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ABSTRACT

Source code summarization aims to generate natural language summaries from
structured code snippets for better understanding code functionalities. However, au-
tomatic code summarization is challenging due to the complexity of the source code
and the language gap between the source code and natural language summaries.
Most previous approaches either rely on retrieval-based (which can take advantage
of similar examples seen from the retrieval database, but have low generalization
performance) or generation-based methods (which have better generalization per-
formance, but cannot take advantage of similar examples). This paper proposes a
novel retrieval-augmented mechanism to combine the benefits of the both worlds.
Furthermore, to mitigate the limitation of Graph Neural Networks (GNNs) on
capturing global graph structure information of source code, we propose a novel
attention-based dynamic graph to complement the static graph representation of the
source code, and design a hybrid message passing GNN for capturing both the local
and global structural information. To evaluate the proposed approach, we release
a new challenging benchmark, crawled from diversified large-scale open-source
C projects (total 95k+ unique functions in the dataset). Our method achieves the
state-of-the-art performance, improving existing methods by 1.65, 1.76 and 1.81
in terms of BLEU-4, ROUGE-L and METEOR.

1 INTRODUCTION

With software growing in size and complexity, developers tend to spend nearly 90% (Wan et al., 2018)
effort on software maintenance (e.g., version iteration and bug fix) in the completed life cycle of
software development. Source code summary, in the form of natural language, plays a critical role in
comprehension and maintenance process and greatly reduces the effort of reading and comprehending
programs. However, manually writing code summaries is tedious and time-consuming, and with the
acceleration of software iteration, it has become a heavy burden for software developers. Hence,
source code summarization which automates concise descriptions of programs is meaningful.

Automatic source code summarization is a crucial yet far from settled problem. The key challenges
include: 1) the source code and the natural language summary are heterogeneous, which means
they may not share common lexical tokens, synonyms, or language structures and 2) the source
code is complex with complicated logic and variable grammatical structure, making it hard to learn
the semantics. Conventionally, information retrieval (IR) techniques have been widely used in
code summarization (Eddy et al., 2013; Haiduc et al., 2010; Wong et al., 2015; 2013). Since code
duplication (Kamiya et al., 2002; Li et al., 2006) is common in “big code” (Allamanis et al., 2018),
early works summarize the new programs by retrieving the similar code snippet in the existing code
database and use its summary directly. Essentially, the retrieval-based approaches transform the code
summarization to the code similarity calculation task, which may achieve promising performance on
similar programs, but are limited in generalization, i.e. they have poorer performance on programs
that are very different from the code database.

To improve the generalization performance, recent works focus on generation-based approaches.
Some works explore Seq2Seq architectures (Bahdanau et al., 2014; Luong et al., 2015) for generate
summaries from the given source code. The Seq2Seq-based approaches (Iyer et al., 2016; Hu et al.,
2018a; Alon et al., 2018) usually treat the source code or abstract syntax tree parsed from the
source code as a sequence and follow a paradigm of encoder-decoder with attention mechanism for
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generating a summary. However, these works only rely on sequential models, which are struggling
to capture the rich semantics of source code e.g., control dependencies and data dependencies. In
addition, generation-based approaches typically cannot take advantage of similar examples from the
retrieval database, as retrieval-based approaches do.

To better learn the semantics of the source code, Allamanis et al. (Allamanis et al., 2017) lighted
up this field by representing programs as graphs. Some follow-up works (Fernandes et al., 2018)
attempted to encode more code structures (e.g., control flow, program dependencies) into code graphs
with graph neural networks (GNNs), and achieved the promising performance than the sequence-
based approaches. Existing works (Allamanis et al., 2017; Fernandes et al., 2018) usually convert
code into graph-structured input during preprocessing, and directly consume it via modern neural
networks (e.g., GNNs) for computing node and graph embeddings. However, most GNN-based
encoders only allow message passing among nodes within a k-hop neighborhood (where k is usually
a small number such as 4) to avoid over-smoothing (Zhao & Akoglu, 2019; Chen et al., 2020), thus
capture only local neighborhood information and ignore global interactions among nodes. Even
there are some works (Li et al., 2019) that try to address this challenging with deep GCNs (i.e., 56
layers) (Kipf & Welling, 2016) by the residual connection (He et al., 2016), however, the computation
cost cannot endure in the program especially for a large and complex program. For example, on our
benchmark, the average/max node size of functions are 70/200 and the average node degree is 1.77.

To address these challenges, we propose a framework for automatic code summarization, namely
Hybrid-GNN (HGNN). Specifically, from the source code, we first construct a code property graph
(CPG) based on abstract syntax tree (AST) with different types of edges (i.e., Flow To, Reach). In
order to combine the benefits of both retrieval-based and generation-based methods, we propose
a novel retrieval-based augmentation mechanism to retrieve the source code that is most similar
to the current program from the retrieval database (excluding the current program itself), and add
the retrieved code as well as the corresponding summary as auxiliary information for training the
model. In order to go beyond local graph neighborhood information, and capture global interactions
in the program, we further propose an attention-based dynamic graph by learning global attention
scores (i.e., edge weights) in the augmented static CPG. Then, a hybrid message passing (HMP) is
performed on both static and dynamic graphs. We also release a new code summarization benchmark
by crawling data from popular and diversified projects containing 95k+ functions in C programming
language and make it public 1. We highlight our main contributions as follows:

• We propose a general-purpose framework for automatic code summarization, which combines
the benefits of both retrieval-based and generation-based methods via a novel retrieval-based
augmentation mechanism.

