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Abstract

Although mainstream unsupervised anomaly detection (AD) algorithms perform1

well in academic datasets, their performance is limited in practical application due2

to the ideal experimental setting of clean training data. Training with noisy data3

is an inevitable problem in real-world anomaly detection but is seldom discussed.4

This paper considers label-level noise in sensory anomaly detection for the first5

time. To solve this problem, we proposed a memory-based unsupervised AD6

method, SoftCore, which efficiently denoises the data at the patch level. Noise7

discriminators are utilized to generate outlier scores for patch-level noise elim-8

ination before coreset construction. The scores are then stored in the memory9

bank to soften the anomaly detection boundary. Compared with existing methods,10

SoftCore maintains a strong modeling ability of normal data and alleviates the11

overconfidence problem in coreset. Comprehensive experiments in various noise12

scenes demonstrate that SoftCore outperforms the state-of-the-art AD methods on13

the MVTec AD benchmark, and is comparable to those methods under the setting14

without noise.15

1 Introduction16

Detecting anomalies by only nominal images without annotation is an appealing topic, especially17

in industrial applications where defects can be extremely tiny and hard to collect. Unsupervised18

anomaly detection (UAD) is proposed to solve this problem and has been largely explored. Recent19

methods[1; 2; 3; 4] usually model the AD problem as a one-class learning problem where a clean20

nomial training set is provided to extract representative nominal features. To determine whether a21

sample differs from the standard dataset, most previous unsupervised AD methods have to measure22

the distance between the test sample and the standard dataset distribution. For instance, Defard23

et al. [2] described the CNN features of standard data with a multivariate Gaussian distribution and24

learned the Gaussian parameters. Roth et al. [3] established a memory bank using the CNN features25

of standard data and utilized the nearest neighbor search to find the distance between the test sample26

and the normal data. Even though recent methods have achieved excellent performance, they all27

rely on the clean training set to extract nominal characteristics for later comparison with anomalous28

features. If the standard normal dataset is polluted with noisy data, i.e., the abnormal samples, the29

estimated boundary will be unreliable, and the classification for abnormal data will have low accuracy.30

In general, current unsupervised AD methods are not designed for and are not robust to noisy data.31

However, in real-world practice, it’s inevitable that there are noises that sneak into the standard normal32

dataset, especially for industrial manufacturing, where a large number of products are produced daily.33
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Figure 1: Illustration of SoftCore. Unlike previous methods that construct coreset without considering
the negative effect of noisy data, SoftCore wipes off easy noisy data to formulate a clean training set
and alleviates hard noisy data’s impact by soft-reweighting.

This noise usually comes from inherent data shift or human misjudgment. Meanwhile, no existing34

unsupervised AD method can be directly applied to solve the problem of abnormal detection with35

noisy data. As in Fig. 1, noisy samples easily misinform AD algorithms, so algorithms misclassify36

similar anomaly samples in the test set and generate wrong locations.37

In this paper, we first propose a more practical problem setting, namely the abnormal detection with38

noisy data, which is a more valuable scenario but seldom investigated. Our solution is inspired by39

one of the recent state-of-the-art methods, PatchCore [3]. PatchCore proposed a method to subsample40

the original CNN features of the standard normal dataset with the nearest searching and establish41

a smaller coreset as a memory bank. However, the coreset selection and classification process are42

vulnerable to polluted data. As shown in Fig. 3, the performance of PatchCore decreases sharply43

with the increasing noise rate. In this regard, we propose a patch-level selection strategy to wipe44

off the noisy image patch of noisy samples. Compared to conventional sample-level denoising,45

the normal image patches of a noise sample are exploited in coreset. Meanwhile, the denoising46

algorithm assigns an outlier score factor to each patch to be selected into coreset. Based on the47

patch-level denoising, we propose a novel AD algorithm with better noise robustness named SoftCore.48

Considering noisy samples are hard to be removed completely, SoftCore utilizes the local outlier49

factor to re-weight the coreset examples, which makes the coreset become a soft core. Patch-level50

denoising and re-weighting the coreset samples are proved effective in revising misaligned knowledge51

and alleviating the overconfidence in coreset in inference. Extensive experiments in various noise52

scenes demonstrate that SoftCore outperforms the state-of-the-art AD methods on MVTec Anomaly53

