
When are Post-Hoc Conceptual Explanations Identifiable?

Abstract

Interest in understanding and factorizing learned
embedding spaces through conceptual explana-
tions is steadily growing. When no human concept
labels are available, concept discovery methods
search trained embedding spaces for interpretable
concepts like object shape or color that can be
used to provide post-hoc explanations for deci-
sions. Unlike previous work, we argue that concept
discovery should be identifiable, meaning that a
number of known concepts can be provably recov-
ered to guarantee reliability of the explanations. As
a starting point, we explicitly make the connection
between concept discovery and classical methods
like Principal Component Analysis and Indepen-
dent Component Analysis by showing that they can
recover independent concepts with non-Gaussian
distributions. For dependent concepts, we propose
two novel approaches that exploit functional com-
positionality properties of image-generating pro-
cesses. Our provably identifiable concept discov-
ery methods substantially outperform competitors
on a battery of experiments including hundreds of
trained models and dependent concepts, where they
exhibit up to 29 % better alignment with the ground
truth. Our results provide a rigorous foundation for
reliable concept discovery without human labels.

1 INTRODUCTION

Modern computer vision systems represent and reason about
images in embedding spaces. These are either constructed
implicitly in higher-level layers of large models or explic-
itly through generative models such as Variational Autoen-
coders (Kingma and Welling, 2013) or Diffusion Models
(Song and Ermon, 2019; Ho et al., 2020). To unveil why
an image is considered similar to a certain class, interest in

understanding these embeddings is increasing. Conceptual
explanations (Crabbé and van der Schaar, 2022; Mutten-
thaler et al., 2022; Akula et al., 2020; Kazhdan et al., 2020;
Yeh et al., 2019; Kim et al., 2018) are a popular explainable
AI (XAI) technique for this purpose. They scrutinize a given
encoder by decomposing its embedding space into inter-
pretable concepts post-hoc, i.e., after training. Subsequently,
these concepts form the bases of popular post-hoc explana-
tions such as TCAV (Kim et al., 2018) or allow high-level
interventions (Koh et al., 2020). Fig. 1 outlines a real-world
example. A misclassification made by a pretrained model
shipped with the pytorch library (Paszke et al., 2017) is
to be explained. In the given example, the conceptual expla-
nation allows identification of a spurious correlation, that
the model has picked up: Most jack-o-lanterns are found
in combination with dark backgrounds, which causes it to
mistake the traffic light at night for a jack-o-lantern.

Constructing such explanations is non-trivial. The key in-
gredient to all conceptual explanation techniques is a set of
interpretable concepts, which is notoriously hard to spec-
ify (Leemann et al., 2022). It is frequently defined through
human annotations (Crabbé and van der Schaar, 2022; Koh
et al., 2020; Kim et al., 2018) on individual samples of the
dataset that can be prohibitively expensive (Kazhdan et al.,
2021). Furthermore, it is usually unknown which concepts
will be leveraged by a machine learning model without a
model at hand. Therefore, we consider fully unsupervised
concept discovery (Ghorbani et al., 2019; Yeh et al., 2019),
where the concepts are automatically discovered in the data.
Concepts are frequently modeled as directions in a given
embedding space (Ghorbani et al., 2019; Kim et al., 2018;
Yeh et al., 2019), that have to be discovered without super-
vision. These embedding spaces can be highly distorted,
making it hard to correctly separate the influences of indi-
vidual concepts. However, this is essential to make the right
inferences in practice (see Fig. 1d).

While many methods have been empirically shown to work
well, a rigorous theoretical analysis of the conditions un-
der which concept discovery is possible is still lacking in
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prediction: jack-o-lantern
true class: traffic light

(a) Misclassification: A
model makes an incorrect
prediction. A user is inter-
ested to understand why
this incident happened.
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(b) Conceptual Explanation:
Concept contributions are com-
puted that explain the prediction.
In this example, the concept “dark-
ness” is relevant for the outcome.

examples of
jack-o-lantern

(c) Inspection: A closer inspection
of samples from the predicted class
reveals that most images in this class
have a dark background; a spurious
correlation picked up by the model.
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(d) Entangled Conceptual Ex-
planation: It is essential to cor-
rectly split up the contribution of
individual concepts to allow for
valid inferences.

Figure 1: Schematical use-case of conceptual explanations: A misclassification of an image classifier is explained. The
example is based on a real explanation for a ResNet50 model. Details and the original explanation are provided in App. C.8.

previous works. We propose to consider concept discovery
methods that are identifiable. This means when a known
number of ground truth components generated the data, the
concept discovery method provably yields concepts that
correspond to the individual ground truth components and
can correctly represent an input in the concept space. This
is a crucial requirement: If a method is even incapable of
recovering known components, there is no indication for
why it should be reliable in practice. In this work, we are
the first to investigate identifiability results in the context of
post-hoc concept discovery.

