 168 objective as follows:

$$\mathcal{L}_{cl} = \sum_{i=1}^N \sum_{1 \leq u \leq v \leq n_c} \left[\log \frac{\exp(\Phi(\text{AGG}(\mathcal{O}_i^{c_v}), \text{AGG}(\mathcal{O}_i^{c_u})))}{\sum_{e=1}^N \exp(\Phi(\text{AGG}(\mathcal{O}_i^{c_v}), \text{AGG}(\mathcal{O}_e^{c_u})))} \right], \quad (5)$$

169 where Φ is a similarity measure function. In our experiments, we adopt the dot product, i.e.,
 170 $\Phi(a, b) = a^T b$. This contrastive loss function pushes the representations of different assays apart and
 171 meantime stabilizes the assay representation.

172 **3.3 Localization Strategy**

173 The assays are measured by different experimenters on different equipment, so that they are expected
 174 to have widely distributed assay representations. Given an assay with its representation, in this
 175 section, the localization strategy sets out to locate and assemble the functional regions that are
 176 specific to this assay. Before detailing the localization strategy, we first dissect the initialization θ_0
 177 of the base learner into K functional regions. These functional regions are dissected in a layer-wise
 178 manner to maintain the hierarchical structure of the neural network. For each layer l , we denote
 179 its corresponding functional regions as $\theta_0^l = \{\theta_{0ml}^l\}_{ml=0}^{M^l}$, where M^l represents the total number of
 180 functional regions in the l -th layer and $\sum_l M^l = K$.

181 Following the hierarchical representation in neural networks, we locate and assemble these functional
 182 regions in a hierarchical manner – each functional region at layer $l + 1$ receives signals from the
 183 functional regions at layer l . For each assay \mathcal{T}_i , denoting the representation of functional region m^l in
 184 layer l as $\mathbf{h}_i^{m^l}$, we define the representation of functional region m^{l+1} in layer $l + 1$ to be:

$$\mathbf{h}_i^{m^{l+1}} = f^{m^{l+1}} \left(\sum_{m^l=1}^{M^l} p_i^{m^l \rightarrow m^{l+1}} \mathbf{h}_i^{m^l} \right), \quad \sum_{m^l=1}^{M^l} p_i^{m^l \rightarrow m^{l+1}} = 1, \quad (6)$$

185 where $f^{m^{l+1}}(\cdot)$ represents the mapping function for functional region m^{l+1} . $p_i^{m^l \rightarrow m^{l+1}}$ defined as
 186 the probability of functional region m^l being assembled to m^{l+1} is crucial; a value of $p_i^{m^l \rightarrow m^{l+1}} = 1$
 187 suggests that functional region m^l should be included for assay \mathcal{T}_i . Obviously, the probability
 188 $p_i^{m^l \rightarrow m^{l+1}}$ varies from assay to assay, so that we model it as a function of the representation \mathbf{t}_i , i.e.,

$$p_i^{m^l \rightarrow m^{l+1}} = \text{RG}(\mathbf{t}_i), \quad (7)$$

189 where $\text{RG}(\cdot)$ represents the region localization network we detail in the next subsection.

190 **3.4 Region Localization Network**

191 An ideal region localization network
 192 is expected to satisfy two criteria, in-
 193 cluding high representational capac-
 194 ity and consistency with the hierar-
 195 chical structure behind functional re-
 196 gions. To meet the criteria, we pro-
 197 pose a recurrent region localization
 198 network, where a recurrent neural net-
 199 work (GRU as exemplary) is used.
 200 The input to the recurrent neural net-
 201 work at step $l + 1$ is the combination
 202 of assay representation \mathbf{t}_i and the as-
 203 sembly probabilistic set \mathbf{p}_i^l of layer
 204 l , where $\mathbf{p}_i^l = \{p_i^{m^{l-1} \rightarrow m^l} | m^{l-1} \in [1, M^{l-1}], m^l \in [1, M^l]\}$. Con-
 205 sequently, the hidden representation at
 206 step $l + 1$ is,

$$\tilde{\mathbf{r}}_i^{l+1} = \text{GRU}(\mathbf{t}_i \oplus \mathbf{p}_i^l; \mathbf{r}_i^l) \mathbf{W}_f + \mathbf{b}_f, \quad (8)$$