Detection (MVTecAD) [5] benchmark.54

Our main contributions are summarized as follows: 1) To the best of our knowledge, we are the first55

to study the image sensory anomaly detection with noisy data, which is a more practical setting but56

seldom investigated. 2) We propose a patch-level denoising strategy for coreset memory bank, which57

largely improves the data usage rate compared to conventional sample-level denoising. 3) We propose58

a novel SoftCore method to classify normal and abnormal samples based on the proposed denoising59

strategy, which assigns a outlier score factor to each patch in the coreset. SoftCore utilizes the local60

outlier factor to re-weight each patch in the coreset. Re-weighting the coreset samples alleviates the61

overconfidence problem on coreset. 4) We set a baseline for unsupervised AD with noisy data, which62

outperforms most of existing unsupervised AD methods under the setting of noisy data, as well as63

comparable to these methods under the setting without noise.64

2 Related Work65

2.1 Learning with Noisy Labels66

Noisy label recognition is becoming an emerging topic for supervised learning but has rarely been67

explored in unsupervised anomaly detection. For classification, some research [6; 7] propose to68
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filter noisy pseudo-labeled data with a high confidence threshold. Li et al. [8] selects noisy-labeled69

data with a mixture model and trains in a semi-supervised manner. Kong et al. [9] relabel harmful70

training samples. For object detection, multi-augmentation [10], teacher-student [11], or contrastive71

learning [12] are adopted to alleviate noise with the help of the expert model’s knowledge. However,72

current noisy label recognition methods all rely on labeled data to co-rectify noisy data. In comparison,73

we target to improve the model’s noise robustness in an unsupervised manner without introducing74

labor annotations.75

2.2 Unsupervised Anomaly Detection76

Training with agent tasks, also known as self-supervised learning, is a viable solution when there77

is no category and shape information of anomalies. Sheynin et al. [13] employ transformations78

such as horizontal flip, shift, rotation, and gray-scale change after a multi-scale generative model to79

enhance the representation learning. However, Li et al. [14] mention that naively applying existing80

self-supervised tasks is sub-optimal for detecting local defects. So they propose a novelty agent81

task named CutPaste, which simulates an abnormal sample by clipping a patch of a standard image82

and pasting it back at a random location. Similarity, DRAEM [15] synthesizes anomalies through83

Perlin Noise. Nevertheless, the inevitable discrepancy between the synthetic anomaly and the real84

anomaly disturbs the criteria of the model and limits the generalization performance. The gap between85

anomalies is usually larger than that between anomaly and normal. This is why AD methods deceived86

by some noisy samples can still work well when handling other kinds of anomalies.87

Knowledge distillation is used in anomaly detection in an ingenious way. It is from a theory [16]88

that the representations of unusual patches are different between a pretrained teacher model and a89

student model, which tried its best to simulate teacher output in the training stage. Based on this90

theory, Salehi et al. [17] propose that considering multiple intermediate outputs in distillation and91

using a smaller student network lead to a better result. This improvement shows that restricting the92

generalization ability of the student model helps distinguish anomalies. Reverse distillation [18] uses93

a reverse flow which avoids the confusion caused by the same filters and prevents the propagation of94

anomaly perturbation to the student model. However, too long a training stage limits its usage.95

Feature modeling here specifically refers to the direct estimation of the output features of the96

extractor, including distribution estimation [2], reversible transformation [19; 20] and storage opera-97

tions [1; 3]. PaDiM [2] utilize multivariate Gaussian distributions to estimate the patch embedding of98

nominal data. In the inference stage, the embedding of irregular patches will be out of distribution. It99

is a simple but efficient method, but Gaussian distribution is inadequate for more complex data cases.100

So to enhance the estimation of density, DifferNet [19] and CFLOW [20] leverage the reversible101

normalizing flows based on multi-scale representation. Hou et al. [1] proposed that the granularity102

of division on feature maps is closely related to the reconstruction capability of the model for both103

normal and abnormal samples. So a multi-scale block-wise memory bank is embedded into an autoen-104

coder network as a model of past data. PatchCore [3] is a more explicit but valuable memory-based105

method, which stores the sub-sampled patch features in the memory bank and calculates the nearest106

neighbor distance between the test feature and the coreset as an anomaly score. Although PatchCore107

is outperformance in the typical setting, it is overconfident in the training set, which leads to poor108

noise robustness. Except above, there are other kinds of related methods in AD, such as Pre-trained109

