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ABSTRACT

Tackling unfairness in graph learning models is a challenging task, as the unfair-
ness issues on graphs involve both attributes and topological structures. Existing
work on fair graph learning simply assumes that attributes of all nodes are avail-
able for model training and then makes fair predictions. In practice, however, the
attributes of some nodes might not be accessible due to missing data or privacy
concerns, which makes fair graph learning even more challenging. In this paper,
we propose FairAC, a fair attribute completion method, to complement missing
information and learn fair node embeddings for graphs with missing attributes.
FairAC adopts an attention mechanism to deal with the attribute missing problem
and meanwhile, it mitigates two types of unfairness, i.e., feature unfairness from
attributes and topological unfairness due to attribute completion. FairAC can be
applied to any graph and generate fair embeddings and thus can be applied to most
downstream tasks to improve their fairness performance. To our best knowledge,
FairAC is the first method that jointly addresses the graph attribution completion
and graph unfairness problems. Experimental results on benchmark datasets show
that our method achieves better fairness performance with less sacrifice in accu-
racy, compared with the state-of-the-art methods of fair graph learning.

1 INTRODUCTION

Graphs, such as social networks, biomedical networks, and traffic networks, are commonly ob-
served in many real-world applications. A lot of graph-based machine learning methods have been
proposed in the past decades, and they have shown promising performance in tasks like node simi-
larity measurement, node classification, graph regression, and community detection. In recent years,
graph neural networks (GNNs) have been actively studied Scarselli et al. (2008); Wu et al. (2020),
which are capable of modeling graphs with high-dimensional attributes in the non-Euclidean space
and have achieved great success in many areas such as recommender systems Ying et al. (2018) and
traffic forecasting Jiang & Luo (2021). However, it has been observed that many graphs are biased,
and thus GNNs trained on the biased graphs may be unfair with respect to certain sensitive attributes
such as demographic groups Liu et al. (2021). For example, in a social network, if the users with
the same gender have more active connections, the GNNs tend to pay more attention to such gender
information and lead to gender bias by recommending more friends to a user with the same gender
identity while ignoring other attributes like interests. And from the data privacy perspective, it is
possible to infer one’s sensitive information from the results given by GNNs Wang et al. (2022); Sun
et al. (2018). In a time when GNNs are widely deployed in the real world, this severe unfairness is
unacceptable. Thus, fairness in graph learning emerges and becomes notable very recently.

Existing work on fair graph learning mainly focuses on the pre-processing, in-processing, and post-
processing steps in the graph learning pipeline in order to mitigate the unfairness issues. The pre-
processing approaches modify the original data to conceal sensitive attributes. Fairwalk Rahman
et al. (2019) is a representative pre-processing method, which enforces each group of neighboring
nodes an equal chance to be chosen in the sampling process. In many in-processing methods, the
most popular way is to add a sensitive discriminator as a constraint, in order to filter out sensitive
information from original data. For example, FairGNN Dai & Wang (2021) adopts a sensitive
classifier to filter node embeddings. CFC Bose & Hamilton (2019) directly adds a filter layer to deal
with unfairness issues. The post-processing methods directly force the final prediction to satisfy
fairness constraints, like Hardt et al. (2016).
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When the graphs have complete node attributes, existing fair graph learning methods could obtain
promising performance on both fairness and accuracy. However, in practice, graphs may contain
nodes whose attributes are entirely missing due to various reasons (e.g., newly added nodes, and
data privacy concerns). Taking social networks as an example, a newly registered user may have
incomplete profiles. Given such incomplete graphs, existing fair graph learning methods would
fail, as they assume all the nodes have attributes for model training. Although FairGNN Dai &
Wang (2021) also involves the missing attribute problem, it only assumes that a part of the sensitive
attributes are missing. To the best of our knowledge, addressing the unfairness issue on graphs
with some nodes whose attributes are entirely missing has not been investigated before. Another
relevant topic is graph attribute completion Jin et al. (2021); Chen et al. (2020). It mainly focuses
on completing a precise graph but ignores the unfairness issues. In this work, we aim to jointly
complete a graph with missing attributes and mitigate unfairness at the feature level and topology
level.

In this paper, we study the new problem of learning fair feature embeddings for graphs with missing
attributes. Specifically, we aim to address two major challenges: (1) how to obtain meaningful node
embeddings for graphs with missing attributes, and (2) how to enhance fairness of node embeddings
with respect to sensitive attributes. To address these two challenges, we propose a fair attribute
completion framework named FairAC. For the first challenge, we adopt an autoencoder to obtain
feature embeddings for nodes with attributes and meanwhile we adopt an attention mechanism to
aggregate feature information of nodes with missing attributes from their direct neighbors. Then,
we address the second challenge by mitigating two kinds of unfairness, i.e., feature unfairness and
topological unfairness. We adopt a sensitive discriminator to regulate feature embeddings and create
a bias-free graph.