207 where $\mathbf{W}_f \in \mathbb{R}^{d' \times M^l M^{l+1}}$ and $\mathbf{b}_f \in \mathbb{R}^{1 \times M^l M^{l+1}}$ are learnable parameters and $\tilde{\mathbf{r}}_i^{l+1} =$
 208 $\{\tilde{r}_i^{m^l \rightarrow m^{l+1}} | m^l \in [1, M^l], m^{l+1} \in [1, M^{l+1}]\} \in \mathbb{R}^{1 \times M^l M^{l+1}}$. The hidden representations at step
 209 $l + 1$, in return, determine the assembly probability at layer $l + 1$. Note that the assembly probability
 210 is expected to be as close to the bounds of its range (0, 1) as possible, so that only the most pertinent
 211 functional regions are located. To this end, we apply the Gumbel-softmax estimator [10, 18] which
 212 models the categorical distribution to $\tilde{\mathbf{r}}_i$, i.e.,

$$p_i^{m^l \rightarrow m^{l+1}} = \frac{\exp((\tilde{r}_i^{m^l \rightarrow m^{l+1}} + q_i^{m^l \rightarrow m^{l+1}})/\tau)}{\sum_{s^l=1}^{M^l} \exp((\tilde{r}_i^{s^l \rightarrow m^{l+1}} + q_i^{s^l \rightarrow m^{l+1}})/\tau)}, \quad (9)$$

213 where τ is the temperature and $q_i^{m^l \rightarrow m^{l+1}}$ is sampled from the Gumbel distribution, i.e., $q_i^{m^l \rightarrow m^{l+1}} \sim$
 214 Gumbel(0, 1).

Algorithm 1 Meta-training Process of FRML

Require: $\{M^1, \dots, M^L\}$: # of functional regions of each layer; α, β : learning rates; λ_1, λ_2 : item factors in loss

- 1: Randomly initialize Θ
- 2: **while** not done **do**
- 3: Sample a batch of assays from $p(\mathcal{T})$
- 4: **for all** \mathcal{T}_i **do**
- 5: Sample $\mathcal{D}_i^s, \mathcal{D}_i^q$ from \mathcal{T}_i
- 6: Get assay representation \mathbf{t}_i in Eqn. (4) and the reconstruction loss \mathcal{L}_{cl} via Eqn. (5)
- 7: Use Eqn. (8) to compute $\{\tilde{\mathbf{r}}_i^1, \dots, \tilde{\mathbf{r}}_i^L\}$
- 8: Calculate $\{\mathbf{p}_i^1, \dots, \mathbf{p}_i^L\}$ by Eqn. (9) and get the assembled trace across functional regions
- 9: Use gradient descent to update parameters based on the learned trace: $\theta_i = \theta_0 - \alpha \nabla_{\theta} \mathcal{L}(\theta; \mathcal{D}_i^s)$
- 10: **end for**
- 11: Update $\Theta \leftarrow \Theta - \beta \frac{1}{N} \nabla_{\Theta} \sum_{\mathcal{T}_i \in p(\mathcal{T})} \mathcal{L}(\theta_i; \mathcal{D}_i^q) + \lambda \mathcal{L}_{cl}(\mathcal{D}_i^s)$
- 12: **end while**

216 Combining the meta-learning loss in Eqn. (3) and the contrastive loss in Eqn. (5), we arrive at the
 217 overall objective function of FRML defined as:

$$\min_{\Theta} \mathcal{L}_{all} = \min_{\Theta} \sum_{\mathcal{T}_i \in p(\mathcal{T})} \mathcal{L} + \lambda \mathcal{L}_{cl}, \quad (10)$$

218 where the hyperparameter λ balances between two losses and Θ represents all learnable parameters.
 219 For better understanding of our framework, we show the meta-training process in Algorithm 1 and
 220 the meta-testing process in Appendix A.

221 4 Experiments

222 In this section, we empirically evaluate the effectiveness of FRML on two diverse drug discovery
 223 tasks: drug activity prediction and ADMET property prediction. We consider comparison of the
 224 proposed FRML with three categories of baselines. The first category simply using base learner
 225 without assay adaptation, including FC-Individual and FC-All. The second category is knowledge
 226 transfer with assay adaptation: Fine-tuning, MAML [6], ANIL [24], ANIL++ [3]. The last category is
 227 heterogeneous meta-learning methods, including MMAML [35], HSML [37], ARML [38]. Detailed
 228 descriptions of all baselines are provided in Appendix B and the detailed hyperparameters for both
 229 applications are listed in Appendix D.