• We innovate a Hybrid-GNN by fusing the static graph (based on code property graph) and dynamic
graph (via structure-aware global attention mechanism) to mitigate the limitation of the GNN on
capturing global graph information.

• We release a new challenging C benchmark for the task of source code summarization.

• We conduct an extensive experiment to evaluate our framework. The proposed approach achieves
the state-of-the-art performance and improves existing approaches by 1.65, 1.76 and 1.81 in terms
of BLEU-4, ROUGE-L and METEOR metrics.

2 HYBRID-GNN FRAMEWORK

In this section, we introduce the proposed framework Hybrid-GNN (HGNN), as shown in Figure 1,
which mainly includes four components: 1) Retrieval-augmented Static Graph Construction (c.f.,
Section 2.2), which incorporates retrieved code-summary pairs to augment original code for learning.
2) Attention-based Dynamic Graph Construction (c.f., Section 2.3), which allows message passing
among any pair of nodes via a global attention mechanism. 3) HGNN, (c.f., Section 2.4), which
incorporates information from both static graphs and dynamic graphs with Hybrid Message Passing.
4) Decoder (c.f., Section 2.5), which utilizes an attention-based LSTM (Hochreiter & Schmidhuber,
1997) model to generate a summary.

1C-Code-Summarization Benchmark
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Figure 1: The framework of our Hybrid-GNN. Best viewed in color.

2.1 PROBLEM FORMULATION

In this work, we focus on generating summaries for the given functions (Wan et al., 2018; Zhang
et al., 2020). We define a dataset as D = {(c, s)|c ∈ C, s ∈ S}, where c is the source code of
a function in the function set C and s represents its targeted summary in S. The task of code
summarization is, given a source code c, to generate the best summary consisting of a sequence of
tokens ŝ = (t1, t2, ..., tT ) which maximizes the conditional likelihood ŝ = argmaxsP (s|c). In this
paper, we follow the problem setting and propose the technique to learn the mapping from the source
code to the natural language summary.

2.2 RETRIEVAL-AUGMENTED STATIC GRAPH

2.2.1 GRAPH INITIALIZATION

The source code of a function can be represented as Code Property Graph (CPG) (Yamaguchi et al.,
2014), which is built on the abstract syntax tree (AST) with different type of edges (i.e., Flow To,
Control, Define/Use, Reach). Formally, one raw function c could be represented by a multi-edged
graph g(V, E), where V is the set of AST nodes, (v, u) ∈ E denotes the edge between the node v and
the node u. A node v consists of two parts: the node sequence and the node type. An illustrative
example is shown in Figure 2. For example, in the red node, a%2 == 0 is the node sequence and
Condition is the node type. An edge (v, u) has a type, named edge type, e.g., AST type and Flow
To type. For more details about the CPG, please refer to Appendix A.

Initialization Representation. Given a CPG, we utilize a BiLSTM to encode its nodes. We represent
each token of the node sequence, each node type and each edge type using the learned embedding
matrix Eseqtoken, Enodetype and Eedgetype, respectively. Then nodes and edges of the CPG can be
encoded as:

h1, ...,hl = BiLSTM(Eseqtoken
v,1 , ...,Eseqtoken

v,l )

encode_node(v) = linear(concat[Enodetype
v ;h→1 ;h←l ])

encode_edge(v, u) = Eedgetype
v,u if (v, u) ∈ E else 0

(1)

where l is the number of tokens in the node sequence of v. For the sake of simplicity, in the following
section, we use hv and ev,u to represent the embedding of the node v and the edge (v, u), respectively,
i.e., encode_node(v) and encode_edge(v, u). Given the source code c of a function as well as the
CPG g(V, E), Hc ∈ Rm×d denotes the initial node matrix of the CPG, where m is the total number
of nodes in the CPG and d is the dimension of the node embedding.

2.2.2 RETRIEVAL-BASED AUGMENTATION

While retrieval-based methods can perform reasonably well on examples that are similar to those
examples from a retrieval database, they typically have low generalization performance and might
perform poorly on dissimilar examples. On the contrary, generation-based methods usually have better
generalization performance, but cannot take advantage of similar examples from the retrieval database.
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Figure 2: An example of Code Property Graph (CPG).

In this work, we propose to combine the benefits of the two worlds, and design a retrieval-augmented
generation framework for the task of code summarization.

In principle, the goal of code summarization is to learn a mapping from source code c to the natural
language summary s = f(c). In other words, for any source code c′, a code summarization system
can produce its summary s′ = f(c′). Inspired by this observation, conceptually, we can derive
the following formulation s = f(c) − f(c′) + s′. This tells us that we can actually compute the
semantic difference between c and c′, and further obtain the desired summary s for c by considering
both the above semantic difference and s′ which is the summary for c′. Mathmatically, our goal
becomes to learn a function which takes as input c, c′ and s′ and outputs the summary s for c, that
is, s = g(c, c′, s′). This motivates us to design our Retrieval-based Augmentation mechanism, as
detailed below.