Model Adaption [21] and Image Reconstruction [4; 22].110

3 The Proposed Method111

3.1 Overview112

Unsupervised anomaly detection aims to automatically classify and segment defect areas by only113

training on nominal images. During the training process, the implicit label information is utilized114

since we assume that all training images are nominal. In this paper, we focus on the situation where115

this assumption does not always hold.116
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Figure 2: Overview of the proposed method. In the training phase, the noises are distinguished at
patch level at each position of the feature map by a noise discriminator. The deeper color a patch
node has, the higher probability that it is a noise patch. After achieving outlier scores for all patches,
the top τ% patches with the highest outlier score are removed. The coreset is a subset of remaining
patches after denoising. Different from other methods, our memory bank consists of the samples in
coreset and their outlier scores which are stored as soft weights. Soft weights will be further utilized
to re-weight the anomaly score in inference.

The target of image-level denoising is to find Xnoise from X , where X = {xi : i ∈ (1, ..., N), xi ∈117

RC×H×W } denotes training images (channels C, height H , width W ), Xnominal and Xnoise denotes118

nominal and noisy images in training set respectively. Patch-based unsupervised anomaly methods,119

such as [3], have three main processes: feature extraction, coreset selection with memory bank120

construction, and anomaly detection. One of the important assumptions in [3] is that the training set121

only contains nominal images, and the coreset should have full coverage of all training data. During122

the test, An incoming image will directly search in the memory bank for similar features, and the123

anomaly score is the dissimilarity with the nearest patches. Unfortunately, in real-world applications,124

noise always exists. The searching process may collapse if the assumed clean full coverage memory125

bank contains noise. Therefore, we propose SoftCore which filters noisy data by a noise discriminator126

before coreset construction and softens the searching process for down-weighting the hard unfiltered127

noisy samples.128

Following convention in [3], we use ϕi ∈ Rc∗×h∗×w∗
as the feature map (channels c∗, height h∗,129

width w∗) of image xi ∈ X , ϕi(h,w) ∈ Rc∗ as the patch at (h,w) on the aggregated feature map130

with dimension c.131

3.2 Noise Discriminative Coreset Selection132

With increasing training images, the online memory bank can become exceedingly large and infeasible133

for inference and GPU/CPU storage. [3] uses min-max facility location to select coreset without134

considering noisy samples during selection. Therefore, we propose three noise reduction methods for135

coreset selection to fill in the blanks of noise unsupervised anomaly detection.136

3.2.1 Nearest Neighbor137

We set Nearest neighbor distance as our baseline [23] where a large distance means an outlier. With138

the assumption that the amount of noisy samples Xnoise is much less than clean samples Xnominal,139

the neighbor is defined as the feature memory of the corresponding position of each patch instead of140
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the whole coreset as in PatchCore. Given a batch of images, ϕ ∈ Rb∗×c∗×h∗×w∗
represents batch141

feature where b∗ means batchsize. ϕi(h,w) ∈ Rc∗ is patch feature at position (h,w) on the feature142

map of image i with dimension c. Each patch’s nearest neighbor distance Wnn
i is defined as:143

Wnn
i (h,w) = min

b∈b∗
(ϕi(h,w) · ϕb(h,w)

T ), (1)

We first calculate patch distance, then take the minimum among batch dimensions (neighbor) and144

keep top τ patches sorted by Wnn. This method can discriminate apparent outliers but suffer from145

uneven distribution of different clusters, where some clusters can have large inter-distance and lead146

to mistakenly threshed as noisy data. To treat all clusters equally, we propose another multi-variate147

Gaussian method to calculate the cleanness score without the interference of different clusters’148

densities.149

3.2.2 Multi-Variate Gaussian150

With Gaussian’s normalizing effect, all clean images’ characteristics can be treated equally. To apply151

Gaussian distribution on image characteristics dynamically, we calculate the inlier probabilities on152

the batch dimension for each patch ϕi(h,w), similar to 3.2.1. The multi-variate Gaussian distribution153

N(µh,w,Σh,w) can be formulated that µh,w is the batch mean of ϕi(h,w) and sample covariance154