230 4.1 Drug Activity Prediction

231 **Dataset Description.** For drug activity prediction, we use the dose-response activity assays from
 232 ChEMBL[1], where 4,276 assays are selected in this problem. Here, we randomly sample 100 assays
 233 as the meta-testing set, 76 assays as the meta-validation set, and the rest of assays for meta-training.
 234 The random splitting is repeated four times to construct four assay groups, named Assay Group
 235 I, II, III, IV, respectively. A few support and query drug compounds are available for each assay.
 236 In terms of the features for each drug compound, we use 1,024-dimensional Moragn fingerprint
 237 implemented in RDKit [12]. For each assay \mathcal{T}_i , we calculated the coefficient of determination (R^2)
 238 between the predicted value $\hat{\mathbf{Y}}_i^q$ and the ground truth value \mathbf{Y}_i^q . The median and mean R^2 values of
 239 all meta-testing assays are reported. We adopt another widely used metric for evaluating whether a
 240 virtual screening model is usable in practice, i.e., the number of assays with $R^2 > 0.3$. More detailed
 241 information and data statistics are summarized in Appendix C.1.

Table 1: Performance of drug activity prediction (Measured by mean R^2 , median R^2 and $\#R^2 > 0.3$).

Model	Assay Group I			Assay Group II			Assay Group III			Assay Group IV		
	Mean	Med.	$R^2 > 0.3$	Mean	Med.	$R^2 > 0.3$	Mean	Med.	$R^2 > 0.3$	Mean	Med.	$R^2 > 0.3$
FC-Individual	0.141	0.064	16	0.114	0.060	10	0.112	0.046	10	0.118	0.047	10
FC-All	0.228	0.131	30	0.187	0.103	23	0.199	0.103	28	0.252	0.160	35
Fine-tuning	0.251	0.166	37	0.197	0.124	24	0.219	0.121	31	0.266	0.194	37
MAML	0.291	0.182	38	0.232	0.158	29	0.265	0.191	36	0.302	0.256	46
ANIL	0.299	0.184	41	0.226	0.143	30	0.268	0.199	37	0.304	0.282	48
ANIL++	0.367	0.299	50	0.315	0.252	43	0.335	0.289	48	0.362	0.324	51
MMAML-ANIL	0.292	0.205	42	0.231	0.154	31	0.276	0.187	37	0.308	0.260	46
HSML-ANIL	0.295	0.192	41	0.234	0.145	34	0.277	0.196	35	0.306	0.254	47
ARML-ANIL	0.299	0.204	43	0.233	0.159	32	0.270	0.191	39	0.311	0.267	46
FRML-ANIL (ours)	0.310	0.226	44	0.237	0.162	35	0.285	0.207	40	0.322	0.287	49
FRML-ANIL++ (ours)	0.375	0.328	52	0.327	0.311	51	0.345	0.315	51	0.372	0.349	56

Table 2: Ablation study on drug activity prediction.

Model	Assay Group I			Assay Group II			Assay Group III			Assay Group IV		
	Mean	Med.	$R^2 > 0.3$	Mean	Med.	$R^2 > 0.3$	Mean	Med.	$R^2 > 0.3$	Mean	Med.	$R^2 > 0.3$
ANIL++	0.367	0.299	50	0.315	0.252	43	0.335	0.289	48	0.362	0.324	51
Ablation I (w/o cl)	0.371	0.315	51	0.318	0.263	45	0.338	0.305	49	0.368	0.338	54
Ablation III (w/o localization)	0.369	0.301	50	0.317	0.263	47	0.336	0.291	49	0.368	0.329	53
Ablation II (RNN \rightarrow FC)	0.372	0.303	52	0.326	0.299	50	0.341	0.306	50	0.367	0.333	53
FRML-ANIL++ (ours)	0.375	0.328	52	0.327	0.311	51	0.345	0.315	51	0.372	0.349	56

242 **Overall Performance.** The performance of FRML and the baselines are reported in Table 1. In this
 243 experiment, FRML incorporates ANIL and ANIL++, while all other heterogeneous meta-learning

244 algorithms (e.g., MMAML) incorporate ANIL. Note that ANIL++ is modified from ANIL to improve
 245 stability. From the results in Table 1, we obtain the key observations: (1) The performance of
 246 FC-Individual is inferior to that of other methods, indicates that involving the data from source assays
 247 benefits the performance; (2) Gradient-based meta-learning methods (MAML, ANIL, ANIL++,
 248 heterogeneous methods, and FRML) achieve significantly better performance than Fine-tuning,
 249 corrugating our motivation that Fine-tuning may confuse the most similar assays to the target with the
 250 others; (3) In most cases, heterogeneous methods (MMAML-ANIL, HSML-ANIL, ARML-ANIL,
 251 FRML-ANIL) achieve better performance than homogeneous meta-learning models, showing the
 252 effectiveness of integrating assay-specific knowledge transfer; (4) Our proposed FRML-ANIL++
 253 achieves the best performance in all four assay groups. This possibly results from that differentiating
 254 neural sub-networks reduces the parameter space, which improves the generalization capability and
 255 further benefits the performance. Besides, integrating FRML with ANIL also achieves consistent
 256 improvements, showing its compatibility with different backbone meta-learning models.