Step 1: Retrieving. For each sample (c, s) ∈ D, we retrieve the most similar sample: (c′, s′) =
argmax(c′,s′)∈D′sim(c, c′), where c 6= c′, D′ is a given retrieval database and sim(c, c′) is the text
similarity. Following Zhang et al. (2020), we utilize Lucene for retrieval and calculate the similarity
score z between the source code c and the retrieved code c′ by dynamic programming (Bellman,
1966) z = 1− dis(c,c′)

max(|c|,|c′|) , where dis(c, c′) is the text edit distance.

Step 2: Retrieved Code-based Augmentation. Given the retrieved source code c′ for the current
sample c, we adopt a fusion strategy to inject retrieved semantics into the current sample. The fusion
strategy is based on their initial graph representations (Hc and Hc′ ) with an attention mechanism:

• To capture the relevance between c and c′, we design an attention function, which computes the
attention score matrix Aaug based on the embedding of each pair of nodes in CPGs of c and c′:

Aaug ∝ exp(ReLU(WHc)ReLU(WHc′)
T ) (2)

where W ∈ Rd×d is the matrix with d-dim embedding size and ReLU is the rectified linear unit.
• Multiply the attention matrix Aaug with the retrieved representation Hc′ to inject retrieved features

into Hc:
H ′c = zAaugHc′ (3)

where z is the similarity score, which is introduced to weaken the negative impact of c′ on the
original training data c, i.e., when the similarity of c and c′ is low.

• Finally, we merge H ′c and the original Hc to get the final representation of c.

comp = WcHc +W ′
cH
′
c (4)

where Wc,W
′
c ∈ Rd×d are weighted matrices and comp is the retrieval augmented node repre-

sentation.

Step 3: Retrieved Summary-based Augmentation. We further encode the retrieved summary s′
with another BiLSTM model. We represent each token t′i of s′ using the learned embedding matrix
Eseqtoken. Then s′ can be encoded as:

ht′1
, ...,ht′T

= BiLSTM(Eseqtoken
t′1

, ...,Eseqtoken
t′T

) (5)

where ht′i is the state of the BiLSTM model for the token t′i in s′ and T is the length of s′. We also
multiply the similarity score z to [ht′1

, ...,ht′T
] and concatenate with the graph encoding results (i.e.,

the outputs of the GNN encoder) as the input [GNNoutput, zht′1
, ..., zht′T

] to the decoder.
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2.3 ATTENTION-BASED DYNAMIC GRAPH

Due to that GNN-based encoders usually consider the k-hop neighborhood, the global relation among
nodes in the static graph (see Section 2.2.1) may be ignored. In order to better capture the global
semantics of source code, based on the static graph, we propose to dynamically construct a graph via
structure-aware global attention mechanism, which allows message passing among any pair of nodes.
The attention-based dynamic graph can better capture the global dependency among nodes, and thus
supplement the static graph.

Structure-aware Global Attention. The construction of the dynamic graph is motivated by the
structure-aware self-attention mechanism proposed in Zhu et al. (2019). Given the static graph, we
compute a corresponding dense adjacency matrix Adyn based on a structure-aware global attention
mechanism and the constructed graph namely attention-based dynamic graph. Unlike the self-
attention mechanisms in Zhu et al. (2019), we consider not only the node semantics but also the edges
in the static graph (i.e., the CPG of the training data) when computing attention scores between any
pair of nodes.

Adyn
v,u =

ReLU(hvW
Q)(ReLU(huW

K) + ReLU(ev,uW
R))√

d
(6)

where hv,hu ∈ comp are the augmented node embedding for any node pair (v, u) in the CPG.
Note that the global attention considers each pair of nodes of the CPG, regardless of whether there is
an edge between them. ev,u ∈ Rde is the edge embedding and WQ,WK ∈ Rd×d, WR ∈ Rde×d

are parameter matrices, de and d are the dimensions of edge embedding and node embedding,
respectively. The adjacency matrix Adyn normalizes with softmax function, which will be used to
compute dynamic message passing (see Section 2.4).

Adyn = softmax(Adyn) (7)

2.4 HYBRID GNN

To better incorporate the information of the static graph and the dynamic graph, we propose the
Hybrid Message Passing (HMP), which are performed on both retrieval-augmented static graph and
attention-based dynamic graph.

Static Message Passing. We incorporate the edge type embedding to encode the static graph. For
every node v at each computation hop k, we apply an aggregation function to calculate the aggregated
vector hk

v by consdering a set of neighboring node embeddings computed from the previous hop.

hk
v = SUM({hk−1

u + ev,uW
P |∀u ∈ N(v)}) (8)

where W P ∈ Rde×d is the weighted matrix and N(v) is a set of the neighboring nodes which are
directly connected with v. For each node v, h0

v is the initial augmented node embedding of v, i.e.,
hv ∈ comp.