Σh,w is:155

Σh,w =
1

b∗ − 1

b∗∑
b=1

(ϕb(h,w)− µh,w)(ϕb(h,w)− µh,w)
T ) + ϵI, (2)

where the regularization term ϵI makes
∑

h,w full rank and invertible [2]. Finally, with the estimated156

multi-variate Gaussian distribution N (µh,w,
∑

h,w), Mahalanobis distance is calculated as the noisy157

magnitude Wmvg
i (h,w) of each patch:158

Wmvg
i (h,w) =

√
(ϕi(h,w)− µ(h,w))TΣ

−1
(h,w)(ϕi(h,w)− µ(h,w)), (3)

High Mahalanobis distance means high anomalous score, and we only keep top τ patches sorted159

by Wmvg
i (h,w). Even though Gaussian distribution normalizes and captures the essence of image160

characteristics, small feature clusters may be overwhelmed by large feature clusters. In the scenario161

of a prominent feature cluster and a small cluster in a batch, the small cluster may be out of 1-, 2- or162

3-σ of calculated N(µh,w,
∑

h,w) and erroneously classified as outliers. After analyzing the above163

two methods, we need a method that can: 1. treat all image characteristics equally; 2. treat large and164

small clusters equally; 3. high dimension calculation applicable.165

3.2.3 Local Outlier Factor (LOF)166

LOF[24] is a local-density-based outlier detector used mainly on E-commerce for criminal activity167

detection. Inspired by LOF, we can solve above mentioned three questions in 3.2.2: 1. Calculating the168

relative density of each cluster can normalize different density clusters; 2. Using local k-distance[24]169

as a metric to alleviate the overwhelming effect of large clusters; 3. Modeling distance as normalized170

feature distance d(ϕi(A), ϕi(B)) = ϕi(h,w) ∗ ϕi(h,w)
T can be used on high dimensional patch171

features. Therefore, the k-distance-based absolute local reachability density lrdi(h,w) is first172

calculated as:173

lrdi(A) = 1/(

∑
B∈Nk(A) dist

reach
k (ϕi(A), ϕi(B))

|Nk(A)|
), (4)

174

distreachk (ϕi(A), ϕi(B)) = max(distk(ϕi(B)), d(ϕi(A), ϕi(B))), (5)
where A/B are two locations (h,w) on feature map, distk(ϕi(B)) is the k-distance of B and B is175

A’s top-k nearest neighbor. With local rechability density of each patch, the overwhelming effect of176

large clusters is largely reduced. To normalize local density to relative density for treating all clusters177

equally, the relative density WLOF
i of image i is defined below:178

WLOF
i (A) =

∑
B∈Nk(A) Irdi(B)

|Nk(A)| · Irdi(A))
, (6)
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where A = (h,w) : h ∈ h∗, w ∈ w∗. WLOF
i (A) is the relative density of the neighbors over patch’s179

own[24], and represents as a patch’s the confidence of inlier. We also keep top τ patches sorted180

by WLOF
i . Our experiments found that all three noise reduction methods above are helpful in data181

pre-selection before coreset construction, while LOF provides the best performance. However, after182

visualization of our cleaned training set, we found that hard noisy samples, which are similar to183

nominal samples, are still hidden in the dataset. To further alleviate the effect of noisy data, we184

propose a soft re-weighting method that can down-weight noisy samples by anomalous level.185

3.3 Anomaly Detection based on SoftCore186

Besides the construction of the Coreset, outlier factors of all the selected patches are stored as soft187

weights in the memory bank. With the denoised patch-level memory bank M as shown in figure 2,188

the image-level anomaly score s ∈ R can be calculated for a test sample xi ∈ X test by nearest189

neighbor searching at patch level. Denoting the collection of patch features of a test sample as190

P(xi) = Pi,j(ϕj(xi)), for each patch pi,j ∈ Pxi
the nearest neighbour searching can be formulated191

as the following equation:192

m∗ = argmin
m∈M

∥p−m∥2 (7)

After nearest searching, pairs of test patch and its corresponding nearest neighbor in M can be193

achieved as (p,m∗). For each patch pi,j ∈ Pxi
, the patch-level anomaly score is calculated by194

sij = Wm∗
i,j
∥pi,j −m∗

i,j∥2. The image-level anomaly score is attained by finding the largest soft195

weights re-weighted patch-level anomaly score:196

s∗ = argmax
(p,m∗)

si,j (8)