The main contributions of this paper are as follows:

• We present a new problem of achieving fairness on a graph with missing attributes. Dif-
ferent from the existing work, we assume that the attributes of some nodes are entirely
missing.

• We propose a new framework, FairAC, for fair graph attribute completion, which jointly
addresses unfairness issues from the feature and topology perspectives.

• FairAC is a generic fair graph attribute completion approach, thus can be used in many
graph-based downstream tasks.

• Extensive experiments on benchmark datasets demonstrate the effectiveness of our FairAC
framework in eliminating unfairness and maintaining comparable accuracy.

2 RELATED WORK

2.1 FAIRNESS IN GRAPH LEARNING

Recent work promotes fairness in graph-based machine learning Bose & Hamilton (2019); Rahman
et al. (2019); Dai & Wang (2021); Wang et al. (2022). They can be roughly divided into three
categories, i.e., the pre-processing methods, in-processing methods, and post-processing methods.

The pre-processing methods are applied before training downstream tasks by modifying train-
ing data. For instance, Fairwalk Rahman et al. (2019) improves the sampling procedure of
node2vec Grover & Leskovec (2016). Our FairAC framework can be viewed as a pre-processing
method, as it seeks to complete node attributes and use them as input of graph neural networks.
However, our problem is much harder than existing problems, because the attributes of some nodes
in the graph are entirely missing, including both the sensitive ones and non-sensitive ones. Given
an input graph with missing attributes, FairAC generates fair and complete feature embeddings and
thus can be applied to many downstream tasks, such as node classification, link prediction Liben-
Nowell & Kleinberg (2007); Taskar et al. (2003), PageRank Haveliwala (2003), etc. Graph learning
models trained on the refined feature embeddings would make fair predictions in those downstream
tasks.

There are plenty of fair graph learning methods as in-processing solutions. The most related work
is FairGNN Dai & Wang (2021). Different from the majority of problem settings on graph fair-
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Figure 1: Overview of our FairAC framework. FairAC is composed of three major modules, i.e.,
an autoencoder for embedding nodes, an attributes completion module, and sensitive classifiers for
mitigating feature unfairness and topological unfairness. The solid circles indicate nodes with full
attributes, while the empty circles indicate nodes without any attributes

ness. FairGNN assumes that only a limited number of nodes are provided with sensitive attributes.
Compared with the problem setting in FairGNN, our setting is more realistic and even more diffi-
cult. Besides sensitive attributes, the non-sensitive attributes of some nodes are also missing in our
setting. In addition to attribute completion, we have also designed novel de-biasing strategies to
mitigate feature unfairness and topological unfairness.

2.2 ATTRIBUTION COMPLETION ON GRAPHS

The problem of missing attributes is ubiquitous in reality. Several methods Liao et al. (2016); You
et al. (2020); Chen et al. (2020); He et al. (2022); Jin et al. (2021; 2022); Tu et al. (2022); Taguchi
et al. (2021) have been proposed to address this problem. GRAPE You et al. (2020) tackles the
problem of the missing attributes on tabular data using a graph-based approach. SAT Chen et al.
(2020) assumes that the topology representation and attributes share a common latent space, and thus
the missing attributes can be recovered by aligning the paired latent space. He et al. (2022); Jin et al.
(2021) extend such problem settings to heterogeneous graphs. HGNN-AC Jin et al. (2021) is an end-
to-end model, which does not recover the original attributes but generates attribute representations
that have sufficient information for the final prediction task. It is worth noting that existing methods
on graph attribute completion only focus on the attribute completion accuracy or performance of
downstream tasks, but none of them take fairness into consideration. Instead, our work pays attention
to the unfairness issue in graph learning, and we aim to generate fair feature embeddings for each
node by attribute completion, which contain the majority of information inherited from original
attributes but disentangle the sensitive information.

3 METHODOLOGY

3.1 PROBLEM DEFINITION

Let G = (V, E ,X ) denote an undirected graph, where V = {v1, v2, ..., vN} is the set of N nodes,
E ⊆ V × V is the set of undirected edges in the graph, X ∈ RN×D is the node attribute matrix,
and D is the dimension of attributes. A ∈ RN×N is the adjacency matrix of the graph G, where
Aij = 1 if nodes vi and vj are connected; otherwise, Aij = 0. In addition, S = {s1, s2, ..., sN}
denotes a set of sensitive attributes (e.g., age or gender) of N nodes, and Y = {y1, y2, ..., yN}
denotes the node labels. The goal of fair graph learning is to make fair predictions of node labels
with respect to the sensitive attribute, which is usually measured by certain fairness notations like
statistical parity Dwork et al. (2012) and equal opportunity Hardt et al. (2016). Statistical Parity
and Equal Opportunity are two group fairness definitions. Their detailed formulations are presented
below. The label y denotes the ground-truth node label, and the sensitive attribute s indicates one’s
sensitive group. For example, for binary node classification task, y only has two labels.
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Algorithm 1 FairAC framework algorithm
Input: G = (V, E ,X ), S
Output: Autoencoder fAE , Sensitive classifier Cs, Attribute completion
fAC