Dynamic Message Passing. The node information and edge information are propagated on the
attention-based dynamic graph with the adjacency matrices Adyn, defined as

h
′k
v =

m∑
j=1

Adyn
v,vj (h

′k−1
vj

W V + ev,vjW
F ) (9)

where m is the total number of nodes, vj is the jth node, W V ∈ Rd×d, W F ∈ Rde×d are learned
matrices, and ev,vj is the edge embedding between the edge v, vj . Similarly, h

′0
vj is the initial

augmented node embedding of v in comp.

Hybrid Message Passing. Given the static/dynamic aggregated vectors hk
v/h

′k
v for static and

dynamic graphs, we fuse both vectors and feed the resulting vector to a Gated Recurrent Unit (GRU)
to update node representations.

fk
v = GRU(fk−1

v ,Fuse(hk
v ,h

′k
v )) (10)

where f0
v is the augmented node initialization in comp. The fusion function Fuse is designed as a

gated sum of two inputs.
Fuse(a, b) = z � a+ (1− z)� b z = σ(Wz[a; b;a� b;a− b] +Bz) (11)
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where � is the component-wise multiplication, σ is a sigmoid function and z is a gating vector. After
n hops of GNN computation, we obtain the final node representation fn

v and then apply max-pooling
over all nodes {fn

v |∀v ∈ V} to get the graph representation.

2.5 DECODER

The decoder is similar with other state-of-the-art Seq2seq models (Bahdanau et al., 2014; Luong
et al., 2015) where an attention-based LSTM decoder is used. The decoder takes the input of
the concatenation of the node representation and the representation of the retrieved summary (i.e.,
s′ = (t′1, ..., t

′
T )): [f

n
v1 ; ...;f

n
vm ; zht′1

; ...; zht′T
], where n is the number of hops and m is the number

of nodes in the CPG. The initial hidden state of decoder is the fusion of graph representation and the
weighted (i.e., multiply similarity score z) final state of retrieved summary.

We train the model with regular cross-entropy loss, defined as L =
∑t

1−logP (s∗t |c, s∗<t), where s∗t
is the word at the t-th position of the ground-truth output and c is the source code of the function.
To alleviate the exposure bias, we utilize schedule teacher forcing (Bengio et al., 2015). During the
inference, we use beam search to generate final results.

3 EXPERIMENTS

3.1 SETUP

We evaluate our proposed framework against a number of state-of-the-art methods. Specifically,
we classify the selected baseline methods into three groups: 1) Retrieval-based approaches: TF-
IDF (Haiduc et al., 2010) and NNGen (Liu et al., 2018), 2) Sequence-based approaches: CODE-
NN (Iyer et al., 2016; Barone & Sennrich, 2017), Transformer (Ahmad et al., 2020), Hybrid-
DRL (Wan et al., 2018), Rencos (Zhang et al., 2020) and Dual model (Wei et al., 2019), 3) Graph-
based approaches: SeqGNN (Fernandes et al., 2018). In addition, we implemented two another
graph-based baselines: GCN2Seq and GAT2Seq, which respectively adopt the Graph Convolution
(Kipf & Welling, 2016) and Graph Attention (Velickovic et al., 2018) as the encoder and a LSTM as
the decoder for generating summaries. Note that Rencos (Zhang et al., 2020) combines the retrieval
information into Seq2Seq model, we classify it into Sequence-based approaches. More detailed
description about baselines and the configuration of HGNN can be found in the Appendix B and C.

Existing benchmarks (Barone & Sennrich, 2017; Hu et al., 2018b) are all based on high-level
programming language i.e., Java, Python. Furthermore, they have been confirmed to have extensive
duplication, making model overfit to the training data that overlapped with the testset (Fernandes
et al., 2018; Allamanis, 2019). We are the first to explore neural summarization on C programming
language and make our benchmark public to benefit the academia and industry. We crawled from
popular C repositories on GitHub and extract function-summary pairs based on the documents of
functions. After a strict deduplication process, we kept 95k+ unique function-summary pairs and
name it C Code Summarization Dataset (CCSD). To further test the model generalization ability, we
construct in-domain functions and out-of-domain functions by dividing the projects into two sets,
denoted as a and b. For each project in a, we randomly select some of functions in this project as
the training data and the unselected functions are the in-domain validation/test data. All functions
in projects b are regarded as out-of-domain test data. Finally, we obtain 82,656 training functions,
4,340 in-domain validation functions, 4,124 in-domain test functions and 2,264 out-of-domain test
functions. For the retrieval augmentation, we also use the training set as the retrieval database, i.e.,
D′ = D (see Step 1 in Section 2.2). More details about data processing, please refer to Appendix D.

Similar to previous works (Zhang et al., 2020; Wan et al., 2018; Fernandes et al., 2018; Iyer et al.,
2016), BLEU (Papineni et al., 2002), METEOR (Banerjee & Lavie, 2005) and ROUGE-L (Lin, 2004)
are used as our automatic evaluation metrics. These metrics are popular in machine translation, text
summarization. Except for these similarity-based metrics, we also conduct a human evaluation study
to evaluate semantic similarity. We invite 5 Ph.D students and 10 master students as the volunteers,
who have rich C programming experiences. The volunteers are asked to rank summaries generated
from the anonymized approaches from 1 to 5 (i.e., 1: Poor, 2: Marginal, 3: Acceptable, 4: Good,
5: Excellent) based on the relevance of the generated summary to the source code and the degree
of similarity between the generated summary and the actual summary. Specifically, we randomly
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Table 1: Automatic evaluation results (in %) on the CCSD test set.
In-domain Out-of-domain OverallMethods BLEU-4 ROUGE-L METEOR BLEU-4 ROUGE-L METEOR BLEU-4 ROUGE-L METEOR