Different from PatchCore [3] which directly considers patches equally, SoftCore softens anomaly197

scores by noisy level from noise discriminater. The soft weights, i.e., local outlier factors, have198

considered the local relationship around the nearest node. Thus, a similar effect can be achieved as199

PatchCore but with more noise robustness and fewer searches. According to the image-level anomaly200

score, a sample is classified into a normal sample or abnormal sample.201

4 Experiments202

4.1 Experimental Details203

Dataset. Following [3], our experiments are mainly conducted on the MVTec Anomaly Detection204

benchmark[5]. MVTecAD contains 15 categories with 3629 training images and 1725 test images205

in total. Since each category of MVTecAD is divided into nominal-only images and a test set with206

both nominal and anomalous samples, to create a noisy training set, we sample anomalous images207

randomly from the test set and mix them with the existing training images. The sampled anomalous208

images are removed from the test set in test time while the other images remain untouched. In this209

setting(No overlap), the injected anomalous samples will not be evaluated, which is more likely210

the case in the real application. However, we still construct a different setting(Overlap) where the211

injected anomalous samples are also in the test set to demonstrate the risk that defects with similar212

appearance will severely exacerbate the performance of an anomaly detector trained with noisy data.213

By controlling the proportion of negative samples being injected into the train set, we obtain several214

new datasets with different noise ratios dubbed MVTecAD-noise-n, where n refers to the ratio of215

noise.216

Evaluation Metrics. We report both image-level and pixel-level AUROC for each category in217

MVTecAD and average them to get average image/pixel level AUROC. In order to represent noise218

robustness, the performance gaps between noise-free data and noisy data are also displayed.219

Implementation Details. We test three SOTA AD algorithms, PatchCore [3], PaDim [2] and220

CFLOW [20] in noise scene and follow their main settings. In the absence of specific instructions,221
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Table 1: Anomaly detection performance on MVTecAD with noise. The results are evaluated on
MVTecAD-noise-0.1. Overlap means the injected anomalous images are included in the test set.
PaDiM* uses ResNet18 as the backbone. PatchCore1%-Random uses a random subsampler instead
of the greedy subsampler and decreases the sampling rate from 10% to 1%. Gap row shows the
performance gap between a noisy scene and a normal scene.

Noise=0.1 No overlap | Overlap

Category PaDiM CFLOW PatchCore SoftCore-
nearest

SoftCore-
gaussian

SoftCore-
lof PaDiM* CFLOW PatchCore PatchCore

1%-Random
SoftCore-

lof

bottle 0.994 0.998 1.000 1.000 0.997 1.000 0.937 1.000 0.692 0.998 1.000
cable 0.873 0.925 0.982 0.935 0.952 0.995 0.680 0.916 0.756 0.920 0.994
capsule 0.920 0.947 0.976 0.916 0.662 0.963 0.796 0.945 0.783 0.779 0.955
carpet 0.999 0.961 0.996 0.995 0.999 0.991 0.890 0.960 0.681 0.973 0.993
grid 0.966 0.891 0.971 0.972 0.997 0.968 0.674 0.799 0.526 0.793 0.969
hazelnut 0.956 1.000 0.998 1.000 1.000 1.000 0.543 0.999 0.441 0.998 1.000
leather 1.000 1.000 1.000 1.000 1.000 1.000 0.964 0.996 0.739 1.000 1.000
metal_nut 0.987 0.959 0.999 0.994 0.997 0.999 0.820 0.957 0.765 0.969 1.000
pill 0.918 0.929 0.975 0.921 0.873 0.963 0.722 0.897 0.770 0.874 0.955
screw 0.838 0.784 0.966 0.862 0.475 0.960 0.567 0.570 0.710 0.462 0.923
tile 0.977 0.991 0.985 0.996 0.997 0.993 0.830 0.980 0.716 1.000 0.981
toothbrush 0.927 0.906 0.997 1.000 0.997 0.997 0.700 0.878 0.800 0.797 0.994
transistor 0.953 0.896 0.953 1.000 0.992 0.990 0.471 0.872 0.491 0.943 0.999
wood 0.991 0.972 0.984 0.984 0.997 0.987 0.831 0.954 0.579 0.980 0.986
zipper 0.852 0.928 0.981 0.976 0.979 0.978 0.679 0.931 0.792 0.950 0.974

Average 0.943 0.939 0.984 0.970 0.927 0.986 0.740 0.910 0.683 0.896 0.982
Gap -0.007 -0.03 -0.008 +0.002 -0.001 0.0 -0.151 -0.059 -0.309 -0.015 -0.004

Table 2: Anomaly localization performance on MVTecAD with noise. The results are evaluated on
MVTecAD-noise-0.1.