First, we find that identifiability results from Principal Com-
ponent Analysis (PCA) and Independent Component Analy-
sis (ICA) literature (Jolliffe, 2002; Comon, 1994; Hyvärinen
et al., 2001) can be transferred to the conceptual explanation
setup. We establish that they cover the case of independent
ground truth components with non-Gaussian distributions.
This is insufficient for two reasons: (1) In practice, con-
cepts such as height and weight (Träuble et al., 2021) or
wing and head colors of birds often follow complex depen-
dency patterns. (2) Popular generative models (Kingma and
Welling, 2013; Song and Ermon, 2019) frequently work
with an embedding space with a Gaussian distribution.

As a second contribution, we seek to fill this void by pro-
viding an identifiable concept discovery approach that can
handle dependent and Gaussian ground truth components.
We can show that this is possible through taking the nature
of the image-generating process into consideration. Specifi-
cally, we propose utilizing visual compositionality proper-
ties. These are based on the observation that tiny changes in
the components frequently affect input images in orthogonal
or even disjoint ways. These properties of image-generating
processes also leave a “trace” in the encoders learned from
a set of data samples. This insightful finding permits to
construct two novel post-hoc concept discovery methods
based on the disjoint or independent mechanisms criterion.
We prove strong identifiability guarantees for recovering
components, even if they are dependent.

In summary, our work advances current literature in multiple
ways: (1) We present first identifiability results for post-hoc
conceptual explanations. We find that results from ICA can
be transferred under independent ground truth components.
(2) For the more intricate setting of dependent components,
we derive the disjoint mechanism analysis (DMA) and the
less constrained independent mechanism analysis (IMA) cri-
terion. We prove that they recover even dependent original
components up to permutation and scale. (3) We construct
DMA and IMA-based concept discovery algorithms for
encoder embedding spaces with the same theoretical iden-
tifiability guarantees. (4) We test them (i) on embeddings
of several autoencoder models learned from correlated data,
(ii) with multiple and strong correlations, (iii) on discrimi-
native encoders, and (iv) on the real-world CUB-200-2011
dataset (Wah et al., 2011). Our approaches maintain superior
performance amidst increasingly severe challenges.

2 RELATED WORK

Works on the analysis and interpretation of embedding
spaces touch a variety of subfields of machine learning.

Concept discovery for explainable AI. Conceptual expla-
nations (Koh et al., 2020; Kim et al., 2018; Ghorbani et al.,
2019; Yeh et al., 2019; Akula et al., 2020; Chen et al., 2020b)
have gained popularity within the XAI community. They
aim to explain a trained machine learning model post-hoc in
terms of human-friendly, high-level concept directions (Kim
et al., 2018). These concepts are found via supervised (Koh
et al., 2020; Kim and Mnih, 2018; Kazhdan et al., 2020)
or unsupervised approaches (Yeh et al., 2019; Akula et al.,
2020; Ren et al., 2022), such as clustering of latent repre-
sentations (Ghorbani et al., 2019). However, their results
are not always meaningful (Leemann et al., 2022; Yeh et al.,
2019). Therefore, we suggest approaches with identifiability
guarantees. We provide initial identifiability results and a
novel approach which can be used for unsupervised concept
discovery under correlated components.
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Independent Component Analysis (ICA). Independent
Component Analysis (Comon, 1994; Hyvärinen and Pa-
junen, 1999; Hyvärinen et al., 2001) or blind source sepa-
ration (BSS) view g(z) as a mixture to undo and rely on
traces that the distributions over z leave in the mixture. In
this work, we show that an identifiability result from ICA
can be transferred to the conceptual explanation setup, but
recovery is only possible under independent underlying com-
ponents of which all but one are non-Gaussian. This result
is not applicable to naturally correlated processes, which is
why we design a novel method for this case.

Disentanglement Learning. Concurrently, literature in on
disentanglement learning is concerned with finding a data-
generating mechanism g(z) and a latent representation z
for a dataset, such that each of the original components (also
known as factors of variation) is mapped to one (control-
lable) unit direction in z (Bengio et al., 2013). An alterna-
tive definition relies on group theory (Higgins et al., 2017)
where certain group operations (symmetries) should be re-
flected in the learned representation (Painter et al., 2020;
Yang et al., 2021). Most works in the domain enhance VAEs
(Kingma and Welling, 2013) with additional loss terms (Hig-
gins et al., 2017; Burgess et al., 2018; Kim and Mnih, 2018;
Chen et al., 2018). Despite recent progress it is not always
possible to construct disentangled embedding spaces from
scratch: Locatello et al. (2019) have shown that the problem
is inherently unidentifiable without additional assumptions.
A more recent work by Träuble et al. (2021) shows that even
if just two components of a dataset are correlated, current
disentanglement learning methods fail. In this work, we fo-
cus on post-hoc explanations of embedding spaces of given
models, which are usually entangled.