TF-IDF 15.20 27.98 25.91 5.50 15.37 13.12 12.19 23.49 21.34
NNGen 15.97 28.14 26.11 5.74 16.33 14.27 12.76 23.93 21.96

CODE-NN 9.02 26.94 22.54 4.77 20.91 18.52 7.77 25.15 21.11
Hybrid-DRL 9.29 30.00 24.59 6.30 24.19 21.85 8.42 28.64 23.62
Transformer 12.91 28.04 18.47 5.75 18.62 15.00 10.69 24.65 17.27
Dual Model 11.49 29.20 25.25 5.25 21.31 18.34 9.61 26.40 22.80

Rencos 14.47 31.61 28.55 6.50 22.81 18.74 11.74 28.47 24.41
GCN2Seq 9.79 26.59 22.58 4.06 18.96 16.03 7.91 23.67 20.08
GAT2Seq 10.52 26.17 22.89 3.80 16.94 13.96 8.29 22.63 19.47
SeqGNN 10.51 29.84 25.04 4.94 20.80 18.17 8.87 26.34 22.97

HGNN w/o augment & dynamic 12.00 29.06 25.23 4.65 21.06 18.05 9.64 26.00 22.48
HGNN w/o augment & static 11.87 29.36 25.27 5.31 21.90 18.65 9.75 26.88 23.12

HGNN w/o augment 12.43 30.05 25.75 5.56 22.64 18.27 9.87 27.04 23.16
HGNN w/o summary augment 13.37 30.36 26.13 5.81 22.97 19.05 10.34 27.43 23.82

HGNN w/o code augment 15.10 32.19 27.83 6.94 23.80 20.44 12.01 28.79 24.93
HGNN w/o static 15.65 32.72 28.78 6.98 24.03 21.16 12.78 29.20 25.48

HGNN w/o dynamic 15.34 32.13 28.01 6.91 23.95 20.53 12.21 29.07 25.14
HGNN 16.24 33.62 29.60 7.62 24.77 20.78 13.39 30.23 26.22

choose 50 functions for per approach with the corresponding generated summaries and ground-truths.
After the summarizes are ranked, we calculate the average score for each function. Higher scores
mean better quality.

3.2 COMPARISON WITH THE BASELINES

Table 1 shows the evaluation results including two parts: the comparision with baselines and the
ablation study. Consider the comparison with state-of-the-art baselines, in general, we find that
our proposed model outperforms existing methods by a significant margin on both in-domain and
out-of-domain datasets, and shows good generalization performance. Compared with others, on
in-domain dataset, the simple retrieval-based approaches could achieve competitive performance
on BLEU-4, however ROUGE-L and METEOR are fare less than ours. They also do not perform
well on out-of-domain dataset. Even without augmentation (HGNN w/o augment), our approach still
outperforms the graph-based approaches (i.e., GCN2Seq, GAT2Seq and SeqGNN), which further
demonstrates the effectiveness of Hybrid-GNN for additionally capturing global graph information.
Compared with Sequence-based approaches, HGNN w/o augment outperforms the majority models,
except for Hybrid-DRL and Rencos. For Hybrid-DRL with a better performance on the out-of-domain
functions, we ascribe to the advantages of deep reinforcement learning to optimize evaluation metrics.
Compared with Rencos that also considers the retrieved information in the Seq2Seq model, we could
find that its performance is still lower than HGNN. On the overall dataset including both of in-domain
and out-of-domain data, our model achieves 13.39, 30.23 and 26.22, outperforming existing methods
by 1.65, 1.76 and 1.81 in terms of BLEU-4, ROUGE-L and METEOR metrics.

3.3 ABLATION STUDY

We also conduct an ablation study to evaluate the impact of different components of our framework,
e.g., retrieval-based augmentation, static graph and dynamic graph in the last row of Table 1. Over-
all, we found that: retrieval-augmented mechanism significantly contributed to the overall model
performance (HGNN vs. HGNN w/o augment). More specifically, we noticed that summary-based
augmentation has the most impact (HGNN vs. HGNN w/o summary augment). Besides, considering
both summary and code augmentation further significantly improved the performance compared to
considering only summary augmentation (HGNN vs. HGNN w/o code augment). The summary-based
augmentation is more useful, we conjecture that it depends on the specific task: 1) this task is to
generate summary and 2) the code and summary are heterogeneous data. Thus, summary-based
augmentation could provide a more direct signal for generating better summaries. However, the
code-based augmentation could further improve the performance by enhancing the semantic learning
of the program. Combining them together, our method achieves the best result. Similarly, consider
results in HGNN w/o static and HGNN w/o dynamic, we see that: 1) their performance decreases,
which demonstrates the effectiveness of the Hybrid-GNN and 2) the performance without dynamic
graph is worse than the performance without static graph, which demonstrates the usefulness of
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Table 2: Human evaluation results on the CCSD test set.
Metrics NNGen Transformer Rencos SeqGNN HGNN