Noise=0.1 No overlap | Overlap

Category PaDiM CFLOW PatchCore SoftCore-
nearest

SoftCore-
gaussian

SoftCore-
lof PaDiM* CFLOW PatchCore PatchCore

1%-Random
SoftCore-

lof

Average 0.972 0.969 0.956 0.971 0.977 0.979 0.955 0.962 0.654 0.951 0.969
Gap -0.007 -0.006 -0.025 -0.008 -0.001 -0.002 -0.013 -0.013 -0.327 -0.021 -0.012

the backbone of feature extractor is Wide-ResNet50 and the coreset sampling ratio of PatchCore and222

SoftCore is 0.1. For MVTecAD images, we only use 256 × 256 resolution and center crops them223

into 224× 224 along with a normalization. No other data augmentation is applied since it requires224

prior knowledge of the class, such as whether there is rotation in this class. We train a separate model225

for each MVTec class. The threshold τ in SoftCore and the LOF-K are set to 0.15 and 6 for all226

noisy scenarios and classes. The effects of hyperparameters are studied in the ablation study. All227

our experiments are run on Nvidia V100 GPU, costing roughly one minute for each category in228

MVTecAD.229

4.2 Anomaly Detection Performance with Noise230

As indicated in Table 1 and Table 2, when 10% of anomalous samples are added to corrupt the train231

set, all existing methods have different extend of performance decrease, although not disastrously232

under No overlap setting. Compared to other methods, the proposed SoftCore exhibits much stronger233

robustness against noisy data both in terms of anomaly detection and localization, no matter which234

noise discriminator is used. Among three variants of SoftCore, SoftCore-lof achieves the best overall235

performance with the highest accuracy and strongest robustness. Interestingly, under the Overlap236

setting, PaDiM[2], CFLOW[20] and SoftCore-gaussian show significantly less performance drop than237

PatchCore, which indicates that modeling feature as Gaussian distribution does help denoising. While238

modeling feature distribution at each spatial location as a single Gaussian distribution can’t handle239

misaligned images, such as screw class in MVTecAD, which explains the poor performance on these240

classes(see screw row). On the other hand, PatchCore’s greedy-sampling strategy is a double-edged241

sword with higher feature space coverage and higher sensitivity to noise. That’s why using random242

sampling in PatchCore is more robust with compromised performance(see PatchCore 1%-Random243
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column). SoftCore-nearest does a slightly better job in the misaligned cases. However, it doesn’t take244

feature distribution into account, which leads to inferior performance.245

In order to explore how different methods behave with the increasing noise level, experiments are246

further performed on MVTecAD-noise-{0 ∼ 0.15}. The results are shown in Figure 3. Besides the247

default noise setting(No overlap), we also demonstrate the Overlap setting where the anomalous248

training images are included in the test set. Under the No overlap setting, as the noise ratio increases,249

PatchCore shows a pixel-level AUROC drop up to 3.7%. The performance decreases as the noise ratio250

rises. On the contrary, although the default performance is slightly poor than PatchCore(about 0.006251

and 0 decrease in image-level and pixel-level AUROC), the proposed SoftCore-lof deteriorates much252

slower, which demonstrates better denoising ability. As for SoftCore-nearest and SoftCore-gaussian,253

they are also more robust, however, with worse base performance(see Figure 3 at noise ratio=0). The254

visualization of the coreset in Figure 5 also shows that random sampling avoids sampling the outlier255

but can not model normal adequately. Being consistent with the discussion above, under the Overlap256

setting, PatchCore’s performance is getting worse and worse catastrophically(up to 40% AUROC257

drop in both image and pixel level) as more noises are added. This is expectable since PatchCore258

uses a greedy strategy for coreset sampling, which favors outlier in feature space. SoftCore-lof259

consistently outperforms other methods with no significant performance drop as the noise level goes260

up. The experimental results indicate that the risk is hidden by the fact that defects in MVTecAD261

have very different appearances. In this case, even if some anomalous features are added mistakenly262

to the coreset, they are unlikely to be retrieved during test time. However, the risk still exists and263

will be triggered when similar defects show up at test time. More experiment details can be found in264

Appendix.265
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Figure 3: The comparison of anomaly detection performance under noisy training. no overlap means
the injected anomalous images are removed from test set while overlap are not.