Identifiability results. A strain of works have considered
identifiability in disentanglement learning. It has been pre-
viously shown that unsupervised disentanglement, without
further condition, is impossible (Hyvärinen and Pajunen,
1999; Locatello et al., 2019). Hence, recent works aim to
understand the conditions sufficient for identifiability. One
strain of work relies on additional supervision, i.e., access
to an additional observed variable (Hyvärinen et al., 2019;
Khemakhem et al., 2020) or to tuples of observations that
differ in only a limited number of components (Locatello
et al., 2020). Gresele et al. (2021) and Zheng et al. (2022)
proved identifiable disentanglement under independently
distributed components and introduce a functional condition
on the data generator. We also consider functional proper-
ties but our setting is different as (1) we have access to a
trained encoder only and (2) not even partial annotations or
relations are available.

3 ANALYSIS

In this section, we formalize post-hoc concept discovery
to provide an identifiability perspective. We find that Inde-

pendent Component Analysis (ICA) and Principal Compo-
nent Analysis (PCA) only guarantee identifiability when
the ground-truth components are stochastically independent.
We then study the intricate case of dependent components
and propose using disjoint and independent mechanisms
analysis (DMA / IMA) along with identifiability results. All
proofs are provided in the supplementary.

3.1 PROBLEM FORMALIZATION

In post-hoc concept discovery, we are given a trained en-
coder f : X → E with embeddings e = f(x) ∈ E ⊂ RK

of each image x ∈ X . We do not impose any restriction on
how f was obtained; it can be a the feature extractor part
of a large classification model or a feature representation
learned through autoencoding, constrastive learning (Chen
et al., 2020a) or related techniques. Interpretability litera-
ture seeks to understand the embedding space by factorizing
it into concepts. Based on the observations that directions
in the embedding space often correspond to meaningful
features (Szegedy et al., 2013; Bau et al., 2017; Alain and
Bengio, 2016; Bisazza and Tump, 2018), these concepts are
frequently defined as direction vectors mi (Kim et al., 2018;
Ghorbani et al., 2019; Yeh et al., 2019). Hence, the com-
bined output of a concept discovery algorithm is a matrix
M = [m1, . . . ,mK ]> ∈ RK×K where each row contains
a concept direction.

We seek a theoretical guarantee on when these discov-
ered concept directions align with ground truth compo-
nents that generated the data. To this end, we formalize
the data-generating process as shown in Fig. 2: There are
K ground-truth components with scores zk, k = 1 . . .K,
summarized z ∈ Z ⊂ RK , that define an image. The term
components always refers to the ground truth as opposed
to the concepts, which denote the discovered directions.
A data-generating process g : Z → X generates images
x = g(z) ∈ X ⊂ RL, L � K. A powerful algorithm
should be able to recover the original components. That is,
there should be a one-to-one mapping between entries of
Me and the entries in z, up to the arbitrary scale and order
of the entries. We say that a concept discovery algorithm
identifies the true components if it is guaranteed to out-
put directions M that satisfy Me = Mf(g(z)) = PSz
∀z ∈ Z , where P ∈ RK×K is a permutation matrix that
has one 1 per row and column and is 0 otherwise, and
S ∈ RK×K is an invertible diagonal scaling matrix.

To make the problem solvable in the first place, concept
directions must exist in the embedding space of the given
encoder, requiring e = Dz, where D ∈ RK×K is full-
rank. Depending on the scope of the conceptual explanation
desired, it can be sufficient for the components to exist
in a local region of the embedding space if the concept
discovery algorithm is only applied around a region around
a certain point of interest. This only changes the meaning
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Figure 2: Overview over the concept discovery setup. We consider a process where data samples x are generated from
possibly correlated ground truth components z, e.g., a wingspan or beak length of a bird, by an unknown process g (left).
The high-dimensional data is mapped to the to the embedding space of a given model f (center). A suitable post-hoc concept
discovery yields concept vectors mi that correspond to the original components (right).

of E ,X , and Z , but is formally equivalent.

3.2 IDENTIFIABILITY VIA INDEPENDENCE

Initially, we turn towards classical component analysis meth-
ods. We find that they require non-correlation or stronger
stochastic independence of the ground truth components.