1: Obtain topological embedding T with DeepWalk
2: repeat
3: Obtain the feature embeddings H with fAE

4: Optimize the Cs by Equation 6
5: Optimize fAE to mitigate feature unfairness by loss LF

6: Divide V+ into Vkeep and Vdrop based on α
7: Obtain the feature embeddings of nodes with missing attributes Vdrop by fAC

8: Optimize fAC to achieve attribute completion by loss LC

9: Optimize fAC to mitigate topological unfairness by loss LT

10: until convergence
11: return fAE , Cs, fAC

• Statistical Parity Dwork et al. (2012). It refers to the equal acceptance rate, which can be
formulated as:

P (ŷ|s = 0) = P (ŷ|s = 1), (1)

where P (·) denoted the probability of · happens.

• Equal Opportunity Hardt et al. (2016). It means the probability of a node in a positive class
being classified as a positive outcome should be equal for both sensitive group nodes. It
mathematically requires an equal true positive rate for each subgroup.

P (ŷ = 1|y = 1, s = 0) = P (ŷ = 1|y = 1, s = 1). (2)

In this work, we mainly focus on addressing unfairness issues on graphs with missing attributes, i.e.,
attributes of some nodes are totally missing. Let V+ denote the set of nodes whose attributes are
available, and V− denote the set of nodes whose attributes are missing, V = {V+,V−}. If vi ∈ V−,
both Xi and si are unavailable during model training.

With the notations given below, the fair attribute completion problem is formally defined as:

Problem 1. Given a graph G = (V, E ,X ), where node set V+ ∈ V with the corresponding attributes
available and the corresponding sensitive attributes in S, learn a fair attribute completion model to
generate fair feature embeddings H for each node in V , i.e.,

f(G, S) → H, (3)

where f is the function we aim to learn. H should exclude any sensitive information while preserve
non-sensitive information.

3.2 FAIR ATTRIBUTE COMPLETION (FAIRAC) FRAMEWORK

We propose a fair attribute completion (FairAC) framework to address Problem 1. Existing fair
graph learning methods tackle unfairness issues by training fair graph neural networks in an end-
to-end fashion, but they cannot effectively handle graphs that are severely biased due to missing
attributes. Our FairAC framework, as a data-centric approach, deals with the unfairness issue from
a new perspective, by explicitly debiasing the graph with feature unfairness mitigation and fairness-
aware attribute completion. Eventually, FairAC generates fair embeddings for all nodes including
the ones without any attributes. The training algorithms are shown in Algorithm 1.

To train the graph attribute completion model, we follow the setting in Jin et al. (2021) and divide
the nodes with attributes (i.e., V+) into two sets: Vkeep and Vdrop. For nodes in Vkeep, we keep
their attributes, while for nodes in Vdrop, we temporally drop their attributes and try to recover
them using our attribute completion model. Although the nodes are randomly assigned to Vkeep

and Vdrop, the proportion of Vdrop is consistent with the attribute missing rate α of graph G, i.e.,

α = |V−|
|V| =

|Vdrop|
|V+| .
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Different from existing work on fair graph learning, we consider unfairness from two sources. The
first one is from node features. For example, we can roughly infer one’s sensitive information, like
gender, from some non-sensitive attributes like hobbies. It means that non-sensitive attributes may
imply sensitive attributes and thus lead to unfairness in model prediction. We adopt a sensitive
discriminator to mitigate feature unfairness. The other source is topological unfairness introduced
by graph topological embeddings and node attribute completion. To deal with the topological un-
fairness, we force the estimated feature embeddings to fool the sensitive discriminator, by updating
attention parameters during the attribute completion process.

As illustrated in Figure 1, our FairAC framework first mitigates feature unfairness for nodes with
attributes (i.e., Vkeep) by removing sensitive information implicitly contained in non-sensitive at-
tributes with an auto-encoder and sensitive classifier (Section 3.2.1). For nodes without features
(i.e., Vdrop), FairAC performs attribute completion with an attention mechanism (Section 3.2.2) and
meanwhile mitigates the topological unfairness (Section 3.2.3). Finally, the FairAC model trained
on Vkeep and Vdrop can be used to infer fair embeddings for nodes in V−.

The overall loss function of FairAC is formulated as:
L = LF + LC + βLT , (4)

where LF represents the loss for mitigating feature unfairness, LC is the loss for attribute comple-
tion, and LT is the loss for mitigating topological unfairness. β is a trade-off hyperparameter.

3.2.1 MITIGATING FEATURE UNFAIRNESS

The nodes in Vkeep have full attributes X , while some attributes may implicitly encode information
about sensitive attributes S and thus lead to unfair predictions. To address this issue, FairAC aims
to encode the attributes X⟩ of node i into a fair feature embedding Hi. Specifically, we use a
simple autoencoder framework together with a sensitive classifier. The autoencoder maps Xi into
embedding Hi, and meanwhile the sensitive classifier Cs is trained in an adversarial way, such that
the embeddings are invariant to sensitive attributes.