Relevance 3.16 3.17 3.31 3.46 3.64
Similarity 3.08 3.02 3.16 3.14 3.47

Table 3: Examples of generated summaries on the CCSD test set.
Example Example 1 Example 2

Source Code

static void strInit(Str *p){
p->z = 0;
p->nAlloc = 0;
p->nUsed = 0;

}

void ReleaseCedar(CEDAR *c){
if (c == NULL)

return;
if (Release(c->ref) == 0)

CleanupCedar(c);
}

Ground-Truth initialize a str object release reference of the cedar
NNGen free the string release the virtual host

Transformer initialize the string release cedar communication module
Rencos initialize a floating poing string release of the cancel object

SeqGNN initialize the string release cedar communication mode
HGNN initialize a str object release reference of cedar

dynamic graph that captures the global structural information. Similarly, we also evaluate the perfor-
mance without augmentation and static graph/dynamic graph (see HGNN w/o augment& static and
HGNN w/o augment& dynamic). Compared with HGNN w/o augment, the results further confirm the
effectiveness of the Hybrid-GNN.

3.4 HUMAN EVALUATION

As shown in Table 2, we perform a human evaluation on the overall dataset to assess the quality
of the generated summaries by our approach, NNGen, Transformer, Rencos and SeqGNN in terms
of relevance and similarity. As depicted in Table 1, NNGen, Rencos and SeqGNN are the best
retrieval-based, sequence-based, and graph-based approaches, respectively. We also compare with
Transformer as it has been widely used in natural language processing. Inspection on the results,
our method can generate better summaries which are more relevant with the source code and more
similar with the ground-truth summaries.

3.5 CASE STUDY

To perform qualitative analysis, we present two examples with generated summaries by different
methods from the overall data set, shown in Table 3. We can see that, in the first example, our
approach learns more code semantics, i.e., p is a self-defined struct variable. Thus, we could generate
a token object for the variable p. However, other models can only produce string. Example 2 is a
more difficult function with the functionality to “release reference”, as compared to other baselines,
our approach effectively captures the functionality and generates more precise summary.

3.6 EXTENSION ON THE PUBLIC DATASET

We conducted additional experiments on a public dataset, i.e., the Python Code Summarization Dataset
(PCSD), which was also used in Rencos (the most competitive baseline in our paper). The total
number of code samples in PCSD is 109,726 (Barone & Sennrich, 2017). This number is comparable
to the size (i.e., ∼ 95k) of our own CCSD benchmark. We follow the setting of Rencos and split
PSCD into the training set, validation set and testing set with fractions of 60%, 20% and 20%. We
construct the static graph and compare our methods on PCSD against various competitive baselines,
i.e., NNGen, CodeNN, Rencos and Transformer, which are either retrieval-based, generation-based
or hybrid methods. The results are shown in Table 4. We can see that our method outperforms
NNGen, CODENN, Rencos and Transformer by 0.95, 3.27 and 1.12 in terms of BLEU-4, ROUGE-L
and METEOR. We also perform the ablation study on PSCD to demonstrate the usefulness of the
static graph (i.e., HGNN w/o dynamic) and dynamic graph (i.e., HGNN w/o static). The results
also demonstrate that both static graph and dynamic graph can contribute to our framework. In
summary, the results on both our released benchmark (C benchmark) and existing benchmark (PCSD)
demonstrate the effectiveness of our method.
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Table 4: Evaluation on PCSD.
Methods BLEU-4 ROUGE-L METEOR
NNGen 21.60 31.61 15.96

CODE-NN 16.39 28.99 13.68
Transformer 17.06 31.16 14.37

Rencos 22.24 36.00 18.26
HGNN w/o static 21.82 38.61 18.36

HGNN w/o dynamic 21.75 38.37 18.42
HGNN 23.19 39.27 19.38

4 RELATED WORK

Source Code Summarization Early works (Eddy et al., 2013; Haiduc et al., 2010; Wong et al.,
2015; 2013) for code summarization focused on using information retrieval to retrieve summaries.
Later works attempted to employ attentional Seq2Seq model on the source code (Iyer et al., 2016) or
some variants from code text, i.e., AST (Hu et al., 2018a; Alon et al., 2018) to generate summaries.
However, these works are based on sequential models, ignoring rich code semantics. Some latest
attempts (LeClair et al., 2020; Fernandes et al., 2018) embedded program semantics into graph neural
networks. However, these works mainly use simple representations, which are limited to learn full
program semantics.

Graph Neural Networks Over the past few years, GNNs (Li et al., 2015; Hamilton et al., 2017;
Kipf & Welling, 2016) have attracted increasing attention with many successful applications in
computer vision (Norcliffe-Brown et al., 2018), natural language processing (Xu et al., 2018a).
Because by design GNNs can model graph-structured data, recently, some works have extended the
widely used Seq2Seq architectures to Graph2Seq architectures for various tasks including machine
translation (Beck et al., 2018), and graph (e.g., AMR, SQL)-to-text generation (Zhu et al., 2019; Xu
et al., 2018b). Some works have also attempted to encode programs with graphs for diverse tasks e.g.,
VARNAMING/VARMISUSE (Allamanis et al., 2017), Source Code Vulnerability Detection (Zhou
et al., 2019). As compared to these works, we innovate a hybrid message passing GNN performed on
both static graph and dynamic graph for better message fusion.