Principal Component Analysis (PCA) (Jolliffe, 2002) uses
eigenvector decompositions to find orthogonal directions M
that result in uncorrelated components Me. This means that
PCA is only capable of identifying the original components
if the ground truth components z were uncorrelated and
exist as orthogonal directions in our embedding space. In
our setup and notation, this leads to the following result:

Theorem 3.1 (PCA identifiability) Let zk, k = 1, . . . ,K,
be uncorrelated random variables with non-zero and un-
equal variances. Let e = Dz, where D ∈ RK×K is an
orthonormal matrix. If an orthonormal post-hoc transforma-
tion M ∈ RK×K results in mutually uncorrelated compo-
nents (z′1, . . . , z

′
K) = z′ = Me, then Me = PSz, where

P ∈ RK×K is a permutation and S ∈ RK×K is a diagonal
matrix where |sii| = 1 for i ∈ 1, . . .K.1

All proofs in this work are deferred to App. B. It is ar-
guably a strong condition that the ground truth directions
are encoded orthogonally in the embedding space. Indepen-
dent Component Analysis (ICA) overcomes this limitation
Comon (1994) and allows for arbitrary directions, but re-
quires stochastically independent components instead of the
weaker non-correlation.

Theorem 3.2 (ICA identifiability) Let zk, k = 1, . . . ,K,
be independent random variables with non-zero variances
where at most one component is Gaussian. Let e = Dz,
where D ∈ RK×K has full rank. If a post-hoc transforma-
tion M ∈ RN×N results in mutually independent compo-

1To simplify notation, P and S mean any permutation and
scale matrices. They do not have to be equal between the theorems.

Dependency Marginal Dist. Transform Criterion

uncorr. uneq. variances orthogonal non-correlation (PCA)
independent non-Gaussian invertible independence (ICA)

arbitrary arbitrary invertible disj. mechanisms (DMA)
arbitrary arbitrary invertible indep. mechanisms (IMA)

Table 1: PCA and ICA provably identify concepts via their
distributions. DMA and IMA utilize functional properties.

nents (z′1, . . . , z
′
K) = z′ = Me, then Me = PSz, where

P ∈ RK×K is a perm. and S ∈ RK×K is a diag. matrix.

This result shows that stochastic independence of the ground
truth components leaves a strong trace in the embeddings
that can be leveraged. Algorithms like fastICA (Hyväri-
nen and Oja, 1997) can find the concept directions M by
searching for independence (Comon, 1994). We conclude
that ICA is suited for post-hoc concept discovery under
independent components.

In summary, we have transferred two results from the com-
ponent analysis literature to the setup of post-hoc conceptual
explanations. However these results do not allow to recover
components that are correlated or follow a Gaussian dis-
tribution. This limits their applicability in practice where
concepts often appear pairwise (e.g., darkness and jack-o-
lanterns, cf. Fig. 1). We will bridge this gap in the remainder
of this paper by introducing two new identifiable discovery
methods based on functional properties of the generation
process that we term disjoint and independent mechanisms.
A summary of identifiability results is provided in Table 1.

3.3 IDENTIFIABILITY VIA DISJOINT
MECHANISMS

Instead of placing independence assumptions on z, we pro-
pose a concept discovery algorithm that makes use of natural
properties of the generative process g. In particular, gener-
ative processes in vision are often compositional (Ommer
and Buhmann, 2007): Different groups of pixels in an image,
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like a bird’s wings, legs, and head, are each controlled by
different components. Effects of tiny changes in components
are visible the Jacobian Jg, where each row points to the
pixels affected. Thus, a compositional process will follow
the disjoint mechanisms principle.

Definition 3.1 (Disjoint mechanisms) g is said to gener-
ate x from its components z via disjoint mechanisms if
the Jacobian Jg(z) ∈ RL×K exists and is a block ma-
trix ∀z ∈ Z . That is, the columns of Jg(z) are non-
zero at disjoint rows, i.e. |Jg(z)|>|Jg(z)| = S(z), where
S ∈ RK×K is a diagonal matrix that may be different for
each z and | · | takes the element-wise absolute value.

Note that this definition does not globally constrain the lo-
cation of affected pixels such that components may be alter,
different, but disjoint pixels in each image. In real concept
discovery, we do not have access to the generative process
g but can only access the encoder f . However, an encoder
corresponding to g will not be arbitrary and its Jacobian
Jf ∈ RK×L have a distinct form in practice: First, to main-
tain the component information the composition f ◦ g will
be of the form f(g(z)) = Dz, with a yet unknown ma-
trix D ∈ RK×K . Furthermore, we expect encoders to be
rather lazy, meaning they only perform the changes to in-
vert the data generation process but are almost invariant to
input deviations not due to changes in the components. Tech-
nically, the changes effected by the components form the
linear span(Jg(z)), whereas entirely external changes are
given in its orthogonal complement span(Jg(z))

⊥. Thus,
for v ∈ span(Jg(z))

⊥ ⊂ RL the encoder should not react
to these, i.e., Jf (z)v = 0⇔ v ∈ ker(Jf (z)).