Autoencoder. The autoencoder contains an encoder fE and a decoder fD. fE encodes the original
attributes Xi to feature embeddings Hi, i.e., Hi = fE(Xi), and fD reconstructs attributes from the
latent embeddings, i.e., X̂i = fD(Hi), where the reconstructed attributes X̂ should be close to Xi as
possible. The loss function of the autoencoder is written as:

Lautoencoder =
1

|Vkeep|
∑

i∈Vkeep|

√
(X̂i −Xi)2, (5)

Sensitive classifier The sensitive classifier Cs is a simple multilayer perceptron (MLP) model. It
take feature embedding Hi as input and predicts the sensitive attribute ŝi, i.e., ŝi = Cs(Hi). When
the sensitive attributes are binary, we can use the binary cross entropy loss to optimize Cs:

LCs = − 1

|Vkeep|
∑

i∈Vkeep

si log ŝi + (1− si) log (1− ŝi). (6)

With the sensitive classifier Cs, we could leverage it to adversarially train the autoencoder, such
that fE is able to generate fair feature embeddings that can fool Cs. The loss LF is written as:
LF = Lautoencoder − βLCs

.

3.2.2 COMPLETING NODE EMBEDDINGS VIA ATTENTION MECHANISM

For nodes without attributes (Vdrop), FairAC makes use of topological embeddings and completes
the node embeddings Hdrop with an attention mechanism.

Topological embeddings. Recent studies reveal that the topology of graphs has similar semantic
information as the attributes Chen et al. (2020); McPherson et al. (2001); Pei et al. (2020); Zhu
et al. (2020). Inspired by this observation, we assume that the nodes’ topological information can
reflect the relationship between nodes’ attributes and the attributes of their neighbors. There are a
lot of off-the-shelf node topological embedding methods, such as DeepWalk Perozzi et al. (2014)
and node2vec Grover & Leskovec (2016). For simplicity, we adopt the DeepWalk method to extract
topological embeddings for nodes in V .
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Attention mechanism. For graphs with missing attributes, a commonly used strategy is to use
average attributes of the one-hop neighbors. This strategy works in some cases, however, simply
averaging information from neighbors might be biased, as the results might be dominated by some
high-degree nodes. In fact, different neighbors should have varying contributions to the aggregation
process in the context of fairness. To this end, FairAC adopts an attention mechanism Vaswani et al.
(2017) to learn the influence of different neighbors or edges with the awareness of fairness, and then
aggregates attributes information for nodes in Vdrop.

Given a pair of nodes (u, v) which are neighbors, the contribution of node v is the attention attu,v ,
which is defined as: attu,v = Attention(Tu, Tv), where Tu, Tv are the topological embeddings of
nodes u and v, respectively. Specifically, we only focus on the neighbor pairs and ignore those node
pairs that are not directly connected. Attention(·, ·) denotes the attention between two topological
embeddings, i.e., Attention(Tu, Tv) = σ(TT

u WTv), where W is the learnable parametric matrix,
and σ is an activation function. After we get all the attention scores between one node and its
neighbors, we can get the coefficient of each pair by applying the softmax function:

cu,v = softmax(attu,v) =
exp(attu,v)∑

s∈Nu
exp(attu,s)

, (7)

where cu,v is the coefficient of node pair (u, v), and Nu is the set of neighbors of node u. For node u,
FairAC calculates its feature embedding Ĥu by the weighted aggregation with multi-head attention:

Ĥu =
1

K

K∑
k=1

∑
s∈Nu

cu,sHs, (8)

where K is the number of attention heads. The loss for attribute completion with topological em-
bedding and attention mechanism is formulated as:

LC =
1

|Vdrop|
∑

i∈Vdrop|

√
(Ĥi −Hi)2. (9)

3.2.3 MITIGATING TOPOLOGICAL UNFAIRNESS

The attribute completion procedure may introduce topological unfairness since we assume that
topology information is similar to attributes relation. It is possible that the completed feature em-
beddings of Vdrop would be unfair with respect to sensitive attributes S. To address this issue,
FairAC leverages sensitive classifier Cs to help mitigate topological unfairness by further updating
the attention parameter matrix W and thus obtaining fair feature embeddings H. Inspired by Gong
et al. (2020), we expect that the feature embeddings can fool the sensitive classifier Cs to predict the
probability distribution close to uniform distribution over the sensitive category, by minimizing the
loss:

LT = − 1

|Vdrop|
∑

i∈Vdrop

si log ŝi + (1− si) log (1− ŝi). (10)

3.3 FAIRAC FOR NODE CLASSIFICATION

The proposed FairAC framework could be viewed as a generic data debiasing approach, which
achieves fairness-aware attribute completion and node embedding for graphs with missing attributes.
It can be easily integrated with many existing graph neural networks (e.g., GCN Kipf & Welling
(2016), GAT Veličković et al. (2018), and GraphSAGE Hamilton et al. (2017)) for tasks like node
classification. In this work, we choose the basic GCN model for node classification and assess how
FairAC enhances model performance in terms of accuracy and fairness.