257 **Ablation Study.** To further show the effectiveness of the proposed modules in FRML, we conduct
 258 comprehensive ablation studies by comparing FRML with three ablation models described as follows.
 259 First, we consider an ablation model (**Ablation I (w/o cl)**) with the contrastive loss removed. Sec-
 260 ond, we design **Ablation II (w/o localization)** to show that the improvements of FRML is caused
 261 by knowledge localization rather than increasing the capacity of baseline. Third, we change the
 262 recurrent structure to a plain localization network and propose **Ablation III (RNN->FC)**, where
 263 fully connected layers with softmax are utilized to learn the assembly probability set $\{p_i^1, \dots, p_i^L\}$.

264 We evaluate the ablation models on all four assay groups and report the performance in Table 2. Note
 265 that FRML is also included in comparison. From the results in the table, we have the following three
 266 findings: (1) removing the contrastive loss hurts the performance, which indicates the effectiveness of
 267 the contrastive loss in learning well-differentiated assay representations; (2) the superiority of FRML
 268 over ablation II demonstrates that the improvements stem from efficient knowledge structuring
 269 rather than larger model capacity; (3) compared to the plain localization network, the performance
 270 gain of recurrent region localization network demonstrates its superiority by predicting the assembly
 271 probability in a hierarchical way.

272 **Effect of the Number of Functional Re-
 273 gions.** We analyze the effect of the number
 274 of functional regions and illustrate the results
 275 in Figure 3(a). In this figure, we observe that
 276 (1) if the number of functional regions is too
 277 small (e.g. 1), it may be insufficient to cap-
 278 ture the structures across assays. (2) when we
 279 continually increase the number of functional
 280 regions, the results keep stable or even slightly
 281 decrease, which are consistent with our find-
 282 ings that the gains of FRML arise out of the
 283 effective knowledge structuring instead of the
 284 increase of the model capacity.

285 **Effect of the Ratio of the Support set.** In order to show the superiority of FRML under different
 286 ratios of the support set, we analyze the performance w.r.t. the support set ratio and show the results in
 287 Figure 3(b). When we down-sample the support set to contain 5%, 25%, and 50% of all compounds
 288 in an assay, FRML consistently achieves better performance than the most competitive baseline
 289 ANIL++. This marks the capability of FRML in handling the data scarcity problem in healthcare.

290 **Analysis of Localization Strategy.** We further analyze the localization strategy, where the assembled
 291 traces of six randomly selected meta-testing assays from Group II are illustrated in Figure 4(a)-(f) and
 292 their corresponding biological properties are reported in the right table of Figure 4. Here, we observe
 293 that the six assays are mainly located in three different traces. Besides, assays 1640791, 701282,
 294 1639959, 302952 activate the same trace 1→21. The trace groups are consistent with their biological
 295 properties reported in the table. First, assays 1640791 and 701282 are both cell-based functional
 296 assays targeting GPCRs by evaluating the antagonistic activity of compounds to their downstream
 297 cAMP pathway. 1639959 and 302952 are both cell-based functional assay of membrane transporters.
 298 All four assays are targeting membrane proteins (receptors or transporters). Thus, they share the first
 299 layer but select different traces in the second layer. Second, different from the above four assays,

Figure 3: (a): Num. of functional regions w.r.t. the mean R^2 on Assay Group I, II, III, IV. (b): Performance w.r.t. support set ratio on Assay Group I.

Figure 4: Left Figure (a)-(f) show the located traces from six meta-testing assays of Group II, where their corresponding biological information are reported in the right table. Darker blocks and blue links represent located functional regions and assembled links, respectively.

assays 147797 and 1520 choose a completely different path since they are single protein assays that directly evaluate the effect of compounds to their protein targets. The consistency of localization results and biological properties further verify the effectiveness of FRML for distinguishing different domains via localization strategy.

Table 3: Performance of ADEMT property prediction (averaged accuracy with 95% confidence interval are reported).