Definition 3.2 (Faithful encoder) f is a faithful encoder
for the generative process g if the ground truth components
remain recoverable, i.e., f(g(z)) = Dz, for some D ∈
RK×K with full rank. Furthermore, f is lazy and invariant
to changes in x which cannot be explained by the ground
truth components, requiring Jf (g(z)) and Jg(z) to exist
and span(Jg(z))

⊥ ⊆ ker(Jf (z)), ∀z ∈ Z .

Having defined what realistic encoders look like, we find,
there is distinct property which can be leveraged to dis-
cover the directions in M among faithful encoders: It is
necessary to find a decoder Mf whose Jacobian MJf will
have disjoint rows. Intuitively, this requires searching for
components whose gradients affect disjoint image regions.

Theorem 3.3 (Identifiability under DMA) Let g have
disjoint mechanisms and f be a faithful encoder to g.
If a full-rank post-hoc transformation M ∈ RK×K re-
sults in disjoint rows in the Jacobian MJf (g(z)), i.e.,
|MJf (g(z))||MJf (g(z))|> is invertible and diagonal
for some z ∈ Z , then Me = PSz, where P ∈ RK×K is
a permutation and S ∈ RK×K is a scaling matrix.

This theorem does not impose any restrictions on the distri-
bution z, making it applicable to realistic concept discovery
scenarios through leveraging the nature of the generative
process. The proof of this algorithm in App. B.5 also yields
an analytical solution. We will use it to verify conditions in
a controlled experiment in Sec. 4.1. We have thus identified
the DMA criterion that allows to discover the component
directions: The rows of MJf need to point to disjoint im-
age regions. We can formulate this as a loss function and
optimize for M via off-the-shelf gradient descent:

L(M) = Ex‖arn [MJf (x)] arn [MJf (x)]
> − I‖2F . (1)

The expectation is taken over a collection of real data sam-
ples x. The arn-operator (absoute values, row normalization)
takes the element-wise absolute value and subsequently nor-
malizes the rows. This does not constrain the norms of the
Jacobian’s rows but only enforces disjointness.

3.4 CONCEPT DISCOVERY VIA INDEPENDENT
MECHANISMS

We can perform an analogous derivation for a class of
generating processes that is more general. Grounded by
causal principles instead of compositionality, the indepen-
dent mechanisms property has been argued to define a class
of natural generators (Gresele et al., 2021).

Definition 3.3 (Independent mechanisms (IMA)) g is
said to generate x from its components z via independent
mechanisms if the Jacobian Jg(z) of g exists and its
columns (one per component) are orthogonal ∀z ∈ Z , i.e.,
J>g (z)Jg(z) = S(z), where S ∈ RK×K is a diagonal
matrix that may differ for each z (Gresele et al., 2021).

Gresele et al. (2021) and Zheng et al. (2022) used this char-
acteristic to find disentangled data generators, but we can
again transfer characteristics via faithful encoders: This time
we find that searching for an MJf with orthogonal (instead
of disjoint) rows permits post-hoc discovery of concepts.
We refer to is property of MJf as the IMA criterion.

However, as the class of admissible processes has been
increased, it is not strong enough to ensure identifiability in
the most general case. This is prevented under an additional
technical condition on the component magnitudes, which we
refer to as non-equal magnitude ratios (NEMR). Intuitively,
it requires that the magnitudes of the component gradients
change non-uniformly between at least two points.

Theorem 3.4 (Identifiability under IMA) Let g adhere
to IMA. Let f be a faithful encoder to g. Suppose we have
obtained an f ′ = Mf with a full-rank M ∈ RK×K and
orthogonal rows in its Jacobian MJf (g(z)) := Jf ′ (g(z)),
i.e, Jf ′ (g(z))Jf ′ (g(z))

> = Σ(z) where Σ(z) is diago-
nal and full-rank at two points z ∈ {za, zb}. If additionally
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Σ(za)Σ(zb)
−1 has unequal entries its diagonal (NEMR

condition), then Me = PSz, where P ∈ RK×K is a
permutation and S ∈ RK×K is a scaling matrix.

The constructive proof in App. B.6 can also be condensed
into an analytical solution. Alternatively, one can again con-
struct a suitable optimization objective for the IMA criterion,
i.e., orthogonal Jacobians. This is achieved by removing the
absolute value operation from the arn-operator in Eqn. (1),
so that it solely performs a row-wise normalization. In sum-
mary, we have established the novel DMA and IMA criteria
that allow concept discovery under dependent concepts.

4 EXPERIMENTS

In the following, we perform a battery of experiments of
increasing complexity to compare the practical capabilities
of approaches for identifiable concept discovery. We start by
verifying the theoretical identifiability conditions (Sec. 4.1),
then perform evaluation under increasing multi-component
correlations for embedding spaces of generative and discrim-
inative models (Sec. 4.2 to 4.4), and finally use a large-scale,
discriminatively-trained ResNet50 encoder (Sec. 4.5).