5 CONCLUSION AND FUTURE WORK

In this paper, we proposed a framework for automatic code summarization. A novel retrieval-
augmented mechanism is proposed for combining the benefits of both retrieval-based and generation-
based approaches. Moreover, to capture global semantics among nodes, we developed a hybrid
message passing GNN based on both static and dynamic graphs. The evaluation shows that our
approach improves state-of-the-art techniques substantially. Future directions include exploring more
effective ways to learn graph structures, combining other information, e.g., API knowledge for code
summarization, and graph robustness analysis for GNN.
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   int a = rand( );
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        int b = a++;
        call(b);
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}
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Figure 3: A example of code property graph (CPG).

Appendices
A DETAILS ON CODE PROPERTY GRAPH

Code Property Graph (CPG) (Yamaguchi et al., 2014), which is constructed on abstract syntax tree
(AST), combines different edges (i.e., “Flow to”, “Control”) to represent the semantics of the program.
We describe each representation combining with Figure 3 as follows:

• Abstract Syntax Tree (AST). AST contains syntactic information for a program and omits
irrelevant details that have no effect on the semantics. Figure 3 shows the completed AST nodes
on the left simple program and each node has a code sequence in the first line and type attribute in
the second line. The black arrows represent the child-parent relations among ASTs.

• Control Flow Graph (CFG). Compared with AST highlighting the syntactic structure, CFG
displays statement execution order, i.e., the possible order in which statements may be executed
and the conditions that must be met for this to happen. Each statement in the program is treated as
an independent node as well as a designated entry and exit node. Based on the keywords if, for,
goto, break and continue, control flow graphs can be easily built and “Flow to” with green dashed
arrows in Figure 3 represents this flow order.

• Program Dependency Graph (PDG). PDG includes data dependencies and control dependen-
cies: 1) data dependencies are described as the definition of a variable in a statement reaches the
usage of the same variable at another statement. In Figure 3, the variable “b” is defined in the
statement “int b = a++” and used in “call (b)”. Hence, there is a “Reach” edge with blue arrows
point from “int b = a++” to “call (b)”. Furthermore, Define/Use edge with orange double arrows
denotes the definition and usage of the variable. 2) different from CFG displaying the execution
process of the complete program, control dependencies define the execution of a statement may
be dependent on the value of a predicate, which more focus on the statement. For instance, the
statements “int b = a++” and “call(b)” are only performed if a is even. Therefore, a red double
arrow “Control” points from “if (a % 2) == 0” to “int b = a++” and “call(b)”.

B DETAILS ON BASELINE METHODS

We compare our approach with existing baselines. They can be divided into three groups: Retrieval-
based approaches, Sequence-based approaches and Graph-based approaches. For papers that provide
the source code, we directly reproduce their methods on CCSD dataset. Otherwise, we reimplement
their approaches with reference to the papers.

B.1 RETRIEVAL-BASED APPROACHES

TF-IDF (Haiduc et al., 2010) is the abbreviation of Term Frequency-Inverse Document Frequency,
which is adopted in the early code summarization (Haiduc et al., 2010). It transforms programs
into weight vectors by calculating term frequency and inverse document frequency. We retrieve the
summary of the most similar programs by calculating the cosine similarity on the weight vectors.

NNGen (Liu et al., 2018) is a retrieved-based approach to produce commit messages for code changes.
We reproduce such an algorithm on code summarization. Specifically, we retrieve the most similar
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top-k code snippets on a bag-of-words model and prioritizes the summary in terms of BLEU-4 scores
in top-k code snippets.

B.2 SEQUENCE-BASED APPROACHES

CODE-NN (Iyer et al., 2016; Barone & Sennrich, 2017) adopts an attention-based Seq2Seq model
to generate summaries on the source code.

Transformer (Ahmad et al., 2020) adopts the transformer architecture (Vaswani et al., 2017) with
self-attention to capture long dependency in the code for source code summrization.

Hybrid-DRL (Wan et al., 2018) is a reinforcement learning-based approach, which incorporates AST
and sequential code snippets into a deep reinforcement learning framework and employ evaluation
metrics e.g., BLEU as the reward.

Dual Model (Wei et al., 2019) propose a dual training framework by training code summarization
and code generation tasks simultaneously to boost each task performance.

Rencos (Zhang et al., 2020) is the retrieval-based Seq2Seq model for code summarization. it utilized
a pretrained Seq2Seq model during the testing phase by computing a joint probability conditioned on
both the original source code and retrieved source code for the summary generation.

B.3 GRAPH-BASED APPROACHES

We also compared with some latest GNN-based works, employing graph neural network for source
code summarization.

GCN2Seq, GAT2Seq modify Graph Convolution Network (Kipf & Welling, 2016) and Graph
Attention Network (Velickovic et al., 2018) to perform convolution operation and attention operation
on the code property graph for learning and followed by a LSTM to generate summaries.