Model	SIDER	Tox21	MUV	ToxCast
FC-Individual	$52.12 \pm 0.81\%$	$51.25 \pm 0.37\%$	$52.91 \pm 0.67\%$	$62.75 \pm 1.27\%$
FC-All	$67.13 \pm 0.89\%$	$68.63 \pm 0.84\%$	$55.04 \pm 1.06\%$	$70.82 \pm 1.61\%$
Fine-tuning	$67.60 \pm 0.89\%$	$68.84 \pm 0.84\%$	$55.41 \pm 1.05\%$	$71.04 \pm 1.59\%$
MAML	$67.69 \pm 0.81\%$	$69.12 \pm 0.84\%$	$56.66 \pm 1.09\%$	$72.53 \pm 1.64\%$
ANIL	$67.92 \pm 0.89\%$	$69.81 \pm 0.85\%$	$55.13 \pm 1.22\%$	$72.09 \pm 1.78\%$
ANIL++	$68.04 \pm 0.86\%$	$68.94 \pm 0.92\%$	$56.95 \pm 1.13\%$	$72.66 \pm 1.67\%$
MMAML-ANIL	$68.57 \pm 0.82\%$	$69.86 \pm 0.90\%$	$58.06 \pm 1.21\%$	$72.10 \pm 1.55\%$
HSML-ANIL	$69.15 \pm 0.87\%$	$69.98 \pm 0.88\%$	$57.94 \pm 1.18\%$	$71.73 \pm 1.46\%$
ARML-ANIL	$68.94 \pm 0.84\%$	$70.07 \pm 0.91\%$	$58.99 \pm 1.16\%$	$72.08 \pm 1.56\%$
FRML-ANIL (ours)	$69.89 \pm 0.87\%$	$70.85 \pm 0.85\%$	$59.94 \pm 1.00\%$	$73.56 \pm 1.58\%$
FRML-ANIL++ (ours)	$70.01 \pm 0.86\%$	$71.07 \pm 0.91\%$	$60.66 \pm 1.09\%$	$74.02 \pm 1.57\%$

303

304 4.2 ADMET Property Prediction

305 **Dataset Description & Evaluation Metric.** Besides the drug activity prediction, we further evaluate
306 FRML on ADMET property prediction. The ADMET Prediction problem is constructed by combining
307 4 benchmark datasets from the MoleculeNet [36] with biophysics and physiology targets. The 4
308 datasets are MUV [29], SIDER [11], Tox21 and ToxCast [27]. Each property prediction is a binary
309 classification task. All the properties from MUV, SIDER, Tox21, and 22 properties from ToxCast are
310 involved in the experiment, resulting in 68 tasks. We randomly sample 42 tasks for meta-training
311 and use the remaining 26 tasks for meta-testing. Considering the data balance, for each tasks, we
312 randomly sample only partial instances from the majority category to match the size of minority
313 data, together with all the minority data, to form the task dataset. In this experiment, following
314 the conventional few-shot learning protocol [7], we apply 2-way classification with 5-shot support
315 samples for each task. The details of the dataset descriptions are available in Appendix C.2. As for
316 the model performance, it is measured by averaged classification accuracy.

317 **Results.** We report the performance of FRML and the baselines in Table 3. Similar findings to that of
318 drug activity prediction experiments are observed. Therefore, we again confirm the effectiveness and
319 importance of integrating task-specific knowledge transfer in the proposed FRML. A specific finding
320 is that: all heterogeneous meta-learning models and FRML obtain higher gain of performance on
321 MUV than on the three datasets. In particular, FRML achieves significant performance improvement
322 on MUV dataset. This may be caused by the category difference of MUV from the other three
323 datasets which we will detail in the next subsection. Besides, we conduct similar ablation studies to
324 those for drug activity prediction and report the results in Appendix E. Similar results are observed,
325 again demonstrating the effectiveness of FRML in differentiating different properties.

326 **Analysis of Localization Strategy.** In this
 327 part, we analyze the localization strategy for
 328 ADMET prediction. In Figure 5, we show
 329 the assembled traces of four meta-testing
 330 tasks sampled from different sub-datasets.
 331 In these figures, tasks from different sub-
 332 domains are located in different trace groups
 333 (i.e., the three datasets SIDER, Tox21, Tox-
 334 cast select 1→21→32→4 while MUV selects
 335 1→22→31→4, respectively). Compared to
 336 SIDER, Tox21, Toxcast, we notice that MUV
 337 selects a different trace, which matches the natural difference between MUV and the other three
 338 datasets. The category of the MUV dataset is a biophysics while that of the other three are physiology.
 339 Besides, MUV is designed for validation of virtual screening techniques, while the other three are
 340 designed for measuring different targets.

Figure 5: (a)-(d) show the assembled traces (blue links) among located regions (darker blocks) from four meta-testing tasks sampled from SIDER, Tox21, MUV, ToxCast, respectively.