We borrow the DCI metric (Eastwood and Williams, 2018)
from disentanglement learning with scores in [0, 1] to mea-
sure whether each discovered component predicts precisely
one ground-truth component and vice versa. Following
Locatello et al. (2020), we report additional metrics with
similar results in App. D, along with results on additional
datasets and ablations. For reproducibility, each experiment
is repeated on five seeds and code is made available upon
acceptance. In total, we train and analyze over 300 embed-
ding spaces, requiring about 124 Nvidia RTX2080Ti GPU
days. More implementation details are in App. C.2.

4.1 CONFIRMING IDENTIFIABILITY

We first confirm our identifiability guarantees with the an-
alytical solutions. To this end, we implement two realistic
synthetic datasets with differentiable generators. This allows
computing the closed-form of Jg and deliberately fulfilling
or violating the DMA, IMA, and NEMR conditions.

FourBars consists of gray-scale images of four compo-
nents: Three bars change their colors (black to white) and
one bar moves vertically, showing that the image regions
affected by each component may change in each image. The
plot of Jg in Fig. 3a shows that each component maps to
a disjoint image region. This fulfills DMA and thus also
IMA. However, all factors have the same gradient magni-
tudes, making it impossible to find two points with NEMR.
According to our theory, we expect DMA optimization to
work and IMA to fail. The second dataset, ColorBar, con-
tains a single bar that undergoes realistic changes in color,
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(a) FourBars: DMA datasets can be solved by the DMA criterion.
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(b) ColorBar: IMA datasets can be solved by the IMA criterion.

Figure 3: Experiments on two synthetic datasets: We confirm
our analytic results and show that DMA (a) and IMA (b)
cover realistic visual concepts such as colors and translations

width, and its vertical position, see Fig. 3b. It conforms to
IMA and NEMR but not DMA. Our proofs indicate that
IMA should work and DMA fail. Completing the problem
formalization in Sec. 3.1, we compute analytical faithful
encoders f for these datasets distorted by a random matrix
D. The solutions behave as expected: On FourBars, only
the DMA criterion delivers perfectly recovered components
(DCI=1) whereas only IMA succeeds on ColorBars.

4.2 CORRELATED COMPONENTS

We now move to the common Shapes3D (Burgess and Kim,
2018) dataset. It shows geometric bodies that vary in their
colors, shape, orientation, size, and background totaling six
components. Compared to the previous section we train
real encoders. We start our analysis where disentanglement
learning is no longer possible: When components are cor-
related. Following Träuble et al. (2021), the dataset is re-
sampled such that two components zi, zj ∈ [0, 1] follow
zi − zj ∼ N (0, s2). Lower s results in a stronger correla-
tion where only few pairs of component values co-occur
frequently. We choose a moderate correlation of s = 0.4
here and three pairs zi, zj that are nominal/nominal, nom-
inal/ordinal, and ordinal/ordinal variables. We train four
state-of-the-art disentanglement learning VAEs (BetaVAE
(Higgins et al., 2017), FactorVAE (Kim and Mnih, 2018),
BetaTCVAE (Chen et al., 2018), DipVAE (Kumar et al.,
2018)) from a recent study (Locatello et al., 2019) and ap-
ply ICA, PCA, and our DMA and IMA discovery methods
on their embedding spaces to post-hoc recover the original
components. For DMA and IMA, we use the optimization-
based algorithms (Eqn. 1) since they appear more robust to
the noisy gradient estimates as demonstrated in App. C.1.

Sec. 4.2 shows the resulting DCI scores. In line with Träuble
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Correlated
components

floor &
background

orientation &
background

orientation &
size

BetaVAE 0.497± 0.03 0.581± 0.04 0.491± 0.05
+PCA 0.263± 0.03 -47% 0.310± 0.02 -47% 0.324± 0.04 -34%
+ICA 0.574± 0.04 +16% 0.540± 0.08 -7% 0.577± 0.04 +17%

+Ours (IMA) 0.617± 0.02 +24% 0.602± 0.05 +3% 0.579± 0.03 +18%
+Ours (DMA) 0.641± 0.03 +29% 0.624± 0.06 +7% 0.627± 0.03 +28%

FactorVAE 0.507± 0.11 0.502± 0.08 0.712± 0.01
+PCA 0.358± 0.07 -29% 0.474± 0.05 -5% 0.556± 0.03 -22%
+ICA 0.294± 0.07 -42% 0.263± 0.05 -48% 0.340± 0.03 -52%

+Ours (IMA) 0.551± 0.04 +9% 0.498± 0.03 -1% 0.595± 0.05 -16%
+Ours (DMA) 0.584± 0.05 +15% 0.510± 0.05 +2% 0.556± 0.04 -22%