SeqGNN (Fernandes et al., 2018) combines GGNNs and standard sequence encoders for summa-
rization. They take the code and relationships between elements of the code as input. Specially, a
BiLSTM is employed on the code sequence to learn representations and each source code token is
modelled as a node in the graph, and employed GGNN for graph-level learning. Since our node se-
quences are sub-sequence of source code rather than individual token, we adjust to slice the output of
BiLSTM and concatenate each token representation in node sequences as node initial representation
for summarization.

C MODEL SETTINGS

We embed the most frequent 40,000 words in the training set with 512-dims and set the hidden size
of BiLSTM to 256 and the concatenated state size for both directions is 512. The dropout is set to
0.3 after word embedding layer and BiLSTM. We set GNN hops to 3 for the best performance. The
optimizer is selected with Adam with an initial learning rate 0.001. We also use teacher forcing
strategy with forcing probability equals to 0.8 and forcing decay is set to 0.99. The batch size is set to
64 and early stop for 10. The beam search width is set to 5 as usual. All experiments are conducted
on the dgx server with four Nvidia Graphics Tesla V100 and each epoch takes averagely 20min. All
hyperparameters are tuned with grid search (Franceschi et al., 2017) on the validation set.

D DETAILS ON DATA PREPARATION

It is non-trivial to obtain high-quality datasets for code summarization. We noticed that despite some
previous works (Barone & Sennrich, 2017; Hu et al., 2018b) released their datasets, however, they
are all based on high-level programming languages i.e. Java, Python. Furthermore, they have been
confirmed to have extensive duplication to make model overfit to the training data that overlapped
with the test set (Fernandes et al., 2018; Allamanis, 2019). We are the first to explore summarization
on C programming language and make our benchmark public to benefit the community research.
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Table 5: More Examples of generated summaries on the CCSD test set.
Example Example 1 Example 2

Source Code

void hv_ringbuffer_cleanup
(struct hv_ring_buffer_info
*ring_info){
mutex_lock(&ring_info
->ring_buffer_mutex);
vunmap(ring_info->ring_buffer);
ring_info->ring_buffer=NULL;
mutex_unlock(&ring_info
->ring_buffer_mutex);
}

void BSP_LCD_DrawRect(uint16_x Xpos,
uint16_t Ypos, uint16_t Width, uint16_t Height){
BSP_LCD_DrawHLine(Xpos, Ypos, Width);
BSP_LCD_DrawHLine(Xpos, (Ypos+Height), Width);
BSCP_LCD_DrawVLine(Xpos,Ypos,Height);
BSP_LCD_DrawVLine((Xpos+Width),Ypos,Height);
}

Ground-Truth cleanup the ring buffer draws a rectangle
NNGen fini ring also free the buffer for the ring generate a 16 bit luma map from an 8 bit image

Transformer drop a ring mapping of ring buffer x y relative to shape origin
Rencos release dma buffers from ring buffer draws a range of display panel

SeqGNN release resources related to a ring buffer screen to draw the screen
HGNN clean up the ring buffer draw a rectangle

Example Example 3 Example 4

Source Code

static void udc_dd_free(
struct lpc32xx_udc *udc,
struct lpc32xx_usbd_dd_gad
*dd){
dma_pool_free(udc->dd_cache,
dd, dd->this_dma);
}

static bool build_cookie(
private_ike_mobike_t *this,
message_t *message){
rng_t *rng; chunk_free(&this->cookie2);
rng=lib->crypto->create_rng(lib->crypo,
RNG_STRONG);
if(!rng||rng->allocate_bytes(
rng,COOKIE2_SIZE, &this->cookie2)){
DESTROY_IF(rng); return FALSE;
}
message->add_notify(message,
FALSE, COOKIE2, this->cookie2);
rng->destroy(rng);
return True
}

Ground-Truth free a dma descriptor build a cookie and add it to the message
NNGen allocate a dma descriptor initialize seeds for spi generation

Transformer free a dma descriptor build as10x command header
Rencos allocate a dma descriptor initialize seeds for spi generation

SeqGNN free the device build a new task
HGNN free a dma descriptor build a message cookie

We crawled from popular C repositories (e.g., Linux and Redis) on GitHub, and then extracted
separate function-summary pairs from these projects. Specifically, we extracted functions and
associated comments marked by special characters "/**" and "*/" over the function declaration. These
comments can be considered as explanations of the functions. We filtered out functions with line
exceeding 1000 and any other comments inside the function, and the first sentence was selected as
summary. A similar practice can be found in (Jiang et al., 2017). We totally collected 360k raw
function-summary pairs. Furthermore, functions with token size greater than 150 were removed for
computational efficiency and there were 130k functions left. Since duplication is very common in
existing datasets (Fernandes et al., 2018), we performed a strict de-duplication process followed
by Allamanis (2019) and removed functions with text similarity over 80% and finally kept 95k+
unique functions. We name this dataset C Code Summarization Dataset (CCSD). To testify model
generalization ability, we randomly selected some projects as the out-of-domain test set with 2,264
examples and the remaining were randomly split into train/development/test with 82,656/4,340/4,124
examples. The open-source code analysis platform for C Joern (Yamaguchi et al., 2014) was applied
to construct code property graphs.

E MORE EXAMPLES

We show more examples in Table 5 and find that HGNN can generate more high-quality summries
based on our approch.
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