341 5 Related Work

342 The goal for meta-learning is to learn a set of meta-knowledge that facilitates the learning process of
 343 new tasks. There are two mainstream categories of meta-learning approaches. The first category of
 344 algorithms, called gradient-based meta-learning algorithms, regards the meta-knowledge as initial-
 345 izations for the base learner [7–9, 13, 14, 19, 25, 30]. As for the second category, i.e., metric-based
 346 meta-learning algorithms, the aim is to learn a transferable metric space for the meta-learner as well
 347 as a lazy learner [15, 31, 32, 34, 39]. However, metric-based algorithms only handle classification
 348 problems. In light of this, we consider gradient-based algorithms which are flexible and general
 349 enough to be independent of problem types. The majority of gradient-based meta-learning algorithms
 350 focus on maintaining a shared set of meta-knowledge (i.e., the initializations for the weights) learned
 351 from meta-training tasks. To enhance the ability of generalization to more complicated heterogeneous
 352 tasks (e.g., tasks sampled from various distributions), recent studies customize the shared model
 353 weight initializations to different tasks modulating the globally-shared weight initializations to be
 354 task-specific [20, 35, 37, 38]. However, our proposed FRML goes further than customization of
 355 weight initializations – it also differentiates neural sub-networks and enhances the generalization
 356 capability for significantly different (and even out-of-distribution) tasks.

357 Up to now, only a few studies have explored the application of meta-learning to address the problem
 358 of limited labeled data in healthcare. The two representative metric-based meta-learning algorithms,
 359 i.e., MatchingNet [34] and ProtoNet [31], have been used for protein binding prediction [2] and
 360 dermatological disease diagnosis [22]. As we mentioned above, metric-based meta-learning algorithms
 361 do not work for the regression of activity values we focus on in this work. On the other hand, Zhang
 362 et al. [40], Qiu et al. [23], and Luo et al. [17] applied the widely used model agnostic meta-learning
 363 (MAML) algorithm [7] to the problems of clinical risk prediction, genomic survival analysis, and
 364 protein binding, respectively. Yet, the proposed FRML accommodates a wide range of assays
 365 effectively by tailoring sub-networks for each assay.

366 6 Conclusion

367 In this paper, we aim to tackle the challenge of data insufficiency in drug discovery by transferring the
 368 knowledge from historical assays. Specifically, we propose a novel meta-learning framework, FRML,
 369 to effectively learn the transferable knowledge and meantime adapt to various assays. FRML dissects
 370 the base learner into hierarchically organized functional regions. The representation of a target assay
 371 is forwarded to the recurrent region localization network to locate and assemble the assay-specific
 372 functional regions. The experiments on virtual screening and ADMET prediction demonstrate the
 373 effectiveness of FRML, and the analyses on the localization strategy further verify its sound
 374 interpretability in capturing the similarity between assays.

375 The limitation of this work is that we have not investigated the robustness of the proposed FRML. If
 376 the proposed framework is easy to be attacked, it may cause negative social impacts. For example, if
 377 the framework suggests misleading results, it will delay even harm drug discovery progress. We will
 378 investigate the problem in the future.

379 **References**

380 [1] Chemb. URL <https://www.ebi.ac.uk/chembl/>.

381 [2] Han Altae-Tran, Bharath Ramsundar, Aneesh S Pappu, and Vijay Pande. Low data drug
382 discovery with one-shot learning. *ACS central science*, 3(4):283–293, 2017.

383 [3] Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your maml. In
384 *International Conference on Learning Representations*, 2019.

385 [4] Kristy A Carpenter, David S Cohen, Juliet T Jarrell, and Xudong Huang. Deep learning and
386 virtual drug screening. *Future medicinal chemistry*, 10(21):2557–2567, 2018.

387 [5] Michael W Cole, Joset A Etzel, Jeffrey M Zacks, Walter Schneider, and Todd S Braver. Rapid
388 transfer of abstract rules to novel contexts in human lateral prefrontal cortex. *Frontiers in human*
389 *neuroscience*, 5:142, 2011.

390 [6] Chelsea Finn and Sergey Levine. Meta-learning and universality: Deep representations and
391 gradient descent can approximate any learning algorithm. *arXiv preprint arXiv:1710.11622*,
392 2017.

393 [7] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
394 tion of deep networks. In *ICML*, pages 1126–1135, 2017.

395 [8] Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-learning. *arXiv*
396 *preprint arXiv:1806.02817*, 2018.