4 EXPERIMENTS

In this section, we evaluate the performance of the proposed FairAC framework on three benchmark
datasets in terms of node classification accuracy and fairness w.r.t. sensitive attributes. We compare
FairAC with other baseline methods in settings with various sensitive attributes or different attribute
missing rates. Ablation studies are also designed to demonstrate the effectiveness of adversarial
learning that is used by FairAC to mitigate unfairness.
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Table 1: Comparisons of our FairAC method and baselines on three graphs. M refers to missing or
not. M is true means that some nodes’ attributes are entirely missing and the ratio is controlled by
α. Otherwise, full attributes are provided. The attribute missing rate α on each graph is set to 0.3.
GCN and FairGNN are trained on averaging attribute completed graphs. Bold fonts denote the best
results.

Dataset Method M Acc ↑ AUC ↑ ∆SP ↓ ∆EO↓ ∆SP+∆EO ↓
GCN ✓ 70.66±0.24 74.23±0.63 3.43±2.44 2.74±0.67 6.16±3.1
ALFR × 64.3±1.3 71.5±0.3 2.3±0.9 3.2±1.5 5.5±2.4

ALFR-e × 66.0±0.4 72.9±1.0 4.7±1.8 4.7±1.7 9.4±3.4
NBA Debias × 63.1±1.1 71.3±0.7 2.5±1.5 3.1±1.9 5.6±3.4

Debias-e × 65.6±2.4 72.9±1.2 5.3±0.9 3.1±1.3 8.4±2.2
FCGE × 66.0±1.5 73.6±1.5 2.9±1.0 3.0±1.2 5.9±2.2

FairGNN ✓ 70.73±0.44 76.77±0.1 0.95±0.7 1.63±0.67 2.58±1.37
FairAC (Ours) ✓ 70.66±0.73 74.44±0.67 0.28±0.25 0.63±0.34 0.91±0.59

GCN ✓ 67.4±0.88 72.04±1.78 1.96±0.64 4.17±0.54 6.12±1.18
ALFR × 65.4±0.3 71.3±0.3 2.8±0.5 1.1±0.4 3.9±0.9

ALFR-e × 68.0±0.6 74.0±0.7 5.8±0.4 2.8±0.8 8.6±1.2
Pokec-z Debias × 65.2±0.7 71.4±0.6 1.9±0.6 1.9±0.4 3.8±1.0

Debias-e × 67.5±0.7 74.2±0.7 4.7±1.0 3.0±1.4 7.7±2.4
FCGE × 65.9±0.2 71.0±0.2 3.1±0.5 1.7±0.6 4.8±1.1

FairGNN ✓ 66.54±0.45 70.10±0.07 0.95±0.70 1.63±0.67 2.58±0.57
FairAC (Ours) ✓ 66.94±0.14 72.87±0.13 0.19±0.07 0.12±0.07 0.31±0.14

GCN ✓ 66.12±0.88 71.5±0.1 0.46±0.1 1.41±0.14 1.87±0.24
ALFR × 63.1±0.6 67.7±0.5 3.05±0.5 3.9±0.6 3.95±1.1

ALFR-e × 66.2±0.4 71.9±1.0 4.1±1.8 4.6±1.7 8.7±3.5
Pokec-n Debias × 62.6±1.1 67.9±0.7 2.4±1.5 2.6±1.9 5.0±3.4

Debias-e × 65.6±2.4 71.7±1.2 3.6±0.9 4.4±1.3 8.0±2.2
FCGE × 64.8±1.5 69.5±1.5 4.1±1.0 5.5±1.2 9.6±2.2

FairGNN ✓ 68.54±0.45 70.10±0.07 0.76±0.15 0.48±0.09 1.24±0.24
FairAC (Ours) ✓ 66.35±0.24 72.32±0.08 0.27±0.12 0.14±0.11 0.41±0.23

4.1 DATASETS AND SETTINGS

Datasets. In the experiments, we use three public graph datasets, NBA, Pokec-z, and Pokec-n. A
detailed description is shown in supplementary materials.

Baselines. We compare our FairAC method with the following baseline methods: GCN Kipf &
Welling (2016), ALFR Edwards & Storkey (2015), ALFR-e, Debias Zhang et al. (2018), Debias-
e, FCGE Bose & Hamilton (2019), and FairGNN Dai & Wang (2021). ALFR-e concatenates the
feature embeddings produced by ALFR with topological embeddings learned by DeepWalk Perozzi
et al. (2014). Debias-e also concatenates the topological embeddings learned by DeepWalk with
feature embeddings learned by Debias. FairGNN is an end-to-end debias method which aims to
mitigate unfairness in label prediction task. GCN and FairGNN use average attribute completion
method, while other baselines use original complete attributes.