Table 3: The ablation study of soft weight. The performance scores are Image/pixel-level AUROC on
MVTecAD.

No overlap | Overlap

Noise discriminator Soft weight Image level Pixel level Image level Pixel level

None 0.985 0.946 0.685 0.693
Gaussian 0.927 0.977 0.925 0.961
Gaussian ✓ 0.922 0.974 0.924 0.965
Nearest 0.970 0.971 0.966 0.944
Nearest ✓ 0.972 0.978 0.968 0.958
LOF 0.985 0.984 0.984 0.963
LOF ✓ 0.986 0.979 0.982 0.969

4.3 Ablation Study266

4.3.1 Effectiveness of the Proposed Modules267

We validated the effectiveness of two proposed modules noise discriminator and soft weight268

by removing them from the pipeline. As shown in Table 3, the noise discriminator significantly269

improves the noise robustness in terms of pixel-level AUROC. Among three decision choices of noise270

discriminator, LOF achieved the best balance between robustness and capacity, resulting in the most271
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Figure 4: Performance trend with the threshold τ in Softcore-LOF. The results are evaluated on
MVTecAD-noise-0.1.

performance boost under all settings. We further analyzed the intermediate results by visualizing272

the sampled coreset of different methods, which shows that SoftCore-LOF sampled much fewer273

anomalous features than the baseline(see Figure 5). Soft weight is used alongside noise discriminator274

to further improve the final results. We only observed minor improvement for using Soft weight in275

SoftCore-Nearest. We suspect that the other two kinds of noise discriminators are already robust276

against noise data.277

Table 4: Image/pixel-level AUROC result for different LOF-K on two settings.

K 3 4 5 6 7 8 9

Overlap 0.983/0.955 0.982/0.951 0.983/0.959 0.982/0.975 0.981/0.973 0.982/0.968 0.980/0.968
No overlap 0.985/0.972 0.985/0.975 0.984/0.977 0.984/0.982 0.985/0.980 0.984/0.983 0.981/0.982

4.3.2 Parameter Selection278

To explore the impact of two parameters (LOF-k and threshold τ ) on the final performance, we279

perform parameters searching on our method. As in Table 4, our method achieves better performance280

when LOF-k is greater than 5, which suggests that our method is not sensitive to LOF-k, as long as it281

is not too small or too large. If LOF-k is too small, it fails to estimate the local density accurately282

because too few neighbors are considered. On the contrary, a large LOF-k may lead to undesirable283

cross-clusters connection that can not capture real data distribution.284

Threshold τ refers to the ratio of eliminated patch features when building coreset. Figure 4 indicates285

an increasing trend of AUROC as threshold τ increases under Overlap setting, which is expected286

since a higher threshold means a more aggressive denoising strategy. Under Overlap setting, the287

mistakenly sampled features are the direct reason for the drastic performance drop. Therefore more288

aggressive denoising improves the result significantly. However, under No Overlap setting, the289

effect of the noisy feature is less prominent. Although the best LOF-k and threshold τ are changed290

according to the class and noise level, we simply use fixed values, 6 and 0.15, in all situations.291

5 Conclusions292

This paper emphasizes the practical value of investigating noisy data problems in unsupervised AD.293

Introducing a novel noisy setting on the previous task, we test the performance of existing methods294

and SoftCore. For existing methods, despite no adaptation to noisy settings, some of them have a295

slight performance decrease in some scenes. However, the performance decrease could be more296

significant and catastrophic for other methods or in other scenes. For the proposed SoftCore, although297

performance degrades slightly compared with the SOTA result in the no-noise situation. It shows298

consistent performance in all noise settings, which outperforms other methods.299

Industrial inspection systems are an important computer vision application that requires good ro-300

bustness. The noise injected into the training set break with the naive assumption that the training301

samples were normal. Noise also gives the model an early exposure to the distribution of anomalies.302

The unsupervised AD with noisy data needs more research in the future.303
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