397 [9] Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas Griffiths. Recasting
398 gradient-based meta-learning as hierarchical bayes. *arXiv preprint arXiv:1801.08930*, 2018.

399 [10] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
400 In *ICLR*, 2017.

401 [11] Michael Kuhn, Ivica Letunic, Lars Juhl Jensen, and Peer Bork. The sider database of drugs and
402 side effects. *Nucleic acids research*, 44(D1):D1075–D1079, 2016.

403 [12] Greg Landrum. Rdkit: Open-source cheminformatics software. 2016. URL https://github.com/rdkit/rdkit/releases/tag/Release_2016_09_4.

405 [13] Yoonho Lee and Seungjin Choi. Gradient-based meta-learning with learned layerwise metric
406 and subspace. In *ICML*, pages 2927–2936, 2018.

407 [14] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-sgd: Learning to learn quickly for
408 few shot learning. *arXiv preprint arXiv:1707.09835*, 2017.

409 [15] Ming-Yu Liu, Xun Huang, Arun Mallya, Tero Karras, Timo Aila, Jaakko Lehtinen, and Jan
410 Kautz. Few-shot unsupervised image-to-image translation. *arXiv preprint arXiv:1905.01723*,
411 2019.

412 [16] Yuzhi Liu, Chengyuan Liang, Liang Xin, Xiaodong Ren, Lei Tian, Xingke Ju, Han Li, Yongbo
413 Wang, Qianqian Zhao, Hong Liu, et al. The development of coronavirus 3c-like protease
414 (3clpro) inhibitors from 2010 to 2020. *European journal of medicinal chemistry*, page 112711,
415 2020.

416 [17] Yunan Luo, Jianzhu Ma, Xiaoming Zhao, Yufeng Su, Yang Liu, Trey Ideker, and Jian Peng.
417 Mitigating data scarcity in protein binding prediction using meta-learning. In *RECOMB*, pages
418 305–307. Springer, 2019.

419 [18] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
420 relaxation of discrete random variables. 2017.

421 [19] Alex Nichol and John Schulman. Reptile: a scalable metalearning algorithm. *arXiv preprint*
422 *arXiv:1803.02999*, 2018.

423 [20] Boris Oreshkin, Pau Rodríguez López, and Alexandre Lacoste. Tadam: Task dependent adaptive
424 metric for improved few-shot learning. In *NeurIPS*, pages 721–731, 2018.

425 [21] Sinno Jialin Pan, Qiang Yang, et al. A survey on transfer learning. *IEEE Transactions on*
426 *knowledge and data engineering*, 22(10):1345–1359, 2010.

427 [22] Viraj Prabhu, Anitha Kannan, Murali Ravuri, Manish Chablani, David Sontag, and Xavier
428 Amatriain. Prototypical clustering networks for dermatological disease diagnosis. *arXiv preprint*
429 *arXiv:1811.03066*, 2018.

430 [23] Yiping Lina Qiu, Hong Zheng, Arnout Devos, Heather Selby, and Olivier Gevaert. A meta-
431 learning approach for genomic survival analysis. *Nature communications*, 11(1):1–11, 2020.

432 [24] Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or feature
433 reuse? towards understanding the effectiveness of maml. In *ICLR*, 2020.

434 [25] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with
435 implicit gradients. In *NeurIPS*, pages 113–124, 2019.

436 [26] Carlo Reverberi, Kai Görgen, and John-Dylan Haynes. Compositionality of rule representations
437 in human prefrontal cortex. *Cerebral cortex*, 22(6):1237–1246, 2012.

438 [27] Ann M Richard, Richard S Judson, Keith A Houck, Christopher M Grulke, Patra Volarath,
439 Inthirany Thillainadarajah, Chihae Yang, James Rathman, Matthew T Martin, John F Wambaugh,
440 et al. Toxcast chemical landscape: paving the road to 21st century toxicology. *Chemical research*
441 *in toxicology*, 29(8):1225–1251, 2016.

442 [28] David Rogers and Mathew Hahn. Extended-connectivity fingerprints. *Journal of chemical*
443 *information and modeling*, 50(5):742–754, 2010.

444 [29] Sebastian G Rohrer and Knut Baumann. Maximum unbiased validation (muv) data sets for
445 virtual screening based on pubchem bioactivity data. *Journal of chemical information and*
446 *modeling*, 49(2):169–184, 2009.

447 [30] Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon
448 Osindero, and Raia Hadsell. Meta-learning with latent embedding optimization. *arXiv preprint*
449 *arXiv:1807.05960*, 2018.

450 [31] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
451 *NeurIPS*, pages 4077–4087, 2017.