BetaTCVAE 0.619± 0.01 0.613± 0.04 0.659± 0.01
+PCA 0.400± 0.03 -35% 0.421± 0.07 -31% 0.450± 0.07 -32%
+ICA 0.540± 0.02 -13% 0.497± 0.04 -19% 0.627± 0.02 -5%

+Ours (IMA) 0.623± 0.02 +1% 0.652± 0.03 +6% 0.638± 0.04 -3%
+Ours (DMA) 0.666± 0.01 +8% 0.664± 0.02 +8% 0.748± 0.03 +14%

DipVAE 0.631± 0.02 0.652± 0.02 0.548± 0.04
+PCA 0.158± 0.01 -75% 0.160± 0.02 -75% 0.170± 0.02 -69%
+ICA 0.630± 0.02 -0% 0.651± 0.02 -0% 0.542± 0.03 -1%

+Ours (IMA) 0.644± 0.02 +2% 0.624± 0.01 -4% 0.558± 0.05 +2%
+Ours (DMA) 0.684± 0.01 +8% 0.679± 0.01 +4% 0.601± 0.05 +10%

Table 2: DMA recovers the components best in 11 out of 12
cases across different models and correlated components of
Shapes3D. Mean ± std. err. of DCI across all components.

e1

e2

e3

e4

e5

e6

DCI score=0.70

(a) Autoencoder (DipVAE)

m1

m2

m3

m4

m5

m6

DCI score=0.74

(b) Autoencoder + DMA (ours)

Figure 4: DMA discovers directions m that control individ-
ual concepts (wall & floor color) of Shapes3D although they
are confused in the original embedding space (e1, e2).

et al. (2021), we find that the disentanglement learning VAEs
fail to reover the correlated components on their own due to
their violated stochastic independence assumption (Fig. 4a).
In eleven of the twelve model/correlation pairs, DMA or
IMA identify better concepts than the VAE unit axes and
the than PCA/ICA components with improvments of up to
29 %. This experiment shows that their concept discovery
works regardless of (1) the model type and (2) the type of
components correlated. On average, DMA delivers better
results than IMA (+0.047), despite the generative process
of Shapes3D only being roughly IMA or DMA-compliant.
This indicates that the DMA criterion might be more ro-
bustly optimizable in practice. Fig. 4b visualizes the perfor-
mance achieved via DMA when traversing the embedding
space. It also shows that small DCI differences can mean
a significant improvement. This is because (1) the metric
is computed across all six components and the strong base-
lines already identify many concepts and (2) a perfect score
of 1.0 is usually not possible due to non-linearly encoded
components. We investigate other correlation strengths with
similar findings in App. D.3.

0.0 0.2 0.4 0.6 0.8 1.0

Correlation strength

0.25

0.50

0.75

D
C

I

(a) Correlation strength

0 3 6 9 12 15

Number of correlated pairs

0.25

0.50

0.75

D
C

I

(b) Number pairwise corr.

Figure 5: DMA and IMA recover the components even
under strong and multiple correlations between them. ICA
and PCA fail to return better components than the unit axes.

Method s = 0.1 s = 0.15 s = 0.2 s =∞
unit dirs. 0.238± 0.01 0.244± 0.01 0.247± 0.01 0.286± 0.02

PCA 0.238± 0.01 0.376± 0.03 0.373± 0.03 0.343± 0.03
ICA 0.409± 0.02 0.309± 0.02 0.311± 0.01 0.652± 0.00

(Ours) IMA 0.295± 0.01 0.302± 0.01 0.333± 0.04 0.266± 0.12
(Ours) DMA 0.435± 0.01 0.411± 0.03 0.392± 0.02 0.369± 0.05

Table 3: Without correlations (s = ∞), ICA is able to
recover the components of a classification model. Under
correlations, DMA works best. Mean ± std. err. of DCI.

4.3 GAUSSIANITY AND MULTIPLE
CORRELATIONS

In this section, we increase the distributional challenges to
analyze whether our approaches are as distribution-agnostic
as intended. We sample the components of Shapes3D from
a (rotationally-symmetric) Gaussian. Additionally, we in-
troduce correlations between multiple components to its
covariance matrix. Details on how covariance matrices are
constructed are given in App. C.3.

First, we study a single pair of correlated components (floor
and background color) with increasing correlation strength
ρ. Fig. 5a shows that the BetaVAE handles low correlations
well but starts deteriorating from a strength of ρ > 0.5,
along with ICA. The DCI of our methods is an average con-
stant of +0.145 above the BetaVAE’s for ρ ≤ 0.85. After
this, it returns to the underlying BetaVAE’s DCI, possibly
because the two components collapsed in the BetaVAE’s
embedding space. For Fig. 5b, we gradually add more mod-
erately correlated (ρ ≈ 0.7) pairs to the Gaussian’s covari-
ance matrix until eventually all components are correlated.
Again, our models show a constant benefit over the underly-
ing BetaVAE’s DCI curve. This experiment highlights that
both DMA and IMA perform well with (1) strong and (2)
muliple correlations and (3) Gaussian components.