Evaluation Metrics. We evaluate the proposed framework with respect to two aspects: classi-
fication performance and fairness performance. Specifically, we use accuracy and AUC scores to
evaluate classification performance. As for fairness, we adopt ∆SP and ∆EO as the evaluation
metrics, which can be defined as:

∆SP = P (ŷ|s = 0)− P (ŷ|s = 1), (11)

∆EO = P (ŷ = 1|y = 1, s = 0)− P (ŷ = 1|y = 1, s = 1). (12)

The smaller ∆SP and ∆EO are, the more fair the model is. In addition, we use ∆SP+∆EO as an
overall indicator of a model’s performance on fairness.
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Table 2: Comparisons of our method with the baselines on pokec-z dataset with four levels of
attribute missing rates α. FairAC generates fair and complete node features, and then GCN is trained
for node classification. BaseAC is a simplified version of FairAC, which only has the attention-based
attribute completion module, but does not contain the module for mitigating feature unfairness and
topological unfairness. Bold fonts denote the best results.

α Method Acc (%)↑ AUC (%)↑ ∆SP (%)↓ ∆EO (%)↓ ∆SP+∆EO ↓
GCN 66.10 69.14 0.88 0.20 1.08

0.1 FairGNN 69.37 76.93 0.17 0.29 0.46
BaseAC (Ours) 66.37 69.34 0.07 1.46 1.53
FairAC (Ours) 66.33 69.35 0.14 0.37 0.51

GCN 66.52 70.26 1.32 3.63 4.95
0.3 FairGNN 66.21 70.29 1.08 0.30 1.38

BaseAC (Ours) 66.10 69.67 0.78 1.57 2.35
FairAC (Ours) 66.94 72.87 0.19 0.12 0.31

GCN 66.41 70.14 0.07 2.11 2.18
0.5 FairGNN 66.25 70.13 0.47 1.71 2.18

BaseAC (Ours) 66.13 69.93 0.38 1.60 1.98
FairAC (Ours) 66.45 72.95 0.14 1.06 1.20

GCN 66.99 73.13 0.57 1.74 2.31
0.8 FairGNN 66.60 71.35 0.94 0.09 1.03

BaseAC (Ours) 66.06 71.21 0.08 2.20 2.28
FairAC (Ours) 66.10 71.66 0.01 0.69 0.70

4.2 RESULTS AND ANALYSIS

4.2.1 UNFAIRNESS ISSUES IN GRAPH NEURAL NETWORKS

According to the results showed in Table 1, they reveal several unfairness issues in Graph Neural
Networks. We divided them into two categories.

• Feature unfairness Feature unfairness is that some non-sensitive attributes could infer
sensitive information. Hence, some Graph Neural Networks may learn this relation and
make unfair prediction. In most cases, ALFR and Debias and FCGE have better fairness
performance than GCN method. It is as expected because the non-sensitive features may
contain proxy variables of sensitive attributes which would lead to biased prediction. Thus,
ALFR and Debias methods that try to break up these connections are able to mitigate
feature unfairness and obtain better fairness performance. These results further prove the
existence of feature unfairness.

• Topological unfairness Topological unfairness is sourced from graph structure. In other
words, edges in graph, i.e. the misrepresentation due to the connectionMehrabi et al. (2021)
can bring topological unfairness. From the experiments, ALFR-e and Debias-e have worse
fairness performance than ALFR and Debias, respectively. It shows that although graph
structure can improve the classification performance, it will bring topological unfairness
consequently. The worse performance on fairness verifies that topological unfairness exists
in GNNs and graph topological information could magnify the discrimination.

4.2.2 EFFECTIVENESS OF FAIRAC ON MITIGATING FEATURE AND TOPOLOGICAL
UNFAIRNESS

The results of our FairAC method and baselines in terms of the node classification accuracy and
fairness metrics on three datasets are shown in Table 1. The best results are shown in bold. Generally
speaking, we have the following observations. (1). The proposed method FairAC shows comparable
classification performance with these baselines, GCN and FairGNN. This suggests that our attribute
completion method is able to preserve useful information contained in the original attributes. (2).
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FairAC outperforms all baselines regarding fairness metrics, especially in ∆SP+∆EO. FairAC
outperform baselines that focus on mitigate feature fairness, like ALFR, which proves that FairAC
also mitigate topological unfairness. Besides, it is better than those who take topological fairness
into consideration, like FCGE, which also validates the effectiveness of FairAC. FairGNN also has
good performance on fairness, because it adopts a discriminator to deal with the unfairness issue.
Our method performs better than FairGNN in most cases. Overall, the results in Table 1 validate the
effectiveness of FairAC in mitigating unfairness issues.