452 [32] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M Hospedales.
453 Learning to compare: Relation network for few-shot learning. In *CVPR*, pages 1199–1208,
454 2018.

455 [33] Vladimir Svetnik, Andy Liaw, Christopher Tong, J Christopher Culberson, Robert P Sheridan,
456 and Bradley P Feuston. Random forest: a classification and regression tool for compound
457 classification and qsar modeling. *Journal of chemical information and computer sciences*, 43
458 (6):1947–1958, 2003.

459 [34] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks
460 for one shot learning. In *NeurIPS*, pages 3630–3638, 2016.

461 [35] Risto Vuorio, Shao-Hua Sun, Hexiang Hu, and Joseph J Lim. Multimodal model-agnostic
462 meta-learning via task-aware modulation. In *NeurIPS*, pages 1–12, 2019.

463 [36] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
464 Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine
465 learning. *Chemical science*, 9(2):513–530, 2018.

466 [37] Huaxiu Yao, Ying Wei, Junzhou Huang, and Zhenhui Li. Hierarchically structured meta-learning.
467 In *ICML*, pages 7045–7054, 2019.

468 [38] Huaxiu Yao, Xian Wu, Zhiqiang Tao, Yaliang Li, Bolin Ding, Ruirui Li, and Zhenhui Li.
469 Automated relational meta-learning. In *ICLR*, 2020.

470 [39] Sung Whan Yoon, Jun Seo, and Jaekyun Moon. Tapnet: Neural network augmented with
471 task-adaptive projection for few-shot learning. In *ICML*, pages 7115–7123, 2019.

472 [40] Xi Sheryl Zhang, Fengyi Tang, Hiroko H Dodge, Jiayu Zhou, and Fei Wang. Metapred: Meta-
473 learning for clinical risk prediction with limited patient electronic health records. In *SIGKDD*,
474 pages 2487–2495, 2019.

475 **Checklist**

- 476 1. For all authors...
 - 477 (a) Do the main claims made in the abstract and introduction accurately reflect the paper's
478 contributions and scope? **[Yes]** Please see the abstract and introduction section.
 - 479 (b) Did you describe the limitations of your work? **[Yes]** Please see the second paragraph
480 of the conclusion section (i.e., section 6).
 - 481 (c) Did you discuss any potential negative societal impacts of your work? **[Yes]** Please see
482 the second paragraph of the conclusion section (i.e., section 6).
 - 483 (d) Have you read the ethics review guidelines and ensured that your paper conforms to
484 them? **[Yes]**
- 485 2. If you are including theoretical results...
 - 486 (a) Did you state the full set of assumptions of all theoretical results? **[N/A]**
 - 487 (b) Did you include complete proofs of all theoretical results? **[N/A]**
- 488 3. If you ran experiments...
 - 489 (a) Did you include the code, data, and instructions needed to reproduce the main experi-
490 mental results (either in the supplemental material or as a URL)? **[No]** The proposed
491 algorithm had been integrated into a platform of our company and we are working on
492 the paperwork and plan to release the code once accepted.
 - 493 (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
494 were chosen)? **[Yes]** Please see Appendix D.
 - 495 (c) Did you report error bars (e.g., with respect to the random seed after running exper-
496 iments multiple times)? **[Yes]** Please see the results tables in both main paper and
497 Appendix.
 - 498 (d) Did you include the total amount of compute and the type of resources used (e.g., type
499 of GPUs, internal cluster, or cloud provider)? **[Yes]** Please see Appendix D.
- 500 4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
 - 501 (a) If your work uses existing assets, did you cite the creators? **[Yes]** Please see Section 4.
 - 502 (b) Did you mention the license of the assets? **[Yes]** Please see Appendix D.
 - 503 (c) Did you include any new assets either in the supplemental material or as a URL? **[No]**
504 We are working on the paperwork and plan to release the code once accepted.
 - 505 (d) Did you discuss whether and how consent was obtained from people whose data you're
506 using/curating? **[N/A]**
 - 507 (e) Did you discuss whether the data you are using/curating contains personally identifiable
508 information or offensive content? **[N/A]**
- 509 5. If you used crowdsourcing or conducted research with human subjects...
 - 510 (a) Did you include the full text of instructions given to participants and screenshots, if
511 applicable? **[N/A]**
 - 512 (b) Did you describe any potential participant risks, with links to Institutional Review
513 Board (IRB) approvals, if applicable? **[N/A]**
 - 514 (c) Did you include the estimated hourly wage paid to participants and the total amount
515 spent on participant compensation? **[N/A]**