4.4 DISCRIMINATIVE EMBEDDING SPACES

We highlight that our approach is also applicable to classifi-
cation models that were trained in a purely discriminative
manner, e.g., the feature space of a CNN model. To investi-
gate this setting, we set up an 8-class classification problem
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...
Primary color: White

+−

...
Back color: Buff

+−

3.120.06.630.011.54 86.18 38.51 75.46 77.50 75.46

1.960.03.160.00.0 42.11 49.63 53.42 19.58 42.11

Figure 6: Each component discovered by DMA on CUB correlates with an interpretable ground truth attribute. Images are
ordered by their concept scores (Me)i, and the numbers show their ground truth annotated attribute score.

on the Shapes3D dataset, where the combination of the four
binarized components object color, wall color (blue/red vs.
yellow/green), shape (cylinder vs. cube) and orientation (left
vs. right) determines the class as visualized in App. C.4. To
make the setting even more realistic, we artificially add la-
beling noise close to the decision boundary, correlations as
in Sec. 4.2, and a small L2-regularizer on the embeddings,
keeping them in a reasonable range. We train a discrimina-
tive CNN with a K=6-dimensional embedding space.

The discriminative loss leads to a clustered distribution in
the embedding space. ICA expectedly works very well in
this highly non-Gaussian distribution, when no significant
correlations are present which is in line with the result in
Theorem 3.4. However, tables turn as we increasingly cor-
relate the floor and background color: Starting at s = 0.2,
DMA outperforms ICA and the other methods as can be
seen in table Sec. 4.2. While IMA leads to better concepts
over the unit directions, it does not reach the level of DMA.
Overall this demonstrates that our methods are applicable
to purely discriminative embedding spaces and are more
robust to high levels of correlations than ICA.

4.5 REAL-WORLD CONCEPT DISCOVERY

Last, we go beyond the traditional benchmarks and per-
form realistic concept discovery: We analyze the embedding
space of a ResNet50 classifier (He et al., 2016) trained on the
CUB-200-2011 (Wah et al., 2011) dataset consisting of high-
resolution images of birds. This amplifies the challenges of
the previous sections, i.e., a discriminative space, non-linear
component dependencies of varying strengths across mul-
tiple components, and a large 512-dimensional embedding
space. One restriction of this experiment is that CUB has
no data-generating components to compare against, so we
cannot report DCI scores. However, we qualitatively show
that DMA can deliver interpretable concepts by matching
them to annotated attributes of CUB.

We apply DMA and IMA to discover K=30 concepts of
which the first two are shown exemplarily in Fig. 6. The
images with the highest positive scores on the first com-
ponent (on the right) consistently show white birds. The
other end of the component comprises birds whose primary

color is black. This gives a high Spearman rank correlation
with the CUB attribute “primary color: white”. The second
concept is similarly interpretable. To quantify this across all
K components, we provide an initial quantitative evaluation
based on the Spearman rank correlation between compo-
nents and attributes in App. D.6. It indicates that ICA and
PCA have problems providing such components and the
components identified by DMA usually correspond more
closely to the attributes. While the construction of further
quantitative evaluation schemes goes beyond the scope of
this work, these promising results highlight that DMA also
works for high-dimensional, real-world datasets.

5 DISCUSSION AND CONCLUSION

Summary. We proposed identifiability as a minimal require-
ment for concept discovery algorithms. Furthermore, we
suggested the two functional paradigms of disjoint and in-
dependent mechanisms and proved that they can recover
known components in visual embedding spaces. Extensive
experiments confirmed that they offer substantial improve-
ments on various generative and discriminative models and
remain unaffected by distributional challenges.

Disjoint vs. independent mechanisms. Disjoint mecha-
nisms are grounded in visual compositionality properties,
whereas independent mechanisms are grounded in causal
principles. In theory, independent mechanisms (IMA) are
indisputably more general. Nevertheless, we empirically
observed superior results when optimizing disjoint mech-
anisms (DMA) for complex datasets. We hypothesize that
the disjoint loss is more robust to noisy gradient signals
and does not suffer from fragile identifiability conditions
(e.g., NEMR). Our theoretic results relying on IMA however
are more broadly applicable to non-vision tasks and are a
valuable starting point for further investigation.

Outlook. We believe our work to be a valuable step towards
a rigorous formalization of concept discovery. However,
the considered setup can be generalized in the future, for
instance to components that are not linearly encoded. This
would permit even stronger guarantees. While we have taken
a technical perspective, future work is required to investigate
the effect of improved concepts on upstream explanations.
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