4.3 ABLATION STUDIES

Attribute missing rate. In our proposed framework, the attribute missing rate indicates the in-
tegrity of node attribute matrix, which has a great impact on model performance. Here we investigate
the performance of our FairAC method and baselines on dealing with graphs with varying degrees of
missing attributes. In particular, we set the attribute missing rate to 0.1, 0.3, 0.5 and 0.8, and evaluate
FairAC and baselines on the pokec-z dataset. The detailed results are presented in Table 2. From the
table, we have the following observations. (1). The accuracy drops as α increases, which validates
the assumption that missing data will have a negative impact on the node classification performance.
(2). With varying values of α, FairAC is able to maintain its high fairness performance. Especially
when α reaches 0.8, FairAC can greatly outperform other methods. It proves that FairAC is effective
even if the attributes are largely missing.

The effectiveness of adversarial learning. A key module in FairAC is adversarial learning, which
is used to mitigate feature unfairness and topological unfairness. To investigate the contribution of
adversarial learning in FairAC, we implement a BaseAC model, which only has the attention-based
attribute completion module, but does not contain the adversarial learning loss terms. Comparing
BaseAC with FairAC in Table 2, we can find that the fairness performance drops desperately when
the adversarial training loss is removed. Since BaseAC does not have an adversarial discriminator to
regulate feature encoder as well as attribute completion parameters, it is unable to mitigate unfair-
ness. Overall, the results confirm the effectiveness of the adversarial learning module in our FairAC
framework.

Figure 2: Accuracy and ∆SP+∆EO of
FairAC when varying β on Pokec-z dataset
with α = 0.3.

Parameter analysis We investigate how the hy-
perparameters affect the performance of FairAC.
The most important hyperparameter in FairAC is β,
which adjusts the trade-off between fairness and at-
tribute completion. We report the results with differ-
ent hyperparameter values. We set β to 0.2, 0.4, 0.7,
0.8 and 0 that is equivalent to the BaseAC. We also
fix other hyperparameters by setting α to 0.3. As
shown in Figure 2, we can find that, as β increases,
the fairness performance improves while the accu-
racy of node classification slightly declined. There-
fore, it validates our assumption that there is a trade-
off between fairness and attribute completion, and
our FairAC is able to enhance fairness without com-
promising too much on accuracy.

5 CONCLUSIONS

In this paper, we presented a novel problem, i.e., fair attribute completion on graphs with missing
attributes. To address this problem, we proposed the FairAC framework, which jointly completes the
missing features and mitigates unfairness. FairAC leverages the attention mechanism to complete
missing attributes and adopts a sensitive classifier to mitigate implicit feature unfairness as well as
topological unfairness on graphs. Experimental results on three real-world datasets demonstrate the
superiority of the proposed FairAC framework over baselines in terms of both node classification
performance and fairness performance. As a generic fair graph attributes completion approach,
FairAC can also be used in other graph-based downstream tasks, such as link prediction, graph
regression, pagerank, clustering, and so on.
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Table 3: Statistics of three graph datasets.

Dataset NBA Pokec-z Pokec-n

# of nodes 403 67,797 66,569
# of edges 16,570 882,765 729,129
Density 0.10228 0.00019 0.00016
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A APPENDIX

A.1 DATASETS AND SETTINGS

Datasets. In the experiments, we use three public graph datasets, NBA, Pokec-z, and Pokec-
n. The detailed explanation is shown in supplementary materials. The NBA dataset Dai & Wang
(2021) is extended from a Kaggle dataset containing around 400 NBA basketball players. It provides
the performance statistics of those players in the 2016-2017 season and their personal profiles, e.g.,
nationality, age, and salary. Their relationships are obtained from Twitter. We use their nationality,
whether one is U.S. player or oversea player, as the sensitive attribute. The node label is binary,
indicating whether the salary of the player is over median or not. Pokec Takac & Zabovsky (2012)
is an online social network in Slovakia, which contains millions of anonymized data of users. It
has a variety of attributes, such as gender, age, education, region, etc. Based on the region where
users belong to, Dai & Wang (2021) sampled two datasets named as: Pokec-z and Pokec-n. In our
experiments, we consider the region or gender as sensitive attribute, and working field as label for
node classification. The statistics of three datasets are summarized in supplementary materials. The
statistics of three datasets are summarized in Table 3.

Baselines. We compare our FairAC method with the following baseline methods:

• GCN Kipf & Welling (2016) with average attribute completion. GCN is a classical
graph neural network model, which has obtained very promising performance in numerous
applications. The standard GCN cannot handle graphs with missing attributes. In the
experiments, we use the average attribute completion strategy to preprocess the feature
matrix, by using the averaged attributes of one’s neighbors to approximate the missing
attributes. After average attribute completion, GCN takes the graph with completed feature
matrix as inputs to learn node embeddings and predict node labels.

• ALFR Edwards & Storkey (2015) with full attributes. This is a pre-processing method.
It utilize a discriminator to remove the sensitive feature information in feature embeddings
produced by an Autoencoder. Since this method need full sensitive attributes and full fea-
tures, we give them complete information. In other words, the missing rate α is set to
0.
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Table 4: Comparisons of our method with the baselines on pokec-n dataset with three levels of
attribute missing rates α. FairAC generates fair and complete node features, and then GAT is trained
for node classification. Bold fonts denote the best results.

α Method Acc (%)↑ AUC (%)↑ ∆SP (%)↓ ∆EO (%)↓ ∆SP+∆EO ↓
GAT 67.77 73.57 1.02 3.38 3.40

0.3 FairGNN 66.55 68.64 0.45 0.99 1.44
FairAC (Ours) 67.25 72.96 0.23 0.10 0.33

GAT 68.59 73.97 0.30 1.96 2.26
0.5 FairGNN 68.09 72.22 0.81 1.55 2.36

FairAC (Ours) 66.36 70.66 0.09 0.32 0.41

GAT 67.59 71.62 3.69 7.15 10.84
0.7 FairGNN 62.36 67.99 2.95 3.55 6.50

FairAC (Ours) 66.64 69.59 0.18 4.19 4.37

• ALFR-e with full attributes. Based on ALFR, ALFR-e utilize the topological informa-
tion. It concatenates the feature embeddings produced by ALFR with topological embed-
dings learned by DeepWalkPerozzi et al. (2014). It also relys on complete information.

• Debias Zhang et al. (2018) with full attributes. This is an in-processing method. It
applies a discriminator on node classifier in order to make the probability distribution be
the same w.r.t. sensitive attribute. Since the discriminator needs the full sensitive attributes,
we provide full node features.

• Debias-e with full attributes. Similar to ALFR-e. It also concatenates the topological
embeddings learned by DeepWalkPerozzi et al. (2014) with feature embeddings learned by
Debias.

• FCGE Bose & Hamilton (2019) with full attributes. It learns fair node embeddings in
graph without node features through edge prediction only. An discriminator is also applied
to mitigate sensitive information in topological perspective.

• FairGNN Dai & Wang (2021) with average attribute completion. Although FairGNN
trains a sensitive attribute discriminator as an adversarial regularizer to enhance the fairness
of GNNs, it still cannot deal with graphs with missing attributes. Thus, we use the average
attribute completion method to complete the feature matrix, and then train a FairGNN
model for node classification.

Implementation Details. Each dataset is randomly split into 75%/25% training/test set as Dai
& Wang (2021). Besides, we randomly drop node attributes based on the attribute missing rate,
α, which means the attributes of α × |V| nodes will be unavailable. For each datasets, we choose
a specific attribute as the sensitive attribute. In particular, region, and nation are selected as the
sensitive attribute for the pokec, and nba datasets, respectively. Unless otherwise specified, we
generate 128-dimension node embeddings and set the attribute missing rate α to 0.3, and set the
hyperparameters of FairAC as: β = 1 for pokec-z and nba datasets, and β = 0.5 for pokec-n
dataset. We adopt Adam Kingma & Ba (2014) with the learning rate of 0.001 and weight decay as
1e − 5. We adopt the DeepWalk Perozzi et al. (2014) method to generate topological embedding
for each node. Specifically, we use the DeepWalk implementation provided by the Karate Club
library Rozemberczki et al. (2020). We set walk length as 100, embedding dimension as 64, window
size as 5, and epochs as 10.

A.2 ADDITIONAL EXPERIMENTS

Evaluations on GAT Veličković et al. (2018) model. As discussed in the main paper, the pro-
posed FairAC method can be easily integrated with existing graph neural networks. Extensive re-
sults in Section 4 of the main paper demonstrate that the combination of FairAC and GCN performs
very well. In this section, we integrate FairAC with another representative graph neural network
model, GAT Veličković et al. (2018). The results of our method and two main baselines in terms
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of the node classification accuracy and fairness metrics are shown in Table 4. In these experiments,
FairAC generates fair and complete node features, and then GAT is trained for node classification.
We also investigate the performance of our FairAC method and baselines on dealing with graphs
with varying degrees of missing attributes. We set the attribute missing rate to 0.1, 0.3, 0.5 and 0.7,
and evaluate FairAC and baselines on the Pokec-n dataset. In addition, we set β to 1.0. The best
results are shown in bold. Generally speaking, we have the following observations. (1). The pro-
posed method FairAC shows comparable classification performance with two baselines, GAT and
FairGNN. This suggests that our attribute completion method is able to work well under different
downstream models. It further demonstrates that FairAC can preserve useful information implied
in the original attributes. (2). FairAC has comparable results with two baselines regarding fairness
metrics. Especially when α is greater than 0.3, FairAC can greatly outperform other methods, which
proves that FairAC is effective even if the attributes are largely missing. Overall, the results in Table
4 validate the effectiveness of FairAC in mitigating unfairness issues and show the compatibility
with varying downstream models.
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